Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3675-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3675-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Department of Physics, Waipapa Taumata Rau/University of Auckland, Auckland, 1010, New Zealand
Ocean Dynamics Group, National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand
Department of Mathematics and Statistics, University of Otago, Dunedin, 9016, New Zealand
Helen Macdonald
Ocean Dynamics Group, National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand
Joanne O'Callaghan
Department of Physics, Waipapa Taumata Rau/University of Auckland, Auckland, 1010, New Zealand
Brian Powell
Department of Oceanography, University of Hawai'i, Honolulu, HI 96822, USA
Sarah Wakes
Department of Mathematics and Statistics, University of Otago, Dunedin, 9016, New Zealand
Sutara H. Suanda
Department of Physics and Physical Oceanography, University of North Carolina Wilmington, Wilmington, NC 28403, USA
Related authors
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025, https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Short summary
This research explores improving wave forecasts in Aotearoa New Zealand, particularly at Banks Peninsula and Baring Head. We used detailed models and found that forecasts at Baring Head improved significantly due to its narrow geography, but changes at Banks Peninsula were minimal. The study demonstrates that local conditions greatly influence the effectiveness of wave prediction models, highlighting the need for tailored approaches in coastal forecasting to enhance accuracy in the predictions.
Jessica Kolbusz, Devin Harrison, Nicole Jones, Joanne O'Callaghan, Taimoor Sohail, Todd Bond, Heather Stewart, and Alan Jamieson
EGUsphere, https://doi.org/10.5194/egusphere-2025-4709, https://doi.org/10.5194/egusphere-2025-4709, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The bottom mixed layer is where water at the seafloor mixes with the water column above it, helping to move heat and nutrients around the ocean. Using new observations from the Pacific Ocean and publicly available data, we found that depth, seafloor shape, and internal wave energy losses explain much of the variation in the bottom mixed layer thickness. Our findings offer new insights into how these seafloor regions change over an abyssal region and where future measurements should focus.
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025, https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Short summary
This research explores improving wave forecasts in Aotearoa New Zealand, particularly at Banks Peninsula and Baring Head. We used detailed models and found that forecasts at Baring Head improved significantly due to its narrow geography, but changes at Banks Peninsula were minimal. The study demonstrates that local conditions greatly influence the effectiveness of wave prediction models, highlighting the need for tailored approaches in coastal forecasting to enhance accuracy in the predictions.
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
Ocean Sci., 21, 965–987, https://doi.org/10.5194/os-21-965-2025, https://doi.org/10.5194/os-21-965-2025, 2025
Short summary
Short summary
This paper describes underwater robotic measurements in an energetic strait. The data show how energy is transferred from winds and tides to turbulent processes. Boundary layers of strong turbulence affected the water from surface to seafloor across an unusually deep extent, except when fresher or warmer waters moved into the region. Numerical models revealed that turbulent energy transport allowed boundary layers to interact. This phenomenon may impact the biological structure of coastal seas.
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023, https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
Short summary
The current paper describes the configuration and evaluation of the Moana Ocean Hindcast, a > 25-year simulation of the ocean state around New Zealand using the Regional Ocean Modeling System v3.9. This is the first open-access, long-term, continuous, realistic ocean simulation for this region and provides information for improving the understanding of the ocean processes that affect the New Zealand exclusive economic zone.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Cited articles
Bannister, R.: A review of operational methods of variational and
ensemble-variational data assimilation,
Q. J. Roy. Meteor. Soc., 143, 607–633, 2017. a
Bowen, M. M., Wilkin, J. L., and Emery, W. J.: Variability and forcing of the
East Australian Current, J. Geophys. Res.-Oceans, 110, C03019,
https://doi.org/10.1029/2004JC002533, 2005. a
Casey, K. S., Brandon, T. B., Cornillon, P., and Evans, R.: The Past, Present,
and Future of the AVHRR Pathfinder SST Program, Springer
Netherlands, Dordrecht, 273–287, https://doi.org/10.1007/978-90-481-8681-5_16, 2010. a
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a
barotropic coastal ocean model, J. Phys. Oceanogr., 15,
1060–1075, 1985. a
Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings,
J. A., Halliwell, G. R., Bleck, R., Baraille, R., Wallcraft, A. J., Lozano,
C., Tolman, H., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., Werner, F., and Wilkin, J.: US GODAE: global ocean prediction with the HYbrid Coordinate
Ocean Model (HYCOM), Oceanography, 22, 64–75, 2009. a, b
Chiswell, S. M.: Determining the internal structure of the ocean off northeast
New Zealand from surface measurements, New Zeal. J. Mar.
Fresh., 35, 289–306, https://doi.org/10.1080/00288330.2001.9516999,
2001. a
Chiswell, S. M., Bostock, H. C., Sutton, P. J., and Williams, M. J.: Physical
oceanography of the deep seas around New Zealand: a review, New Zeal.
J. Mar. Fresh., 49, 286–317,
https://doi.org/10.1080/00288330.2014.992918, 2015. a
de Paula, T. P., Lima, J. A. M., Tanajura, C. A. S., Andrioni, M., Martins,
R. P., and Arruda, W. Z.: The impact of ocean data assimilation on the
simulation of mesoscale eddies at Sao Paulo plateau (Brazil) using the
regional ocean modeling system, Ocean Model., 167, 101889,
https://doi.org/10.1016/j.ocemod.2021.101889, 2021. a, b, c, d, e
Di Lorenzo, E., Moore, A. M., Arango, H. G., Cornuelle, B. D., Miller, A. J.,
Powell, B., Chua, B. S., and Bennett, A. F.: Weak and strong constraint data
assimilation in the inverse Regional Ocean Modeling System (ROMS):
Development and application for a baroclinic coastal upwelling system, Ocean
Model., 16, 160–187, 2007. a, b
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping
of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J.
Geophys. Res.-Oceans, 105, 19477–19498,
https://doi.org/10.1029/2000JC900063, 2000. a
Fairall, C. W., Bradley, E. F., Hare, J., Grachev, A. A., and Edson, J. B.:
Bulk parameterization of air–sea fluxes: Updates and verification for the
COARE algorithm, J. Climate, 16, 571–591, 2003. a
Feng, M., Wijffels, S., Godfrey, S., and Meyers, G.: Do eddies play a role in
the momentum balance of the Leeuwin Current?, J. Phys.
Oceanogr., 35, 964–975, 2005. a
Fisher, M. and Courtier, P.: Estimating the covariance matrices of analysis and
forecast error in variational data assimilation, ECMWF Tech. Mem. 220, https://doi.org/10.21957/1dxrasjit, 1995. a
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E.,
Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L.,
Levin, J., McWilliams, J., Miller, A., Moore, A., Powell, T., Shchepetkin, A., Sherwood, R., Signell, W., Warner, J., and Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation and
skill assessment of the Regional Ocean Modeling System,
J.
Comput. Phys., 227, 3595–3624, 2008 (code available at: https://www.myroms.org/, last access: 4 July 2023). a, b
Kerry, C., Powell, B., Roughan, M., and Oke, P.: Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation, Geosci. Model Dev., 9, 3779–3801, https://doi.org/10.5194/gmd-9-3779-2016, 2016. a, b, c, d, e, f, g, h, i
Kerry, C., Roughan, M., and Powell, B.: Predicting the submesoscale
circulation inshore of the East Australian Current,
J. Marine Syst., 204, 103286, 2020. a
Kundu, P. K.: Ekman Veering Observed near the Ocean Bottom, J. Phys.
Oceanogr., 6, 238–242,
https://doi.org/10.1175/1520-0485(1976)006<0238:EVONTO>2.0.CO;2, 1976. a
Laing, A. K., Oien, N. A., Murphy, R., and Uddstrom, M. J.: Coherent signals in
the temperature and height of the sea surface off North Cape, New Zealand,
New Zeal. J. Mar. Fresh., 32, 187–202,
https://doi.org/10.1080/00288330.1998.9516819, 1998. a
Lentz, S. J.: Observations and a Model of the Mean Circulation over the Middle
Atlantic Bight Continental Shelf, J. Phys. Oceanogr., 38, 1203–1221, https://doi.org/10.1175/2007JPO3768.1, 2008. a
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary
conditions for long-term integration of regional oceanic models, Ocean
Model., 3, 1–20, 2001. a
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Equilibrium structure
and dynamics of the California Current System, J. Phys.
Oceanogr., 33, 753–783, 2003. a
Mason, E., Molemaker, J., Shchepetkin, A. F., Colas, F., McWilliams, J. C., and
Sangrà, P.: Procedures for offline grid nesting in regional ocean models,
Ocean Model., 35, 1–15,
https://doi.org/10.1016/j.ocemod.2010.05.007, 2010. a
Mata, M. M., Tomczak, M., Wijffels, S., and Church, J. A.: East Australian
Current volume transports at 30∘ S: Estimates from the World Ocean
Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current
meter array, J. Geophys. Res.-Oceans, 105, 28509–28526,
https://doi.org/10.1029/1999JC000121, 2000. a
Matthews, D., Powell, B., and Janeković, I.: Analysis of four-dimensional
variational state estimation of the Hawaiian waters, J. Geophys.
Res.-Oceans, 117, C03013, https://doi.org/10.1029/2011JC007575, 2012. a
Mignac, D., Tanajura, C. A. S., Santana, A. N., Lima, L. N., and Xie, J.: Argo data assimilation into HYCOM with an EnOI method in the Atlantic Ocean, Ocean Sci., 11, 195–213, https://doi.org/10.5194/os-11-195-2015, 2015. a
Moore, A. M., Arango, H. G., Powell, B., Broquet, G., Edwards, C., Veneziani,
M., Foley, D., Doyle, J. D., Costa, D., and Robinson, P.: The Regional Ocean
Modeling System (ROMS) 4-dimensional variational data assimilation systems:
Part II–Performance and application to the California Current System,
Prog. Oceanogr., 91, 50–73, 2011b. a, b
National Institute of Water and Atmospheric Research (NIWA): New Zealand's high resolution bathymetric data, https://niwa.co.nz/oceans/resources/bathymetry/download-the-data (last access: 5 July 2023), 2016. a
O'Callaghan, J., Mike, B., and Fiona, E.: Across-shelf mooring array from the
northeast shelf of New Zealand, SEANOE [data set],
https://doi.org/10.17882/78971, 2015. a, b
Oke, P., Schiller, A., Griffin, D., and Brassington, G.: Ensemble data
assimilation for an eddy-resolving ocean model of the Australian region,
Quarterly Journal of the Royal Meteorological Society: A journal of the
atmospheric sciences, Appl. Meteorol. Phys. Oceanogr., 131,
3301–3311, 2005. a
Oke, P. R. and Schiller, A.: Impact of Argo, SST, and altimeter data on an
eddy-resolving ocean reanalysis, Geophys. Res. Lett., 34, L19601, https://doi.org/10.1029/2007GL031549, 2007. a
Oke, P. R., Sakov, P., Cahill, M. L., Dunn, J. R., Fiedler, R., Griffin, D. A.,
Mansbridge, J. V., Ridgway, K. R., and Schiller, A.: Towards a dynamically
balanced eddy-resolving ocean reanalysis: BRAN3, Ocean Model., 67, 52–70,
2013. a
Oke, P. R., Larnicol, G., Fujii, Y., Smith, G. C., Lea, D. J., Guinehut, S.,
Remy, E., Balmaseda, M. A., Rykova, T., Surcel-Colan, D., Martin, M., Sellar, A., Mulet, S., and Turpin, V.: Assessing
the impact of observations on ocean forecasts and reanalyses: Part 1, Global
studies, J. Oper. Oceanogr., 8, s49–s62, 2015. a, b, c
Oke, P. R., Roughan, M., Cetina-Heredia, P., Pilo, G. S., Ridgway, K. R.,
Rykova, T., Archer, M. R., Coleman, R. C., Kerry, C. G., Rocha, C., Schaeffer, A., and Vitarelli, E.:
Revisiting the circulation of the East Australian Current: Its path,
separation, and eddy field, Prog. Oceanogr., 176, 102139, https://doi.org/10.1016/j.pocean.2019.102139, 2019. a
Pasmans, I. and Kurapov, A. L.: Ensemble of 4DVARs (En4DVar) data assimilation
in a coastal ocean circulation model, part I: methodology and ensemble
statistics, Ocean Model., 144, 101493, 2019. a
Pasmans, I., Kurapov, A. L., Barth, J. A., Kosro, P. M., and Shearman, R. K.:
Ensemble 4DVAR (En4DVar) data assimilation in a coastal ocean circulation
model. Part II: Implementation offshore Oregon-Washington, USA, Ocean
Model., 154, 101681, https://doi.org/10.1016/j.ocemod.2020.101681, 2020. a
Powell, B.: Quantifying how observations inform a numerical reanalysis of
Hawaii, J. Geophys. Res.-Oceans, 122, 8427–8444, 2017. a
Powell, B., Arango, H., Moore, A., Di Lorenzo, E., Milliff, R., and Foley, D.:
4DVAR data assimilation in the intra-Americas sea with the Regional Ocean
Modeling System (ROMS), Ocean Model., 23, 130–145, 2008. a
Rodi, W.: Examples of calculation methods for flow and mixing in stratified
fluids, J. Geophys. Res.-Oceans, 92, 5305–5328,
https://doi.org/10.1029/JC092iC05p05305, 1987. a
Roemmich, D. and Sutton, P.: The mean and variability of ocean circulation
past northern New Zealand: Determining the representativeness of hydrographic
climatologies, J. Geophys. Res.-Oceans, 103,
13041–13054, https://doi.org/10.1029/98JC00583, 1998. a
Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B., Moum, J.,
Oke, P., Owens, W. B., Pouliquen, S., Purkey, S., et al.: On the future of
Argo: A global, full-depth, multi-disciplinary array, Front. Mar.
Sci., 6, 439, https://doi.org/10.3389/fmars.2019.00439, 2019. a
Sandery, P. A. and Sakov, P.: Ocean forecasting of mesoscale features can
deteriorate by increasing model resolution towards the submesoscale, Nat.
Commun., 8, 1–8, 2017. a
Santana, R.: East Auckland Current ocean model configuration and analysis files, Zenodo [code], https://doi.org/10.5281/zenodo.7306271, 2022. a
Santana, R., Costa, F. B., Mignac, D., Santana, A. N., Vidal, V. F. d. S., Zhu,
J., and Tanajura, C. A. S.: Model sensitivity experiments on data
assimilation, downscaling and tides for the representation of the Cape
São Tomé Eddies, Ocean Dynam., 70, 77–94,
https://doi.org/10.1007/s10236-019-01307-w, 2020. a, b, c, d
Shchepetkin, A. F. and McWilliams, J. C.: A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res.-Oceans, 108, FET 4-1–FET 3-16, https://doi.org/10.1029/2001JC001047, 2003. a
Shchepetkin, A. F. and McWilliams, J. C.: Computational kernel algorithms for
fine-scale, multiprocess, longtime oceanic simulations, in: Handbook of
Numerical Analysis, 14, 121–183, Elsevier, https://doi.org/10.1016/S1570-8659(08)01202-0, 2009. a
Siripatana, A., Kerry, C., Roughan, M., Souza, J. M. A. C., and Keating, S.:
Assessing the Impact of Nontraditional Ocean Observations for Prediction of
the East Australian Current, J. Geophys. Res.-Oceans, 125,
e2020JC016580, https://doi.org/10.1029/2020JC016580, 2020. a, b, c
Sloyan, B. M., Ridgway, K. R., and Cowley, R.: The East Australian Current and
Property Transport at 27∘ S from 2012 to 2013, J. Phys.
Oceanogr., 46, 993–1008, https://doi.org/10.1175/JPO-D-15-0052.1, 2016.
a
Stanton, B. and Sutton, P.: Velocity measurements in the East Auckland Current
northeast of North Cape, New Zealand, New Zeal. J. Mar.
Fresh., 37, 195–204, https://doi.org/10.1080/00288330.2003.9517157, 2003. a
Stanton, B. R. and Morris, M. Y.: Direct velocity measurements in the
Subantarctic Front and over Campbell Plateau, southeast of New Zealand,
J. Geophys. Res.-Oceans, 109,
https://doi.org/10.1029/2002JC001339, 2004. a
Stanton, B. R., Sutton, P. J. H., and Chiswell, S. M.: The East Auckland
Current, 1994-95, New Zeal. J. Mar. Fresh., 31,
537–549, https://doi.org/10.1080/00288330.1997.9516787, 1997. a
Taboada, F. G., Stock, C. A., Griffies, S. M., Dunne, J., John, J. G., Small,
R. J., and Tsujino, H.: Surface winds from atmospheric reanalysis lead to
contrasting oceanic forcing and coastal upwelling patterns, Ocean Model.,
133, 79–111, https://doi.org/10.1016/j.ocemod.2018.11.003, 2019. a, b
Tanajura, C., Novaes Santana, A., Mignac, D., Nascimento Lima, L., Belyaev, K.,
and Ji-Ping, X.: The REMO ocean data assimilation system into HYCOM
(RODAS_H): General description and preliminary results,
Atmospheric and Oceanic Science Letters, 7, 464–470, 2014. a
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Marine Res., 61, 235–265, https://doi.org/10.1357/002224003322005087,
2003. a
Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a
generalized diffusion equation, Q. J. Roy. Meteor.
Soc., 127, 1815–1846, 2001. a
Weaver, A., Vialard, J., and Anderson, D.: Three-and four-dimensional
variational assimilation with a general circulation model of the tropical
Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency
checks, Mon. Weather Rev., 131, 1360–1378, 2003. a
Xie, J. and Zhu, J.: Ensemble optimal interpolation schemes for assimilating
Argo profiles into a hybrid coordinate ocean model, Ocean Model., 33,
283–298, 2010. a
Zeldis, J. R., Walters, R. A., Greig, M. J., and Image, K.: Circulation over
the northeastern New Zealand continental slope, shelf and adjacent Hauraki
Gulf, during spring and summer, Cont. Shelf Res., 24, 543–561,
https://doi.org/10.1016/j.csr.2003.11.007, 2004. a
Short summary
We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
We show the importance of assimilating subsurface temperature and velocity data in a model of...