Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-2011-2023
https://doi.org/10.5194/gmd-16-2011-2023
Model description paper
 | 
13 Apr 2023
Model description paper |  | 13 Apr 2023

The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0

Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer

Related authors

SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023,https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary

Related subject area

Biogeosciences
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024,https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary

Cited articles

Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra, Glob.Change Biol., 21, 4570–4587, https://doi.org/10.1111/gcb.13069, 2015. 
Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H., Hansen, W. D., and Seidl, R.: Simulating forest resilience: A review, Global Ecol. Biogeogr., 29, 2082–2096, https://doi.org/10.1111/geb.13197, 2020. 
Alexander, H. D. and Mack, M. C.: A canopy shift in interior Alaskan boreal forests: Consequences for above- and belowground carbon and nitrogen pools during post-fire succession, Ecosystems, 19, 98–114, https://doi.org/10.1007/s10021-015-9920-7, 2016. 
Anderegg, W. R. L., Wu, C., Acil, N., Carvalhais, N., Pugh, T. A. M., Sadler, J. P., and Seidl, R.: A climate risk analysis of Earth's forests in the 21st century, Science, 377, 1099–1103, https://doi.org/10.1126/science.abp9723, 2022. 
Anderson, P. M., Edwards, M. E., and Brubaker, L. B.: Results and paleoclimate implications of 35 years of paleoecological research in Alaska, in: Developments in Quaternary Sciences, vol. 1, Elsevier, 427–440, https://doi.org/10.1016/S1571-0866(03)01019-4, 2003. 
Download
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.