Articles | Volume 16, issue 18
https://doi.org/10.5194/gmd-16-5365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5365-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Young-Chan Noh
Korea Polar Research Institute, Incheon, 21990, South Korea
Korea Polar Research Institute, Incheon, 21990, South Korea
Hyo-Jong Song
Department of Environmental Engineering and Energy, Myongji
University, Seoul, 17058, South Korea
Kevin Raeder
National Center for Atmospheric Research, CISL/DAReS, Boulder, CO
80305, USA
Joo-Hong Kim
Korea Polar Research Institute, Incheon, 21990, South Korea
Youngchae Kwon
Department of Environmental Engineering and Energy, Myongji
University, Seoul, 17058, South Korea
Related authors
Eui-Jong Kang, Byung-Ju Sohn, Wonho Kim, Young-Chan Noh, Shihye Lee, In-Hyuk Kwon, and Hwan-Jin Song
EGUsphere, https://doi.org/10.5194/egusphere-2025-2071, https://doi.org/10.5194/egusphere-2025-2071, 2025
Preprint withdrawn
Short summary
Short summary
Accurate ice skin temperature (IST) is crucial for reliable Arctic weather forecasts. In this study, we assess the impact of realistic IST initialization using satellite-based data within the Korean Integrated Model. Results show that, while this reduces random errors by 3–5 %, its benefits are constrained by inherent model bias. These findings highlight the need to jointly improve IST initialization and model physics, offering guidance for future updates in KIM and other forecasting systems.
Carla Cardinali, Giovanni Conti, Marcelo Guatura, Sami Saarinen, Luis Gustavo Gonçalves De Gonçalves, Jeffrey Anderson, and Kevin Raeder
EGUsphere, https://doi.org/10.5194/egusphere-2025-4294, https://doi.org/10.5194/egusphere-2025-4294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Scientists have developed research systems to test new ideas in data assimilation, but these often lack the efficiency and robustness needed for operational use. We addressed this gap with key innovations: a flexible observation database, first guess at the appropriate time, and modular, parallelised software enabling the assimilation of millions of observations.
Eui-Jong Kang, Byung-Ju Sohn, Wonho Kim, Young-Chan Noh, Shihye Lee, In-Hyuk Kwon, and Hwan-Jin Song
EGUsphere, https://doi.org/10.5194/egusphere-2025-2071, https://doi.org/10.5194/egusphere-2025-2071, 2025
Preprint withdrawn
Short summary
Short summary
Accurate ice skin temperature (IST) is crucial for reliable Arctic weather forecasts. In this study, we assess the impact of realistic IST initialization using satellite-based data within the Korean Integrated Model. Results show that, while this reduces random errors by 3–5 %, its benefits are constrained by inherent model bias. These findings highlight the need to jointly improve IST initialization and model physics, offering guidance for future updates in KIM and other forecasting systems.
Hee-Sung Jung, Sang-Moo Lee, Joo-Hong Kim, and Kyungsoo Lee
Earth Syst. Sci. Data, 17, 233–258, https://doi.org/10.5194/essd-17-233-2025, https://doi.org/10.5194/essd-17-233-2025, 2025
Short summary
Short summary
This dataset consists of reference sea ice concentration (SIC) data records over the Arctic Ocean, which were derived from the 30 m resolution imagery from the Operational Land Imager (OLI) on board Landsat-8. Each SIC map is given in a 6.25 km polar stereographic grid and is catalogued into one of the 12 regions of the Arctic Ocean. This dataset was produced to be used as a reference in the validation of various SIC products.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024, https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Short summary
We assimilate different MOPITT CO products to understand the impact of (1) assimilating multispectral and joint retrievals versus single spectral products, (2) assimilating satellite profile products versus column products, and (3) assimilating multispectral and joint retrievals versus assimilating individual products separately.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth
The Cryosphere, 15, 1277–1284, https://doi.org/10.5194/tc-15-1277-2021, https://doi.org/10.5194/tc-15-1277-2021, 2021
Short summary
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Cited articles
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.
Anderson, J. L.: Localization and sampling error correction in ensemble
Kalman filter data assimilation, Mon. Weather Rev., 140, 2359–2371,
https://doi.org/10.1175/MWR-D-11-00013.1, 2012.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The data assimilation research testbed: A community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009 (code available at: https://github.com/NCAR/DART, last access: 25 November 2021).
Bormann, N. and Bauer, P.: Estimates of spatial and interchannel
observation-error characteristics for current sounder radiances for
numerical weather prediction. I: Methods and application to ATOVS data, Q.
J. Roy. Meteor. Soc., 136, 1036–1050, https://doi.org/10.1002/qj.616, 2010.
Campbell, W. F., Satterfield, E. A., Ruston, B., and Baker, N. L.:
Accounting for correlated observation error in a dual-formulation 4D
variational data assimilation system, Mon. Weather Rev., 145, 1019–1032,
https://doi.org/10.1175/MWR-D-16-0240.1, 2017.
Coniglio, M. C., Romine, G. S., Turner, D. D., and Torn, R. D.: Impacts of
targeted AERI and Doppler lidar wind retrievals on short-term forecasts of
the initiation and early evolution of thunderstorms, Mon. Weather Rev., 147,
1149–1170, https://doi.org/10.1175/MWR-D-18-0351.1, 2019.
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The community earth system model version 2
(CESM2), J. Adv. Model. Earth Sy., 12, 1–35, https://doi.org/10.1029/2019MS001916, 2020.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of
observation, background and analysis-error statistics in observation space,
Q. J. Roy. Meteor. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108, 2005.
Duncan, D. I., Bormann, N., Geer, A. J., and Weston, P.: Assimilation of
AMSU-A in All-Sky Conditions, Mon. Weather Rev., 150, 1023–1041,
https://doi.org/10.1175/MWR-D-21-0273.1, 2022.
El Gharamti, M., Raeder, K., Anderson, J., and Wang, X.: Comparing adaptive
prior and posterior inflation for ensemble filters using an atmospheric
general circulation model, Mon. Weather Rev., 147, 2535–2553,
https://doi.org/10.1175/MWR-D-18-0389.1, 2019.
English, S., McNally, T., Bormann, N., Salonen, K., Matricardi, M., Horanyi,
A., Rennie, M., Janisková, M., Michele, S. D., Geer, A., Tomaso E. D.,
Cardinali, C., Rosnay, P., Sabater, J. M., Bonavita, M., Albergel, C.,
Engelen, R., Thépaut, J.: Impact of Satellite Data, ECMWF Technical
Memorandum, 711, ECMWF Reading, UK, https://doi.org/10.21957/b6596ot1s, 2013.
Eresmaa, R., Letertre-Danczak, J., Lupu, C., Bormann, N., and McNally, A.
P.: The assimilation of Cross-track Infrared Sounder radiances at ECMWF, Q.
J. Roy. Meteor. Soc., 143, 3177–3188, https://doi.org/10.1002/qj.3171, 2017.
EUMETSAT: Product navigator, EUMETSAT [data set], https://navigator.eumetsat.int (last access: 3 January 2022), 2022.
Eyre, J. R., English, S. J., and Forsythe, M.: Assimilation of satellite
data in numerical weather prediction. Part I: The early years, Q. J. Roy.
Meteor. Soc., 146, 49–68, https://doi.org/10.1002/qj.3654, 2020.
Eyre, J. R., Bell, W., Cotton, J., English, S. J., Forsythe, M., Healy, S.
B., and Pavelin, E. G.: Assimilation of satellite data in numerical weather
prediction. Part II: Recent years, Q. J. Roy. Meteor. Soc., 148, 521–556,
https://doi.org/10.1002/qj.4228, 2022.
Goldberg, M. D., Crosby, D. S., and Zhou, L.: The limb adjustment of AMSU-A
observations: Methodology and validation, J. Appl. Meteorol. Clim., 40,
70–83, https://doi.org/10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2, 2001.
Grody, N., Weng, F., and Ferraro, R.: Application of AMSU for obtaining
water vapor, cloud liquid water, precipitation, snow cover, and sea ice
concentration, 10th International TOVS Study Conference, International TOVS
Working Group (ITWG), 1999.
Grody, N., Zhao, J., Ferraro, R., Weng, F., and Boers, R.: Determination of
precipitable water and cloud liquid water over oceans from the NOAA 15
advanced microwave sounding unit, J. Geophys. Res., 106, 2943–2953, https://doi.org/10.1029/2000JD900616, 2001.
Harris, B. A. and Kelly, G.: A satellite radiance-bias correction scheme for
data assimilation, Q. J. Roy. Meteor. Soc., 127, 1453–1468,
https://doi.org/10.1002/qj.49712757418, 2001.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2022.
Hoar, T. J., Raeder, K., Anderson, J. L., Steward, J., El Gharamti, M.,
Johnson, B. K., Romine, G., Ha, S., and Mizzi, A. P.: DART: Empowering
Geoscience with Improved Ensemble Data Assimilation, 2020 AGU Fall Meeting,
American Geophysical Union, https://ui.adsabs.harvard.edu/abs/2020AGUFMA215.0002H/abstract (last access: 30 August 2022), 2020.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The community earth system model: a framework for
collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013 (code available at: https://github.com/ESCOMP/CESM/tree/release-cesm2.1.0, last access: 25 November 2021).
Joo, S., Eyre, J., and Marriott, R.: The impact of MetOp and other satellite
data within the Met Office global NWP system using an adjoint-based
sensitivity method, Mon. Weather Rev., 141, 3331–3342,
https://doi.org/10.1175/MWR-D-12-00232.1, 2013.
Judt, F.: Atmospheric predictability of the tropics, middle latitudes, and
polar regions explored through global storm-resolving simulations, J. Atmos.
Sci., 77, 257–276, https://doi.org/10.1175/JAS-D-19-0116.1, 2020.
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, https://doi.org/10.1017/CBO9780511802270, 2003.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: A
community resource for studying climate change in the presence of internal
climate variability, B. Am. Meteorol. Soc., 96, 1333–1349,
https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Kim, S. M. and Kim, H. M.: Forecast sensitivity observation impact in the
4DVAR and hybrid-4DVAR data assimilation systems, J. Atmos. Ocean. Tech.,
36, 1563–1575, https://doi.org/10.1175/JTECH-D-18-0240.1, 2019.
Liu, H., Anderson, J., and Kuo, Y. H.: Improved analyses and forecasts of
Hurricane Ernesto's genesis using radio occultation data in an ensemble
filter assimilation system, Mon. Weather Rev., 140, 151–166,
https://doi.org/10.1175/MWR-D-11-00024.1, 2012.
Menzel, W. P., Schmit, T. J., Zhang, P., and Li, J.: Satellite-based
atmospheric infrared sounder development and applications, B. Am. Meteorol.
Soc., 99, 583–603, https://doi.org/10.1175/BAMS-D-16-0293.1, 2018.
Migliorini, S. and Candy, B.: All-sky satellite data assimilation of
microwave temperature sounding channels at the Met Office, Q. J. Roy.
Meteor. Soc., 145, 867–883, https://doi.org/10.1002/qj.3470, 2019.
Migliorini, S., Piccolo, C., and Rodgers, C. D.: Use of the information
content in satellite measurements for an efficient interface to data
assimilation, Mon. Weather Rev., 136, 2633–2650, https://doi.org/10.1175/2007MWR2236.1,
2008.
Mo, T.: AMSU-A antenna pattern corrections, IEEE T. Geosci. Remote
Sens., 37, 103–112, https://doi.org/10.1109/36.739131, 1999.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP ADP Global Upper Air and Surface Weather Observations (PREPBUFR format), Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/Z83F-N512, 2008.
Noh, Y.-C.: Codes and model outputs for “Assimilation of the microwave temperature sounder observations into a global climate model using the ensemble Kalman Filter”, Zenodo [code], https://doi.org/10.5281/zenodo.7714755, 2023a.
Noh, Y.-C.: [Version 2] Model outputs for “Assimilation of the microwave temperature sounder observations into a global climate model using the ensemble Kalman Filter”, Zenodo [code], https://doi.org/10.5281/zenodo.7983459, 2023b.
Ochotta, T., Gebhardt, C., Saupe, D., and Wergen, W.: Adaptive thinning of
atmospheric observations in data assimilation with vector quantization and
filtering methods, Q. J. Roy. Meteor. Soc., 131, 3427–3437,
https://doi.org/10.1256/qj.05.94, 2005.
Qin, J. C., Cho, S., Li, J. Y., and Phelps, C. : AIRS Data Distribution at NASA GES DISC DAAC, EGS-AGU-EUG Joint Assembly, 2003 (data available at: https://www.earthdata.nasa.gov/eosdis/daacs/gesdisc, last access: 25 January 2022).
Raeder, K., Anderson, J. L., Collins, N., Hoar, T. J., Kay, J. E.,
Lauritzen, P. H., and Pincus, R.: DART/CAM: An ensemble data assimilation
system for CESM atmospheric models, J. Climate, 25, 6304–6317,
https://doi.org/10.1175/JCLI-D-11-00395.1, 2012.
Raeder, K., Hoar, T. J., El Gharamti, M., Johnson, B. K., Collins, N.,
Anderson, J. L., Steward, J., and Coady, M.: A new CAM6+ DART reanalysis
with surface forcing from CAM6 to other CESM models, Sci. Rep., 11, 1–24,
https://doi.org/10.1038/s41598-021-92927-0, 2021.
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018.
Scheck, L., Weissmann, M., and Bernhard, M.: Efficient Methods to Account
for Cloud-Top Inclination and Cloud Overlap in Synthetic Visible Satellite
Images, J. Atmos. Ocean. Tech., 35, 665–685, https://doi.org/10.1175/JTECH-D-17-0057.1,
2018.
Stewart, L. M., Dance, S. L., Nichols, N. K., Eyre, J. R., and Cameron, J.:
Estimating interchannel observation-error correlations for IASI radiance
data in the Met Office system, Q. J. Roy. Meteor. Soc., 140, 1236–1244,
https://doi.org/10.1002/qj.2211, 2014.
Terasaki, K. and Miyoshi, T.: Assimilating AMSU-A Radiances with the
NICAM-LETKF, J. Meteorol. Soc. Jpn., 95, 433–446,
https://doi.org/10.2151/jmsj.2017-028, 2017.
Weston, P. P., Bell, W., and Eyre, J. R.: Accounting for correlated error in
the assimilation of high-resolution sounder data, Q. J. Roy. Meteor. Soc.,
140, 2420–2429, https://doi.org/10.1002/qj.2306, 2014.
Yamazaki, A., Terasaki, K., Miyoshi, T., and Noguchi, S.: Estimation of
AMSU-A radiance observation impacts in an LETKF-based atmospheric global
data assimilation system: Comparison with EFSO and observing system
experiments, Weather Forecast., 38, 953–970, https://doi.org/10.1175/WAF-D-22-0159.1,
2023.
Zhang, M., Zupanski, M., Kim, M.-J., and Knaff, J. A.: Assimilating AMSU-A
Radiances in the TC Core Area with NOAA Operational HWRF (2011) and a Hybrid
Data Assimilation System: Danielle (2010), Mon. Weather Rev., 141,
3889–2907, https://doi.org/10.1175/MWR-D-12-00340.1, 2013.
Zhou, Y., Liu, Y., Huo, Z., and Li, Y.: A preliminary evaluation of FY-4A visible radiance data assimilation by the WRF (ARW v4.1.1)/DART (Manhattan release v9.8.0)-RTTOV (v12.3) system for a tropical storm case, Geosci. Model Dev., 15, 7397–7420, https://doi.org/10.5194/gmd-15-7397-2022, 2022.
Zhu, Y., Liu, E., Mahajan, R., Thomas, C., Groff, D., Delst, P. V., Collard,
A., Kleist, D., Treadon, R., and Derber, J. C.: All-Sky Microwave Radiance
Assimilation in NCEP's GSI Analysis System, Mon. Weather Rev., 144,
4709–4735, https://doi.org/10.1175/mwr-d-15-0445.1, 2016.
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
This is the first attempt to assimilate the observations of microwave temperature sounders into...