Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-2011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0
Winslow D. Hansen
CORRESPONDING AUTHOR
Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
Adrianna Foster
National Center for Atmospheric Research, Boulder, CO 80035, USA
Benjamin Gaglioti
Water and Environmental Research Center, Institute of Northern
Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Rupert Seidl
School of Life Sciences, Technical University of Munich, 85354
Freising, Germany
Berchtesgaden National Park, 83471 Berchtesgaden, Germany
Werner Rammer
School of Life Sciences, Technical University of Munich, 85354
Freising, Germany
Related authors
A. Park Williams, Winslow D. Hansen, Caroline S. Juang, John T. Abatzoglou, Volker C. Radeloff, Bowen Wang, Jazlynn Hall, Jatan Buch, and Gavin D. Madakumbura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2934, https://doi.org/10.5194/egusphere-2025-2934, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The new WULFFSS is a monthly gridded forest-fire model to simulate forest fires across the western United States in response to vegetation, topographic, anthropogenic, and climate factors. This effort is motivated by the ten-fold increase in western U.S. annual forest area burned over the past 40 years. The WULFFSS is highly skillful, accounting for over 80 % of the observed variability in annual forest-fire area and capturing observed spatial, intra-annual variations, and trends.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
A. Park Williams, Winslow D. Hansen, Caroline S. Juang, John T. Abatzoglou, Volker C. Radeloff, Bowen Wang, Jazlynn Hall, Jatan Buch, and Gavin D. Madakumbura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2934, https://doi.org/10.5194/egusphere-2025-2934, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The new WULFFSS is a monthly gridded forest-fire model to simulate forest fires across the western United States in response to vegetation, topographic, anthropogenic, and climate factors. This effort is motivated by the ten-fold increase in western U.S. annual forest area burned over the past 40 years. The WULFFSS is highly skillful, accounting for over 80 % of the observed variability in annual forest-fire area and capturing observed spatial, intra-annual variations, and trends.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Cornelius Senf and Rupert Seidl
Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, https://doi.org/10.5194/bg-18-5223-2021, 2021
Short summary
Short summary
Europe was affected by an extreme drought in 2018. We show that this drought has increased forest disturbances across Europe, especially central and eastern Europe. Disturbance levels observed 2018–2020 were the highest on record for 30 years. Increased forest disturbances were correlated with low moisture and high atmospheric water demand. The unprecedented impacts of the 2018 drought on forest disturbances demonstrate an urgent need to adapt Europe’s forests to a hotter and drier future.
Cited articles
Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon
stocks, respiration, CH4, and N2O in upland tundra, Glob.Change Biol.,
21, 4570–4587, https://doi.org/10.1111/gcb.13069, 2015.
Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H.,
Hansen, W. D., and Seidl, R.: Simulating forest resilience: A review, Global
Ecol. Biogeogr., 29, 2082–2096, https://doi.org/10.1111/geb.13197,
2020.
Alexander, H. D. and Mack, M. C.: A canopy shift in interior Alaskan boreal
forests: Consequences for above- and belowground carbon and nitrogen pools
during post-fire succession, Ecosystems, 19, 98–114,
https://doi.org/10.1007/s10021-015-9920-7, 2016.
Anderegg, W. R. L., Wu, C., Acil, N., Carvalhais, N., Pugh, T. A. M.,
Sadler, J. P., and Seidl, R.: A climate risk analysis of Earth's forests in
the 21st century, Science, 377, 1099–1103,
https://doi.org/10.1126/science.abp9723, 2022.
Anderson, P. M., Edwards, M. E., and Brubaker, L. B.: Results and
paleoclimate implications of 35 years of paleoecological research in Alaska,
in: Developments in Quaternary Sciences, vol. 1, Elsevier, 427–440,
https://doi.org/10.1016/S1571-0866(03)01019-4, 2003.
Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E., and Quinton,
W. L.: Forests on thawing permafrost: fragmentation, edge effects, and net
forest loss, Glob. Change Biol., 20, 824–834,
https://doi.org/10.1111/gcb.12349, 2014.
Baltzer, J. L., Day, N. J., Walker, X. J., Greene, D., Mack, M. C.,
Alexander, H. D., Arseneault, D., Barnes, J., Bergeron, Y., Boucher, Y.,
Bourgeau-Chavez, L., Brown, C. D., Carrière, S., Howard, B. K.,
Gauthier, S., Parisien, M.-A., Reid, K. A., Rogers, B. M., Roland, C.,
Sirois, L., Stehn, S., Thompson, D. K., Turetsky, M. R., Veraverbeke, S.,
Whitman, E., Yang, J., and Johnstone, J. F.: Increasing fire and the decline
of fire adapted black spruce in the boreal forest, P. Natl. Acad. Sci. USA, 118, e2024872118,
https://doi.org/10.1073/pnas.2024872118, 2021.
Beer, C., Lucht, W., Gerten, D., Thonicke, K., and Schmullius, C.: Effects
of soil freezing and thawing on vegetation carbon density in Siberia: A
modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model
(LPJ-DGVM), Global Biogeochem. Cy., 21, GB1012,
https://doi.org/10.1029/2006GB002760, 2007.
Bennett, K. E., Cherry, J. E., Balk, B., and Lindsey, S.: Using MODIS estimates of fractional snow cover area to improve streamflow forecasts in interior Alaska, Hydrol. Earth Syst. Sci., 23, 2439–2459, https://doi.org/10.5194/hess-23-2439-2019, 2019.
Bonan, G.: Surface Energy Fluxes, in: Climate Change and Terrestrial
Ecosystem Modeling, University of Cambridge Press, Cambridge, UK, 101–114, https://doi.org/10.1017/9781107339217,
2019.
Bonan, G. B.: A biophysical surface energy budget analysis of soil
temperature in the boreal forests of interior Alaska, Water Resour.
Res., 27, 767–781, https://doi.org/10.1029/91WR00143, 1991.
Bonan, G. B. and Korzuhin, M. D.: Simulation of moss and tree dynamics in
the boreal forests of interior Alaska, Vegetatio, 84, 31–44,
https://doi.org/10.1007/BF00054663, 1989.
Bormann, K. J., Westra, S., Evans, J. P., and McCabe, M. F.: Spatial and
temporal variability in seasonal snow density, J. Hydrol., 484,
63–73, https://doi.org/10.1016/j.jhydrol.2013.01.032, 2013.
Brown, C. D. and Johnstone, J. F.: Once burned, twice shy: Repeat fires
reduce seed availability and alter substrate constraints on Picea mariana
regeneration, Forest Ecol. Manage., 266, 34–41,
https://doi.org/10.1016/j.foreco.2011.11.006, 2012.
Brown, D. R. N., Jorgenson, M. T., Kielland, K., Verbyla, D. L., Prakash,
A., and Koch, J. C.: Landscape effects of wildfire on permafrost
distribution in interior Alaska derived from remote sensing, Remote Sensing,
8, 654, https://doi.org/10.3390/rs8080654, 2016.
Buma, B., Hayes, K., Weiss, S., and Lucash, M.: Short-interval fires
increasing in the Alaskan boreal forest as fire self-regulation decays
across forest types, Sci. Rep., 12, 4901,
https://doi.org/10.1038/s41598-022-08912-8, 2022.
Burns, R. M. and Honkala, B. H.: Silvics Manual Volume 1-Conifers and Volume
2-Hardwoods, 2nd Edn., U.S. Department of Agriculture, Forest Service,
Washington DC, US Library of Congress catalog number: 86-60058,
1990.
Chapin, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A., and Field, C.
B.: Changing feedbacks in the climate–biosphere system, Front.
Ecol. Environ., 6, 313–320, https://doi.org/10.1890/080005,
2008.
Chylek, P., Folland, C., Klett, J. D., Wang, M., Hengartner, N., Lesins, G.,
and Dubey, M. K.: Annual Mean Arctic Amplification 1970–2020: Observed and
Simulated by CMIP6 Climate Models, Geophys. Res. Lett., 49,
e2022GL099371, https://doi.org/10.1029/2022GL099371, 2022.
Cook, B. I., Bonan, G. B., Levis, S., and Epstein, H. E.: The
thermoinsulation effect of snow cover within a climate model, Clim.
Dynam., 31, 107–124, https://doi.org/10.1007/s00382-007-0341-y, 2008.
Dearborn, K. D. and Baltzer, J. L.: Unexpected greening in a boreal
permafrost peatland undergoing forest loss is partially attributable to tree
species turnover, Glob. Change Biol., 27, 2867–2882,
https://doi.org/10.1111/gcb.15608, 2021.
Farouki, O. T.: The thermal properties of soils in cold regions, Cold
Reg. Sci. Technol., 5, 67–75,
https://doi.org/10.1016/0165-232X(81)90041-0, 1981.
Fisher, J. P., Estop-Aragonés, C., Thierry, A., Charman, D. J., Wolfe,
S. A., Hartley, I. P., Murton, J. B., Williams, M., and Phoenix, G. K.: The
influence of vegetation and soil characteristics on active-layer thickness
of permafrost soils in boreal forest, Glob. Change Biol., 22, 3127–3140,
https://doi.org/10.1111/gcb.13248, 2016.
Fisher, R. A. and Koven, C. D.: Perspectives on the future of land surface
models and the challenges of representing complex terrestrial systems,
J. Adv. Model. Earth Sy., 12, e2018MS001453,
https://doi.org/10.1029/2018ms001453, 2020.
Foley, J. A., Kutzbach, J. E., Coe, M. T., and Levis, S.: Feedbacks between
climate and boreal forests during the Holocene epoch, Nature, 371, 52–54,
https://doi.org/10.1038/371052a0, 1994.
Foster, A. C., Armstrong, A. H., Shuman, J. K., Shugart, H. H., Rogers, B.
M., Mack, M. C., Goetz, S. J., and Ranson, K. J.: Importance of tree- and
species-level interactions with wildfire, climate, and soils in interior
Alaska: Implications for forest change under a warming climate, Ecol.
Model., 409, 108765, https://doi.org/10.1016/j.ecolmodel.2019.108765,
2019.
Foster, A. C., Shuman, J. K., Rogers, B. M., Walker, X. J., Mack, M. C.,
Bourgeau-Chavez, L. L., Veraverbeke, S., and Goetz, S. J.: Bottom-up drivers
of future fire regimes in western boreal North America, Environ. Res. Lett.,
17, 025006, https://doi.org/10.1088/1748-9326/ac4c1e, 2022.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model Version 4, J. Climate, 24, 4973–4991,
https://doi.org/10.1175/2011JCLI4083.1, 2011.
Gibson, C. M., Chasmer, L. E., Thompson, D. K., Quinton, W. L., Flannigan,
M. D., and Olefeldt, D.: Wildfire as a major driver of recent permafrost
thaw in boreal peatlands, Nat. Commun., 9, 3041,
https://doi.org/10.1038/s41467-018-05457-1, 2018.
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S.
F., Thulke, H.-H., Weiner, J., Wiegand, T., and DeAngelis, D. L.:
Pattern-oriented modeling of agent-based complex systems: Lessons from
ecology, Science, 310, 987–991, https://doi.org/10.1126/science.1116681,
2005.
Gustafson, E. J., Miranda, B. R., Shvidenko, A. Z., and Sturtevant, B. R.:
Simulating growth and competition on wet and waterlogged soils in a forest
landscape model, Front. Ecol. Evol., 8, 598775,
https://doi.org/10.3389/fevo.2020.598775, 2020.
Hansen, W. D., Braziunas, K. H., Rammer, W., Seidl, R., and Turner, M. G.:
It takes a few to tango: Changing climate and fire regimes can cause
regeneration failure of two subalpine conifers, Ecology, 99, 966–977,
https://doi.org/10.1002/ecy.2181, 2018.
Hansen, W. D., Abendroth, D., Rammer, W., Seidl, R., and Turner, M.: Can
wildland fire management alter 21st-century subalpine fire and forests in
Grand Teton National Park, Wyoming, USA?, Ecol. Appl., 30,
e02030, https://doi.org/10.1002/eap.2030, 2020.
Hansen, W. D., Fitzsimmons, R., Olnes, J., and Williams, A. P.: An alternate
vegetation type proves resilient and persists for decades following forest
conversion in the North American boreal biome, J. Ecol., 109,
85–98, https://doi.org/10.1111/1365-2745.13446, 2021.
Hansen, W. D., Schwartz, N. B., Williams, A. P., Albrich, K., Kueppers, L. M.,
Rammig, A., Reyer, C. P. O., Staver, A. C., and Seidl, R.: Global forests are
influenced by legacies of past inter-annual temperature variability,
Environ. Res. Ecol., 1, 011001, https://doi.org/10.1088/2752-664X/ac6e4a, 2022a.
Hansen, W. D., Foster, A., Gaglioti, B., Seidl, R., and Rammer, W.: Data and code associated with: The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0, Cary Institute [code and data set], https://doi.org/10.25390/caryinstitute.21339090.v3, 2022b.
Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda,
M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Héon, J., Arseneault, D., and Parisien, M.-A.: Resistance of the boreal
forest to high burn rates, P. Natl. Acad. Sci. USA,
111, 13888–13893, https://doi.org/10.1073/pnas.1409316111, 2014.
Hermosilla, T., Bastyr, A., Coops, N. C., White, J. C., and Wulder, M. A.:
Mapping the presence and distribution of tree species in Canada's forested
ecosystems, Remote Sens. Environ., 282, 113276,
https://doi.org/10.1016/j.rse.2022.113276, 2022.
Hijmans, R. J.: Spatial Data analysis, Rpackage version 1.7-22 [software], https://rspatial.org/ (last access: 1 March 2022), 2021.
Hinzman, L. D., Kane, D. L., Gieck, R. E., and Everett, K. R.: Hydrologic
and thermal properties of the active layer in the Alaskan Arctic, Cold
Reg. Sci. Technol., 19, 95–110,
https://doi.org/10.1016/0165-232X(91)90001-W, 1991.
Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A., and van Nes, E.
H.: Living dangerously on borrowed time during slow, unrecognized regime
shifts, Trends Ecol. Evol., 28, 149–55,
https://doi.org/10.1016/j.tree.2012.08.022, 2013.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021.
Jafarov, E. E., Nicolsky, D. J., Romanovsky, V. E., Walsh, J. E., Panda, S.
K., and Serreze, M. C.: The effect of snow: How to better model ground
surface temperatures, Cold Reg. Sci. Technol., 102, 63–77,
https://doi.org/10.1016/j.coldregions.2014.02.007, 2014.
Jean, M., Melvin, A. M., Mack, M. C., and Johnstone, J. F.: Broadleaf litter
controls feather moss growth in black spruce and birch forests of interior
Alaska, Ecosystems, 23, 18–33, https://doi.org/10.1007/s10021-019-00384-8,
2020.
Johnstone, J. and Chapin, F.: Effects of soil burn severity on post-fire
tree recruitment in boreal forest, Ecosystems, 9, 14–31,
https://doi.org/10.1007/s10021-004-0042-x, 2006.
Johnstone, J., Boby, L., Tissier, E., Mack, M., Verbyla, D., and Walker, X.:
Postfire seed rain of black spruce, a semiserotinous conifer, in forests of
interior Alaska, Can. J. Forest Res., 39, 1575–1588,
https://doi.org/10.1139/X09-068, 2009.
Johnstone, J. F. and Kasischke, E. S.: Stand-level effects of soil burn
severity on postfire regeneration in a recently burned black spruce forest,
Can. J. Forest Res., 35, 2151–2163, 2005.
Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S., and Mack, M. C.:
Changes in fire regime break the legacy lock on successional trajectories in
Alaskan boreal forest, Glob. Change Biol., 16, 1281–1295,
https://doi.org/10.1111/j.1365-2486.2009.02051.x, 2010a.
Johnstone, J. F., Chapin, F. S., Hollingsworth, T. N., Mack, M. C.,
Romanovsky, V., and Turetsky, M.: Fire, climate change, and forest
resilience in interior Alaska, Can. J. Forest Res., 40,
1302–1312, https://doi.org/10.1139/X10-061, 2010b.
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B.
J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G.
L., Schoennagel, T., and Turner, M. G.: Changing disturbance regimes,
ecological memory, and forest resilience, Front. Ecol.
Environ., 14, 369–378, https://doi.org/10.1002/fee.1311, 2016.
Johnstone, J. F., Celis, G., Chapin, F. S., Hollingsworth, T. N., Jean, M.,
and Mack, M. C.: Factors shaping alternate successional trajectories in
burned black spruce forests of Alaska, Ecosphere, 11, e03129,
https://doi.org/10.1002/ecs2.3129, 2020.
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J.,
Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and
vulnerability of permafrost to climate change, Can. J. Forest
Res., 40, 1219–1236, https://doi.org/10.1139/X10-060, 2010.
Kannenberg, S. A., Schwalm, C. R., and Anderegg, W. R. L.: Ghosts of the
past: how drought legacy effects shape forest functioning and carbon
cycling, Ecol. Lett., 23, 891–901, https://doi.org/10.1111/ele.13485,
2020.
Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014, 2014.
Kasischke, E. S. and Johnstone, J. F.: Variation in postfire organic layer
thickness in a black spruce forest complex in interior Alaska and its
effects on soil temperature and moisture, Can. J. Forest
Res., 35, 2164–2177, https://doi.org/10.1139/x05-159, 2005.
Kruse, S., Stuenzi, S. M., Boike, J., Langer, M., Gloy, J., and Herzschuh, U.: Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia, Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, 2022.
Lorenz, K. and Lal, R.: Carbon Dynamics and Pools in Major Forest Biomes of
the World, in: Carbon Sequestration in Forest Ecosystems, edited by: Lorenz,
K. and Lal, R., Springer Netherlands, Dordrecht, 159–205,
https://doi.org/10.1007/978-90-481-3266-9_4, 2010.
Mack, M. C., Walker, X. J., Johnstone, J. F., Alexander, H. D., Melvin, A.
M., Jean, M., and Miller, S. N.: Carbon loss from boreal forest wildfires
offset by increased dominance of deciduous trees, Science, 372, 280–283,
https://doi.org/10.1126/science.abf3903, 2021.
Malone, T., Liang, J., and Packee, E. C.: Cooperative Alaska Forest
Inventory, United States Department of Agriculture, Forest Service, Pacific
Northwester Research Station, https://doi.org/10.2737/PNW-GTR-785, 2009.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F., and Rogers,
B. M.: Expansion of high-latitude deciduous forests driven by interactions
between climate warming and fire, Nature Plants, 5, 952–958,
https://doi.org/10.1038/s41477-019-0495-8, 2019.
Melvin, A. M., Mack, M. C., Johnstone, J. F., Mcguire, A. D., Genet, H., and
Schuur, E. A. G.: Differences in ecosystem carbon distribution and nutrient
cycling linked to forest tree species composition in a mid-successional
boreal forest, Ecosystems, 18, 1472–1488,
https://doi.org/10.1007/s10021-015-9912-7, 2015.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
O'Donnell, J. A., Romanovsky, V. E., Harden, J. W., and McGuire, A. D.: The
effect of moisture content on the thermal conductivity of moss and organic
soil horizons from black spruce ecosystems in interior Alaska, Soil Sci.,
174, 646–651, https://doi.org/10.1097/SS.0b013e3181c4a7f8, 2009.
Ogle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J.
M., Huxman, T. E., Loik, M. E., and Tissue, D. T.: Quantifying ecological
memory in plant and ecosystem processes, Ecol. Lett., 18, 221–235,
https://doi.org/10.1111/ele.12399, 2015.
Pastick, N. J., Jorgenson, M. T., Wylie, B. K., Nield, S. J., Johnson, K.
D., and Finley, A. O.: Distribution of near-surface permafrost in Alaska:
Estimates of present and future conditions, Remote Sens. Environ.,
168, 301–315, https://doi.org/10.1016/j.rse.2015.07.019, 2015.
Perreault, J., Fortier, R., and Molson, J. W.: Numerical modelling of
permafrost dynamics under climate change and evolving ground surface
conditions: application to an instrumented permafrost mound at Umiujaq,
Nunavik (Québec), Canada, Écoscience, 28, 377–397,
https://doi.org/10.1080/11956860.2021.1949819, 2021.
Phillips, C. A., Rogers, B. M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J. T., and Frumhoff, P. C.: Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management, Sci. Adv., 8, eabl7161, https://doi.org/10.1126/sciadv.abl7161, 2022.
Potter, S., Solvik, K., Erb, A., Goetz, S. J., Johnstone, J. F., Mack, M.
C., Randerson, J. T., Román, M. O., Schaaf, C. L., Turetsky, M. R.,
Veraverbeke, S., Walker, X. J., Wang, Z., Massey, R., and Rogers, B. M.:
Climate change decreases the cooling effect from postfire albedo in boreal
North America, Glob. Change Biol., 26, 1592–1607,
https://doi.org/10.1111/gcb.14888, 2020.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, [software], https://www.R-project.org/ (last access: 1 March 2022), 2021.
Riseborough, D. W.: Exploring the Parameters of a Simple Model of the
Permafrost – Climate Relationship, Carleton University, Ottawa, Canada, 282
pp., https://doi.org/10.22215/etd/2004-05938, 2004.
Rogers, B. M., Randerson, J. T., and Bonan, G. B.: High-latitude cooling associated with landscape changes from North American boreal forest fires, Biogeosciences, 10, 699–718, https://doi.org/10.5194/bg-10-699-2013, 2013.
Ruess, R. W., Winton, L. M., and Adams, G. C.: Widespread mortality of
trembling aspen (Populus tremuloides) throughout interior Alaskan boreal
forests resulting from a novel canker disease, PLOS ONE, 16, e0250078,
https://doi.org/10.1371/journal.pone.0250078, 2021.
Running, S. W. and Coughlan, J. C.: A general model of forest ecosystem
processes for regional applications I. Hydrologic balance, canopy gas
exchange and primary production processes, Ecol. Model., 42,
125–154, https://doi.org/10.1016/0304-3800(88)90112-3, 1988.
Schuur, E. A. G. and Mack, M. C.: Ecological response to permafrost thaw and
consequences for local and global ecosystem services, Annu. Rev.
Ecol. Evol. S., 49, 279–301,
https://doi.org/10.1146/annurev-ecolsys-121415-032349, 2018.
Schurr, E. A. G., McGuire, A. D., Romanovsky, V. E., Schädel, C., and
Mack, M.: Chapter 11: Arctic and boreal carbon, in: Second State of the
Carbon Cycle Report (SOCCR2): A Sustained Assessment Report, U.S. Global
Change Research Program, Washington, DC, 428–468, https://doi.org/10.7930/SOCCR2.2018., 2018.
Seidl, R.: To model or not to model, that is no longer the question for
ecologists, Ecosystems, 20, 222–228,
https://doi.org/10.1007/s10021-016-0068-x, 2017.
Seidl, R. and Turner, M. G.: Post-disturbance reorganization of forest
ecosystems in a changing world, P. Natl. Acad. Sci. USA, 119, e2202190119, https://doi.org/10.1073/pnas.2202190119, 2022.
Seidl, R., Rammer, W., Scheller, R. M., and Spies, T. A.: An
individual-based process model to simulate landscape-scale forest ecosystem
dynamics, Ecol. Model., 231, 87–100,
https://doi.org/10.1016/j.ecolmodel.2012.02.015, 2012a.
Seidl, R., Spies, T. A., Rammer, W., Steel, E. A., Pabst, R. J., and Olsen,
K.: Multi-scale drivers of spatial variation in old-growth forest carbon
density disentangled with lidar and an individual-based landscape model,
Ecosystems, 15, 1321–1335, https://doi.org/10.1007/s10021-012-9587-2,
2012b.
Seidl, R., Rammer, W., and Spies, T. A.: Disturbance legacies increase the
resilience of forest ecosystem structure, composition, and functioning,
Ecol. Appl., 24, 2063–2077, 2014a.
Seidl, R., Rammer, W., and Blennow, K.: Simulating wind disturbance impacts
on forest landscapes: Tree-level heterogeneity matters, Environ.
Modell. Softw., 51, 1–11,
https://doi.org/10.1016/j.envsoft.2013.09.018, 2014b.
Seidl, R., Honkaniemi, J., Aakala, T., Aleinikov, A., Angelstam, P.,
Bouchard, M., Boulanger, Y., Burton, P. J., De Grandpré, L., Gauthier,
S., Hansen, W. D., Jepsen, J. U., Jõgiste, K., Kneeshaw, D. D.,
Kuuluvainen, T., Lisitsyna, O., Makoto, K., Mori, A. S., Pureswaran, D. S.,
Shorohova, E., Shubnitsina, E., Taylor, A. R., Vladimirova, N., Vodde, F.,
and Senf, C.: Globally consistent climate sensitivity of natural
disturbances across boreal and temperate forest ecosystems, Ecography, 43,
967–978, https://doi.org/10.1111/ecog.04995, 2020.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model,
Glob. Change Biol., 9, 161–185,
https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Smith, S. L., O'Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V.
E.: The changing thermal state of permafrost, Nat. Rev. Earth Environ., 3,
10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022.
Stuenzi, S. M., Boike, J., Gädeke, A., Herzschuh, U., Kruse, S.,
Pestryakova, L. A., Westermann, S., and Langer, M.: Sensitivity of
ecosystem-protected permafrost under changing boreal forest structures,
Environ. Res. Lett., 16, 084045, https://doi.org/10.1088/1748-9326/ac153d,
2021.
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and
Wilson, B. E.: Gridded daily weather data for North America with
comprehensive uncertainty quantification, Sci. Data, 8, 190,
https://doi.org/10.1038/s41597-021-00973-0, 2021.
Trugman, A. T., Fenton, N. J., Bergeron, Y., Xu, X., Welp, L. R., and
Medvigy, D.: Climate, soil organic layer, and nitrogen jointly drive forest
development after fire in the North American boreal zone, J.
Adv. Model. Earth Sy., 8, 1180–1209,
https://doi.org/10.1002/2015MS000576, 2016.
Turetsky, M. R., Mack, M. C., Hollingsworth, T. N., and Harden, J. W.: The
role of mosses in ecosystem succession and function in Alaska's boreal
forest, Can. J. Forest Res., 40, 1237–1264,
https://doi.org/10.1139/X10-072, 2010.
Turetsky, M. R., Baltzer, J. L., Johnstone, J. F., Mack, M. C., Mccann, K.,
and Schuur, E. A. G.: Losing legacies, ecological release, and transient
responses: Key challenges for the future of northern ecosystem science,
Ecosystems, 20, 23–30, https://doi.org/10.1007/s10021-016-0055-2, 2016.
Turner, M. G., Braziunas, K. H., Hansen, W. D., Hoecker, T. J., Rammer, W.,
Ratajczak, Z., Westerling, A. L., and Seidl, R.: The magnitude, direction,
and tempo of forest change in Greater Yellowstone in a warmer world with
more fire, Ecol. Monogr., 92, e01485,
https://doi.org/10.1002/ecm.1485, 2022.
Van Cleve, K. and Viereck, L. A.: Forest Succession in Relation to Nutrient
Cycling in the Boreal Forest of Alaska, in: Forest Succession: Concepts and
Application, edited by: West, D. C., Shugart, H. H., and Botkin, D. B.,
Springer, New York, NY, 185–211,
https://doi.org/10.1007/978-1-4612-5950-3_13, 1981.
Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E., Wiggins, E. B., and Randerson, J. T.: Lightning as a major driver of recent large fire years in North American boreal forests, Nat. Clim. Change 7, 529–534, 2017.
Walker, X. and Johnstone, J. F.: Widespread negative correlations between
black spruce growth and temperature across topographic moisture gradients in
the boreal forest, Environ. Res. Lett., 9, 064016–064016,
https://doi.org/10.1088/1748-9326/9/6/064016, 2014.
Walker, X. J., Rogers, B. M., Baltzer, J. L., Cumming, S. G., Day, N. J.,
Goetz, S. J., Johnstone, J. F., Schuur, E. A. G., Turetsky, M. R., and Mack,
M. C.: Cross-scale controls on carbon emissions from boreal forest
megafires, Glob. Change Biol., 24, 4251–4265,
https://doi.org/10.1111/gcb.14287, 2018.
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz,
S., Johnstone, J. F., Potter, S., Rogers, B. M., Schuur, E. A. G., Turetsky,
M. R., and Mack, M. C.: Increasing wildfires threaten historic carbon sink
of boreal forest soils, Nature, 572, 520–523,
https://doi.org/10.1038/s41586-019-1474-y, 2019.
Walker, X. J., Rogers, B. M., Veraverbeke, S., Johnstone, J. F., Baltzer, J.
L., Barrett, K., Bourgeau-Chavez, L., Day, N. J., de Groot, W. J., Dieleman,
C. M., Goetz, S., Hoy, E., Jenkins, L. K., Kane, E. S., Parisien, M.-A.,
Potter, S., Schuur, E. A. G., Turetsky, M., Whitman, E., and Mack, M. C.:
Fuel availability not fire weather controls boreal wildfire severity and
carbon emissions, Nat. Clim. Change, 10, 1130–1136,
https://doi.org/10.1038/s41558-020-00920-8, 2020.
Walsh, J. E., Bhatt, U. S., Littell, J. S., Leonawicz, M., Lindgren, M., Kurkowski, T. A., Bieniek, P. A., Thoman, R., Gray, S., and Rupp, T. S.: Downscaling of climate model output for Alaskan stakeholders, Environ. Modell. Softw., 110, 38–51, 2018.
Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R.
F., and Friedl, M. A.: Extensive land cover change across Arctic–Boreal
Northwestern North America from disturbance and climate forcing, Glob.
Change Biol., 26, 807–822, https://doi.org/10.1111/gcb.14804, 2020.
Wang, J. A., Baccini, A., Farina, M., Randerson, J. T., and Friedl, M. A.:
Disturbance suppresses the aboveground carbon sink in North American boreal
forests, Nat. Clim. Change, 11, 435–441,
https://doi.org/10.1038/s41558-021-01027-4, 2021.
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner, G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3, Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, 2016.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the {tidyverse}, J. Open Source Softw., 4, 1686,
https://doi.org/10.21105/joss.01686, 2019.
Yi, Y., Kimball, J., and Miller, C. E.: ABoVE: High Resolution Cloud-Free
Snow Cover Extent and Snow Depth, Alaska, 2001–2017, ORNL DAAC [data set],
https://doi.org/10.3334/ORNLDAAC/1757, 2020.
Yokohata, T., Saito, K., Takata, K., Nitta, T., Satoh, Y., Hajima, T.,
Sueyoshi, T., and Iwahana, G.: Model improvement and future projection of
permafrost processes in a global land surface model, Prog. Earth Planet Sci.,
7, 69, https://doi.org/10.1186/s40645-020-00380-w, 2020.
Young-Robertson, J. M., Ogle, K., and Welker, J. M.: Thawing seasonal ground
ice: An important water source for boreal forest plants in Interior Alaska,
Ecohydrology, 10, e1796–e1796, https://doi.org/10.1002/eco.1796, 2017.
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Permafrost and the thick soil-surface organic layers that insulate permafrost are important...