Articles | Volume 16, issue 12
https://doi.org/10.5194/gmd-16-3535-2023
https://doi.org/10.5194/gmd-16-3535-2023
Model experiment description paper
 | 
27 Jun 2023
Model experiment description paper |  | 27 Jun 2023

How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?

Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt

Data sets

Model Dependencies of Cloud-Radiative Heating over the North Atlantic [postprocessed dataset] Sylvia Sullivan, Aiko Voigt, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Behrooz Keshtgar, Hilke Lentink, and Georgios Papavasileiou https://doi.org/10.5281/zenodo.7236564

Model code and software

sylviasullivan/nawdex-hackathon: GMD release for Zenodo Sylvia Sullivan and Aiko Voigt https://doi.org/10.5281/zenodo.7847650

Download
Short summary
Clouds absorb and re-emit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing; whether we describe convection approximately or exactly; and the level of detail used to describe small-scale processes, or microphysics, in clouds.