Articles | Volume 15, issue 23
https://doi.org/10.5194/gmd-15-8785-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8785-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
Seyed Mahmood Hamze-Ziabari
CORRESPONDING AUTHOR
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
Ulrich Lemmin
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
Frédéric Soulignac
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
Commission Internationale pour la Protection des Eaux du Léman
(CIPEL), Nyon, Switzerland
Mehrshad Foroughan
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
David Andrew Barry
Ecological Engineering Laboratory (ECOL), Environmental Engineering
Institute (IIE), Faculty of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland
Related authors
No articles found.
Xiangmei Liu, Peng Shen, Jiaqi Chen, David Andrew Barry, Christian Massari, Jiansheng Chen, Mingming Feng, Xi Zhang, Fenyan Ma, Fei Yang, and Haixia Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-4263, https://doi.org/10.5194/egusphere-2025-4263, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Our research in the Songnen Basin of Northeast China has revealed why numerous lakes remain unfrozen during winter. By studying Lake Chagan, we discovered that deep groundwater sustains these lakes, likely flowing through subterranean channels from the Tibetan Plateau. When earthquakes disrupt these conduits, water rises along fault lines to replenish the lakes. This finding challenges the theory that graben lakes primarily depend on local precipitation.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Zhaoyang Luo, Jun Kong, Lili Yao, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-634, https://doi.org/10.5194/hess-2021-634, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watertable fluctuations and seawater intrusion are characteristic features of coastal unconfined aquifers. A modified expression is first proposed for the dynamic effective porosity due to watertable fluctuations. Then, the new expression is implemented in existing Boussinesq equations and a numerical model, allowing for examination of the effects of the dynamic effective porosity on watertable fluctuations and seawater intrusion in coastal unconfined aquifers, respectively.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Cited articles
Akitomo, K., Kurogi, M., and Kumagai, M.: Numerical study of a thermally
induced gyre system in Lake Biwa, Limnology, 5, 103–114,
https://doi.org/10.1007/s10201-004-0122-9, 2004.
Bai, X., Wang, J., Schwab, D. J., Yang, Y., Luo, L., Leshkevich, G. A., and
Liu, S.: Modeling 1993–2008 climatology of seasonal general circulation and
thermal structure in the Great Lakes using FVCOM, Ocean Model., 65, 40–63,
https://doi.org/10.1016/j.ocemod.2013.02.003, 2013.
Baracchini, T., Wüest, A., and Bouffard, D.: Meteolakes: An operational
online three-dimensional forecasting platform for lake hydrodynamics, Water
Res., 172, 115529,
https://doi.org/10.1016/j.watres.2020.115529, 2020a.
Baracchini, T., Chu, P. Y., Šukys, J., Lieberherr, G., Wunderle, S., Wüest, A., and Bouffard, D.: Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4, Geosci. Model Dev., 13, 1267–1284, https://doi.org/10.5194/gmd-13-1267-2020, 2020b.
Beletsky, D. and Schwab, D.: Climatological circulation in Lake Michigan,
Geophys. Res. Lett., 35, L21604,
https://doi.org/10.1029/2008GL035773, 2008.
Beletsky, D., Saylor, J. H., and Schwab, D. J.: Mean circulation in the
Great Lakes, J. Great Lakes Res., 25, 78–93, https://doi.org/10.1016/S0380-1330(99)70718-5, 1999.
Beletsky, D., Hawley, N., and Rao, Y. R.: Modeling summer circulation and
thermal structure of Lake Erie, J. Geophys. Res.-Oceans, 118,
6238–6252, https://doi.org/10.1002/2013JC008854, 2013.
Bennett, J. R.: On the dynamics of wind-driven lake currents, J. Phys.
Oceanogr., 4, 400–414, https://doi.org/10.1175/1520-0485(1974)004<0400:OTDOWD>2.0.CO;2, 1974.
Bennington, V., McKinley, G. A., Kimura, N., and Wu, C. H.: General
circulation of Lake Superior: Mean, variability, and trends from 1979 to
2006, J. Geophys. Res.-Oceans, 115, C12015,
https://doi.org/10.1029/2010JC006261, 2010.
Birchfield, G. E.: Horizontal transport in a rotating basin of parabolic
depth profile, J. Geophys. Res., 72, 6155–6163, https://doi.org/10.1029/JZ072i024p06155, 1967.
Campin, J. M., Heimbach P., Losch, M., Forget, G., edhill3, Adcroft, A., amolod, Menemenlis, D., dfer22, Hill, C., Jahn, O., Scott, J., stephdut, Mazloff, M., Fox-Kemper, B., antnguyen13, Doddridge, E., Fenty, I., Bates, M., Eichmann, A., Smith, T., Martin, T., Lauderdale, J., Abernathey, R., samarkhatiwala, hongandyan, Deremble, B., dngoldberg, Bourgault, P., and Dussin, R.: MITgcm/MITgcm: checkpoint67z (Version checkpoint67z), Zenodo [software], https://doi.org/10.5281/zenodo.4968496, 2021.
Chang, Y. L. and Oey, L. Y.: Analysis of STCC eddies using the Okubo–Weiss
parameter on model and satellite data, Ocean Dynam., 64, 259–271,
https://doi.org/10.1007/s10236-013-0680-7, 2014.
Cimatoribus, A. A., Lemmin, U., Bouffard, D., and Barry, D. A.: Nonlinear
dynamics of the nearshore boundary layer of a large lake (Lake Geneva), J. Geophys. Res.-Oceans, 123, 1016–1031, https://doi.org/10.1002/2017JC013531, 2018.
Cimatoribus, A. A., Lemmin, U., and Barry, D. A.: Tracking Lagrangian
transport in Lake Geneva: A 3D numerical modeling investigation, Limnol.
Oceanogr., 64, 1252–1269, https://doi.org/10.1002/lno.11111,
2019.
CIPEL: Rapports sur les études et recherches entreprises dans le bassin
lémanique, Campagne 2018, Commission internationale pour la protection
des eaux du Léman (CIPEL), Nyon, Switzerland, https://www.cipel.org/wp-content/uploads/2018/04/RapportScientifique_camp_2016_VF.pdf (last access: 28 October 2022), 2019.
Corman, J. R., McIntyre, P. B., Kuboja, B., Mbemba, W., Fink, D., Wheeler,
C. W., Gans, C., Michel, E., and Flecker, A. S.: Upwelling couples chemical
and biological dynamics across the littoral and pelagic zones of Lake
Tanganyika, East Africa, Limnol. Oceanogr., 55, 214–224, https://doi.org/10.4319/lo.2010.55.1.0214, 2010.
Cotte, G. and Vennemann, T. W.: Mixing of Rhône River water in Lake
Geneva: Seasonal tracing using stable isotope composition of water, J. Great
Lakes Res., 46, 839–849,
https://doi.org/10.1016/j.jglr.2020.05.015, 2020.
Csanady, G. T.: Wind-induced barotropic motions in long lakes, J. Phys.
Oceanogr., 3, 429–438,
https://doi.org/10.1175/1520-0485(1973)003<0429:WIBMIL>2.0.CO;2, 1973.
Csanady, G. T.: Hydrodynamics of large lakes, Annu. Rev. Fluid Mech., 7,
357–386, https://doi.org/10.1146/annurev.fl.07.010175.002041,
1975.
DiGiacomo, P. M. and Holt, B.: Satellite observations of small coastal
ocean eddies in the Southern California Bight, J. Geophys. Res.-Oceans,
106, 22521–22543, https://doi.org/10.1029/2000JC000728,
2001.
Elhmaïdi, D., Provenzale, A., and Babiano, A.: Elementary topology of
two-dimensional turbulence from a Lagrangian viewpoint and single-particle
dispersion, J. Fluid Mech., 257, 533–558,
https://doi.org/10.1017/S0022112093003192, 1993.
European Space Agency (ESA): Copernicus Open Access Hub,
https://scihub.copernicus.eu/, last access: 6 December 2022.
Gao, Y., Guan, C., Sun, J., and Xie, L.: A wind speed retrieval model for
Sentinel-1A EW mode cross-polarization images, Remote Sens., 11, 153,
https://doi.org/10.3390/rs11020153, 2019.
Hamze-Ziabari, S. M., Razmi, A. M., Lemmin, U., and Barry, D. A.: Detecting
Submesoscale cold filaments in a basin-scale gyre in large, deep Lake Geneva
(Switzerland/France), Geophys. Res. Lett., 49, e2021GL096185,
https://doi.org/10.1029/2021GL096185, 2022a.
Hamze-Ziabari, S. M., Lemmin, U., Soulignac, F., Foroughan, M., and Barry, D. A.: Data for: Basin-scale gyres and mesoscale eddies in large lakes: A novel procedure for their detection and characterization, assessed in Lake Geneva, Zenodo [data set], https://doi.org/10.5281/zenodo.7018567, 2022b.
Henson, S. A. and Thomas, A. C.: A census of oceanic anticyclonic eddies in
the Gulf of Alaska, Deep-Sea Res. Pt. I., 55, 163–176, https://doi.org/10.1016/j.dsr.2007.11.005, 2008.
Hogg, A. M. and Gayen, B.: Ocean gyres driven by surface buoyancy forcing,
Geophys. Res. Lett., 47, e2020GL088539,
https://doi.org/10.1029/2020GL088539, 2020.
Hui, Y., Farnham, D. J., Atkinson, J. F., Zhu, Z., and Feng, Y.: Circulation
in Lake Ontario: Numerical and physical model analysis, J. Hydraul. Eng.,
147, 05021004,
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001908, 2021.
Ishikawa, K., Kumagai, M., Vincent, W. F., Tsujimura, S., and Nakahara, H.:
Transport and accumulation of bloom-forming cyanobacteria in a large,
mid-latitude lake: The gyre-Microcystis hypothesis, Limnology, 3, 87–96,
https://doi.org/10.1007/s102010200010, 2002.
Isern-Fontanet, J., Font, J., García-Ladona, E., Emelianov, M., Millot,
C., and Taupier-Letage, I.: Spatial structure of anticyclonic eddies in the
Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss
parameter, Deep-Sea Res. Pt. II, 51, 3009–3028,
https://doi.org/10.1016/j.dsr2.2004.09.013, 2004.
Isern-Fontanet, J., García-Ladona, E., and Font, J.: Vortices of the
Mediterranean Sea: An altimetric perspective, J. Phys. Oceanogr., 36,
87–103, https://doi.org/10.1175/JPO2826.1, 2006.
Ji, Z. G. and Jin, K. R.: Gyres and seiches in a large and shallow lake, J.
Great Lakes Res., 32, 764–775,
https://doi.org/10.3394/0380-1330(2006)32[764:GASIAL]2.0.CO;2, 2006.
Johannessen, J. A., Shuchman, R. A., Digranes, G., Lyzenga, D. R.,
Wackerman, C., Johannessen, O. M., and Vachon, P. W.: Coastal ocean fronts
and eddies imaged with ERS 1 synthetic aperture radar, J. Geophys. Res.-Oceans, 101, 6651–6667, https://doi.org/10.1029/95JC02962,
1996.
Johannessen, J. A., Kudryavtsev, V., Akimov, D., Eldevik, T., Winther, N.,
and Chapron, B.: On radar imaging of current features: 2. Mesoscale eddy and
current front detection, J. Geophys. Res.-Oceans, 110, C07017,
https://doi.org/10.1029/2004JC002802, 2005.
Karimova, S.: Spiral eddies in the Baltic, Black and Caspian seas as seen by
satellite radar data, Adv. Space Res., 50, 1107–1124,
https://doi.org/10.1016/j.asr.2011.10.027, 2012.
Laval, B., Imberger, J., Hodges, B. R., and Stocker, R.: Modeling circulation
in lakes: Spatial and temporal variations, Limnol. Oceanogr.-Methods, 48,
983–994, https://doi.org/10.4319/lo.2003.48.3.0983, 2003.
Laval, B. E., Imberger, J., and Findikakis, A. N.: Dynamics of a large
tropical lake: Lake Maracaibo, Aquat. Sci., 67, 337–349, https://doi.org/10.1007/s00027-005-0778-1, 2005.
Le Thi, A. D., De Pascalis, F., Umgiesser, G., and Wildi, W.: Structure
thermique et courantologie du Léman (Thermal structure and circulation
patterns of Lake Geneva), Arch. Sci., 65, 65–80, https://archive-ouverte.unige.ch/unige:27717 (last access: 29 October 2022), 2012.
Lemmin, U. (Ed.): Mouvements des masses d'eau (Water mass movement), in: Dans les abysses du Léman (Descent into the abyss of Lake
Geneva), Presses Polytechniques et Universitaires Romandes (PPUR), Lausanne,
Switzerland, ISBN 978-2-88915-105-9, 2016.
Lemmin, U.: Insights into the dynamics of the deep hypolimnion of Lake
Geneva as revealed by long-term temperature, oxygen, and current
measurements, Limnol. Oceanogr., 65, 2092–2107,
https://doi.org/10.1002/lno.11441, 2020.
Lemmin, U. and D'Adamo, N.: Summertime winds and direct cyclonic
circulation: Observations from Lake Geneva, Ann. Geophys, 14, 1207–1220,
https://doi.org/10.1007/s00585-996-1207-z, 1996.
Lemmin, U., Mortimer, C. H., and Bäuerle, E.: Internal seiche dynamics
in Lake Geneva, Limnol. Oceanogr., 50, 207–216,
https://doi.org/10.4319/lo.2005.50.1.0207, 2005.
Lin, S., Boegman, L., Shan, S., and Mulligan, R.: An automatic lake-model application using near-real-time data forcing: development of an operational forecast workflow (COASTLINES) for Lake Erie, Geosci. Model Dev., 15, 1331–1353, https://doi.org/10.5194/gmd-15-1331-2022, 2022.
Liu, F., Zhou, H., and Wen, B.: DEDNet: Offshore eddy detection and location
with HF radar by deep learning, Sensors, 21, 126,
https://doi.org/10.3390/s21010126, 2021.
McKinney, P., Holt, B., and Matsumoto, K.: Small eddies observed in Lake
Superior using SAR and sea surface temperature imagery, J. Great Lakes Res.,
38, 786–797, https://doi.org/10.1016/j.jglr.2012.09.023,
2012.
McWilliams, J. C.: The emergence of isolated coherent vortices in turbulent
flow, J. Fluid Mech., 146, 21–43, https://doi.org/10.1017/S0022112084001750, 1984.
Mahadevan, A.: The impact of submesoscale physics on primary productivity of
plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Mao, M. and Xia, M.: Monthly and episodic dynamics of summer circulation in
Lake Michigan, J. Geophys. Res.-Oceans, 125, e2019JC015932,
https://doi.org/10.1029/2019JC015932, 2020.
Marmorino, G. O., Holt, B., Molemaker, M. J., DiGiacomo, P. M., and Sletten,
M. A.: Airborne synthetic aperture radar observations of “spiral eddy”
slick patterns in the Southern California Bight, J. Geophys. Res.-Oceans,
115, C05010, https://doi.org/10.1029/2009JC005863, 2010.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean
on parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997.
Nakayama, K., Shintani, T., Shimizu, K., Okada, T., Hinata, H., and Komai,
K.: Horizontal and residual circulations driven by wind stress curl in Tokyo
Bay, J. Geophys. Res.-Oceans, 119, 1977–1992,
https://doi.org/10.1002/2013JC009396, 2014.
Nõges, T. and Kangro, K.: Primary production of phytoplankton in a
strongly stratified temperate lake, Hydrobiologia, 547, 105–122,
https://doi.org/10.1007/1-4020-4363-5_10, 2005.
Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of
velocity singularities such as convergences, Deep-Sea Res. Pt. I, 17, 445–454,
https://doi.org/10.1016/0011-7471(70)90059-8, 1970.
Ostrovsky, I. and Sukenik, A.: Spatial heterogeneity of biogeochemical
parameters in a subtropical lake, in: Monitoring and Modelling Lakes and
Coastal Environments, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6646-7_6, 2008.
Pasquero, C., Provenzale, A., and Babiano, A.: Parameterization of
dispersion in two-dimensional turbulence, J. Fluid Mech., 439, 279–303,
https://doi.org/10.1017/S0022112001004499, 2001.
Perroud, M., Goyette, S., Martynov, A., Beniston, M., and Anneville, O.:
Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison
of one-dimensional lake models, Limnol. Oceanogr., 54, 1574–1594,
https://doi.org/10.4319/lo.2009.54.5.1574, 2009.
Pickett, R. L. and Rao, D. B.: One-and two-gyre circulations in homogeneous
lakes. International Field Year for the Great Lakes Bulletin 19, 45–49, U.S.
Dept. of Commerce, National Oceanic and Atmospheric Administration,
Rockville, Maryland. https://play.google.com/books/reader?id=AtZ918jAK10C&hl=enGB&pg=GBS.PA45 (last access: 29 October 2022), 1977.
Qazi, W. A., Emery, W. J., and Fox-Kemper, B.: Computing ocean surface
currents over the coastal California current system using 30-min-lag
sequential SAR images, IEEE T. Geosci. Elect., 52,
7559–7580, https://doi.org/10.1109/TGRS.2014.2314117, 2014.
Rahaghi, A. I., Lemmin, U., Cimatoribus, A., Bouffard, D., Riffler, M.,
Wunderle, S., and Barry, D. A.: Improving surface heat flux estimation for a
large lake through model optimization and two-point calibration: The case of
Lake Geneva, Limnol. Oceanogr.-Methods, 16, 576–593, https://doi.org/10.1002/lom3.10267, 2018.
Rahaghi, A. I., Lemmin, U., Cimatoribus, A. A., and Barry, D. A.: The
importance of systematic spatial variability in the surface heat flux of a
large lake: A multiannual analysis for Lake Geneva, Water Resour. Res.,
55, 10248–10267, https://doi.org/10.1029/2019WR024954,
2019.
Ralph, E. A.: Scales and structures of large lake eddies, Geophys. Res.
Lett., 29, 30-1–30-4, https://doi.org/10.1029/2001GL014654,
2002.
Rao, D. B. and Murty, T. S.: Calculation of the steady state wind-driven
circulations in Lake Ontario, Arch. Meteor. Geophy. A,
19, 195–210, https://doi.org/10.1007/BF02249005, 1970.
Razmi, A. M., Barry, D. A., Bakhtyar, R., Le Dantec, N., Dastgheib, A.,
Lemmin, U., and Wüest, A.: Current variability in a wide and open
lacustrine embayment in Lake Geneva (Switzerland), J. Great Lakes Res.,
39, 455–465, https://doi.org/10.1016/j.jglr.2013.06.011,
2013.
Razmi, A. M., Lemmin, U., Bouffard, D., Wüest, A., Uittenbogaard, R. E.,
and Barry, D. A.: Gyre formation in open and deep lacustrine embayments: The
example of Lake Geneva, Switzerland, Environ. Fluid Mech., 17, 415–428,
https://doi.org/10.1007/s10652-016-9494-8, 2017.
Reiss, R. S., Lemmin, U., Cimatoribus, A. A., and Barry, D. A.: Wintertime
coastal upwelling in Lake Geneva: An efficient transport process for
deepwater renewal in a large, deep lake, J. Geophys. Res.-Oceans, 125,
e2020JC016095, https://doi.org/10.1029/2020JC016095, 2020.
Rueda, F. J., Schladow, S. G., Monismith, S. G., and Stacey, M. T.: On the
effects of topography on wind and the generation of currents in a large
multi-basin lake, Hydrobiologia, 532, 139–151, https://doi.org/10.1007/s10750-004-9522-4, 2005.
Schwab, D. J. and Beletsky, D.: Relative effects of wind stress curl,
topography, and stratification on large-scale circulation in Lake Michigan,
J. Geophys. Res.-Oceans, 108, 3044,
https://doi.org/10.1029/2001JC001066, 2003.
Shilo, E., Ashkenazy, Y., Rimmer, A., Assouline, S., Katsafados, P., and
Mahrer, Y.: Effect of wind variability on topographic waves: Lake Kinneret
case, J. Geophys. Res.-Oceans, 112, C12024, https://doi.org/10.1029/2007JC004336, 2007.
Shimizu, K., Imberger, J., and Kumagai, M.: Horizontal structure and
excitation of primary motions in a strongly stratified lake, Limnol.
Oceanogr., 52, 2641–2655, https://doi.org/10.4319/lo.2007.52.6.2641, 2007.
Simons, T. J.: Circulation models of lakes and inland seas, Can. B. Fish.
Aquat. Sci., 203, 146, 1980.
Souza, J. M. A. C., de Boyer Montégut, C., and Le Traon, P. Y.: Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean, Ocean Sci., 7, 317–334, https://doi.org/10.5194/os-7-317-2011, 2011.
Steissberg, T. E., Hook, S. J., and Schladow, S. G.: Measuring surface
currents in lakes with high spatial resolution thermal infrared imagery,
Geophys. Res. Lett., 32, L11402, https://doi.org/10.1029/2005GL022912, 2005.
Umlauf, L. and Lemmin, U.: Interbasin exchange and mixing in the
hypolimnion of a large lake: The role of long internal waves, Limnol.
Oceanogr., 50, 1601–1611,
https://doi.org/10.4319/lo.2005.50.5.1601, 2005.
Vallis, G. K. (2nd Ed.): Atmospheric and oceanic fluid dynamics:
Fundamentals and large-scale circulation. Cambridge: Cambridge University
Press, https://doi.org/10.1017/9781107588417, 2017.
Voudouri, A., Avgoustoglou, E., and Kaufmann, P.: Impacts of observational
data assimilation on operational forecasts, Perspectives on atmospheric
sciences, 143–149, Springer, Cham, https://doi.org/10.1007/978-3-319-35095-0_21, 2017.
Verburg, P., Antenucci, J. P., and Hecky, R. E.: Differential cooling drives
large-scale convective circulation in Lake Tanganyika, Limnol. Oceanogr.,
56, 910–926, https://doi.org/10.4319/lo.2011.56.3.0910,
2011.
Wang, B. and An, S. I.: A method for detecting season-dependent modes of
climate variability: S-EOF analysis, Geophys. Res. Lett., 32, L15710,
https://doi.org/10.1029/2005GL022709, 2005.
Wang, C., Tandeo, P., Mouche, A., Stopa, J. E., Gressani, V., Longepe, N.,
Vandemark, D., Foster, R. C., and Chapron, B.: Classification of the global
Sentinel-1 SAR vignettes for ocean surface process studies, Remote Sens.
Environ., 234, 111457,
https://doi.org/10.1016/j.rse.2019.111457, 2019.
Wanner, H. and Furger, M.: The Bise–Climatology of a regional wind north
of the Alps, Physics Meteorol. Atmos. Phys., 43, 105–115,
https://doi.org/10.1007/BF01028113, 1990.
Weiss, J.: The dynamics of enstrophy transfer in two-dimensional
hydrodynamics, Phys. D, 48, 273–294,
https://doi.org/10.1016/0167-2789(91)90088-Q, 1991.
Wu, T., Qin, B., Huang, A., Sheng, Y., Feng, S., and Casenave, C.: Reconsideration of wind stress, wind waves, and turbulence in simulating wind-driven currents of shallow lakes in the Wave and Current Coupled Model (WCCM) version 1.0, Geosci. Model Dev., 15, 745–769, https://doi.org/10.5194/gmd-15-745-2022, 2022.
Xiu, P., Chai, F., Shi, L., Xue, H., and Chao, Y.: A census of eddy
activities in the South China Sea during 1993–2007, J. Geophys. Res.-Oceans, 115, C03012, https://doi.org/10.1029/2009JC005657,
2010.
Zhan, S., Beck, R. A., Hinkel, K. M., Liu, H., and Jones, B. M.:
Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal
Plain of northern Alaska based on remotely sensed images, Remote Sens.,
6, 9170–9193, https://doi.org/10.3390/rs6109170, 2014.
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
A procedure combining numerical simulations, remote sensing, and statistical analyses is...