Articles | Volume 15, issue 16
https://doi.org/10.5194/gmd-15-6311-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6311-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN
Mauro Morichetti
CORRESPONDING AUTHOR
Institute of Atmospheric Sciences and Climate, National Research
Council of Italy, Unit of Lecce, Italy
Sasha Madronich
National Center for Atmospheric Research, Boulder, Colorado, USA
Giorgio Passerini
Department of Industrial Engineering and Mathematical Science,
Marche Polytechnic University, Ancona, Italy
Umberto Rizza
Institute of Atmospheric Sciences and Climate, National Research
Council of Italy, Unit of Lecce, Italy
Enrico Mancinelli
Department of Industrial Engineering and Mathematical Science,
Marche Polytechnic University, Ancona, Italy
Simone Virgili
Department of Industrial Engineering and Mathematical Science,
Marche Polytechnic University, Ancona, Italy
Mary Barth
National Center for Atmospheric Research, Boulder, Colorado, USA
Related authors
No articles found.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025, https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Short summary
Novel aerosol hygroscopicity analyses of CAMP2Ex (Cloud, Aerosol, and Monsoon Processes Philippines Experiment) field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region, affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Jian Guan, Susan Solomon, Sasha Madronich, and Douglas Kinnison
Atmos. Chem. Phys., 23, 10413–10422, https://doi.org/10.5194/acp-23-10413-2023, https://doi.org/10.5194/acp-23-10413-2023, 2023
Short summary
Short summary
This paper provides a novel method to obtain a global and accurate photodissociation coefficient for NO2 (J(NO2)) based on satellite data, and the results are shown to be consistent with model results. The J(NO2) value decreases as the solar zenith angle increases and has a weak altitude dependence. A key finding is that the satellite-derived J(NO2) increases in the polar regions, in good agreement with model predictions, due to the effects of ice and snow on surface albedo.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Cathy W. Y. Li, Mary Barth, Tao Wang, and Guy P. Brasseur
Atmos. Chem. Phys., 21, 3531–3553, https://doi.org/10.5194/acp-21-3531-2021, https://doi.org/10.5194/acp-21-3531-2021, 2021
Short summary
Short summary
Large-eddy simulations (LESs) were performed in the mountainous region of the island of Hong Kong to investigate the degree to which the rates of chemical reactions between two reactive species are reduced due to the segregation of species within the convective boundary layer. We show that the inhomogeneity in emissions plays an important role in the segregation effect. Topography also has a significant influence on the segregation locally.
Cited articles
Andreani-aksoyoglu, S. and Keller, J.: Estimates of monoterpene and isoprene
emissions from the forests in Switzerland, J. Atmos. Chem., 20, 71–87,
https://doi.org/10.1007/BF01099919, 1995.
Apel, E. C., Hills, A. J., Lueb, R., Zindel, S., Eisele, S., and Riemer, D.
D.: A fast-GC-MS system to measure C2 to C4 carbonyls and methanol aboard
aircraft, J. Geophys. Res.-Atmos., 108, 8794, https://doi.org/10.1029/2002jd003199,
2003.
Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, https://doi.org/10.5194/acp-7-31-2007, 2007.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J. and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Brasseur, G. P., Kiehl, J. T., Müller, J. F., Schneider, T., Granier,
C., Tie, X. X., and Hauglustaine, D.: Past and future changes in global
tropospheric ozone: Impact on radiative forcing, Geophys. Res. Lett.,
25, 3807–3810, https://doi.org/10.1029/1998GL900013, 1998.
Brown-Steiner, B., Hess, P. G., and Lin, M. Y.: On the capabilities and
limitations of GCCM simulations of summertime regional air quality: A
diagnostic analysis of ozone and temperature simulations in the US using
CESM CAM-Chem, Atmos. Environ., 101, 134–148,
https://doi.org/10.1016/j.atmosenv.2014.11.001, 2015.
Carlton, A. G., De Gouw, J., Jimenez, J. L., Ambrose, J. L., Attwood, A. R., Brown, S., Baker, K. R., Brock, C., Cohen, R. C., Edgerton, S., Farkas, C. M., Farmer, D., Goldstein, A. H., Gratz, L., Guenther, A., Hunt, S., Jaeglé, L., Jaffe, D. A., Mak, J., Mcclure, C., Nenes, A., Nguyen, T. K., Pierce, J. R., De Sa, S., Selin, N. E., Shah, V., Shaw, S., Shepson, P. B., Song, S., Stutz, J., Surratt, J. D., Turpin, B. J., Warneke, C., Washenfelder, R. A., Wennberg, P. O., and Zhou, X.: Synthesis of the southeast atmosphere studies: Investigating fundamental atmospheric chemistry questions, B. Am. Meteorol. Soc., 99, 547–567, https://doi.org/10.1175/BAMS-D-16-0048.1, 2018.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2,
2001.
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan,
Q. Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four
schemes and comparison with FIFE observations, J. Geophys. Res.-Atmos.,
101, 7251–7268, https://doi.org/10.1029/95JD02165, 1996.
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K. and
Butler, T. M.: Effect of VOC Emissions from Vegetation on Air Quality in
Berlin during a Heatwave, Environ. Sci. Technol., 51, 6120–6130,
https://doi.org/10.1021/acs.est.6b06514, 2017.
Computational and Information Systems Laboratory: Cheyenne: HPE/SGI ICE XA System (NCAR Community Computing), Boulder, CO, National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX, 2019.
Cuchiara, G. C., Fried, A., Barth, M. C., Bela, M., Homeyer, C. R., Gaubert,
B., Walega, J., Weibring, P., Richter, D., Wennberg, P., Crounse, J., Kim,
M., Diskin, G., Hanisco, T. F., Wolfe, G. M., Beyersdorf, A., Peischl, J.,
Pollack, I. B., St. Clair, J. M., Woods, S., Tanelli, S., Bui, T. V.,
Dean-Day, J., Huey, L. G., and Heath, N.: Vertical Transport, Entrainment,
and Scavenging Processes Affecting Trace Gases in a Modeled and Observed
SEAC4RS Case Study, J. Geophys. Res.-Atmos., 125, e2019JD031957,
https://doi.org/10.1029/2019JD031957, 2020.
Curci, G., Palmer, P. I., Kurosu, T. P., Chance, K., and Visconti, G.: Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 10, 11501–11517, https://doi.org/10.5194/acp-10-11501-2010, 2010.
EEA: Air pollution due to ozone: health impacts and effects of climate
change, 2015.
EEA: Air Quality in Europe 2017 Report, Luxembourg, 2017.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J.
Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005JD006721, 2006.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt,
C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.:
Emissions of volatile organic compounds from vegetation and the implications
for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430,
https://doi.org/10.1029/92GB02125, 1992.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess,
P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I.
A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van
Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G.,
Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong,
S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson,
J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Manner, E., Montanaro, V.,
Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S.,
Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel
estimates of intercontinental source-receptor relationships for ozone
pollution, J. Geophys. Res.-Atmos., 114, D04301,
https://doi.org/10.1029/2008JD010816, 2009.
Gauss, M., Myhre, G., Isaksen, I. S. A., Grewe, V., Pitari, G., Wild, O., Collins, W. J., Dentener, F. J., Ellingsen, K., Gohar, L. K., Hauglustaine, D. A., Iachetti, D., Lamarque, F., Mancini, E., Mickley, L. J., Prather, M. J., Pyle, J. A., Sanderson, M. G., Shine, K. P., Stevenson, D. S., Sudo, K., Szopa, S., and Zeng, G.: Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys., 6, 575–599, https://doi.org/10.5194/acp-6-575-2006, 2006.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the
WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys. Res.,
100, 8873, https://doi.org/10.1029/94JD02950, 1995.
Guenther, A., Baugh, B., Brasseur, G., Greenberg, J., Harley, P., Klinger,
L., Serça, D., and Vierling, L.: Isoprene emission estimates and
uncertainties for the central African EXPRESSO study domain, J. Geophys.
Res.-Atmos., 104, 30625–30639, https://doi.org/10.1029/1999JD900391, 1999.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A., Jiang, X., Shah, T., Huang, L., Kemball-Cook, S., and Yarwood,
G.: Model of Emissions of Gases and Aerosol from Nature Version 3 (MEGAN3)
for Estimating Biogenic Emissions, in: Springer Proceedings in Complexity,
Springer, Cham, 187–192, https://doi.org/10.1007/978-3-030-22055-6_29, 2020.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: Model evaluations
and sensitivity analyses, J. Geophys. Res., 98, 12609,
https://doi.org/10.1029/93JD00527, 1993.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., and Buchmann, B.: Assessment of parameters describing representativeness of air quality in-situ measurement sites, Atmos. Chem. Phys., 10, 3561–3581, https://doi.org/10.5194/acp-10-3561-2010, 2010.
Henrot, A.-J., Stanelle, T., Schröder, S., Siegenthaler, C., Taraborrelli, D., and Schultz, M. G.: Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model, Geosci. Model Dev., 10, 903–926, https://doi.org/10.5194/gmd-10-903-2017, 2017.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Im, U., Markakis, K., Poupkou, A., Melas, D., Unal, A., Gerasopoulos, E., Daskalakis, N., Kindap, T., and Kanakidou, M.: The impact of temperature changes on summer time ozone and its precursors in the Eastern Mediterranean, Atmos. Chem. Phys., 11, 3847–3864, https://doi.org/10.5194/acp-11-3847-2011, 2011.
Im, U., Markakis, K., Koçak, M., Gerasopoulos, E., Daskalakis, N.,
Mihalopoulos, N., Poupkou, A., Kýndap, T., Unal, A., and Kanakidou, M.:
Summertime aerosol chemical composition in the Eastern Mediterranean and its
sensitivity to temperature, Atmos. Environ., 50, 164–173,
https://doi.org/10.1016/J.ATMOSENV.2011.12.044, 2012.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Janjiæ, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2,
1994.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., and Schaaf, E.: EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on national inventories. European Commission, Joint Research Centre (JRC), [data set], http://data.europa.eu/89h/jrc-edgar-htap_v1 (last access: 5 September 2017), 2011.
Jiang, J., Aksoyoglu, S., Ciarelli, G., Oikonomakis, E., El-Haddad, I., Canonaco, F., O'Dowd, C., Ovadnevaite, J., Minguillón, M. C., Baltensperger, U., and Prévôt, A. S. H.: Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe, Atmos. Chem. Phys., 19, 3747–3768, https://doi.org/10.5194/acp-19-3747-2019, 2019.
Jiang, X., Guenther, A., Potosnak, M., Geron, C., Seco, R., Karl, T., Kim,
S., Gu, L., and Pallardy, S.: Isoprene emission response to drought and the
impact on global atmospheric chemistry, Atmos. Environ., 183,
69–83, https://doi.org/10.1016/j.atmosenv.2018.01.026, 2018.
Kaser, L., Karl, T., Yuan, B., Mauldin, R. L., Cantrell, C. A., Guenther, A.
B., Patton, E. G., Weinheimer, A. J., Knote, C., Orlando, J., Emmons, L.,
Apel, E., Hornbrook, R., Shertz, S., Ullmann, K., Hall, S., Graus, M., De
Gouw, J., Zhou, X., and Ye, C.: Chemistry-turbulence interactions and
mesoscale variability influence the cleansing efficiency of the atmosphere,
Geophys. Res. Lett., 42, 10894–10903, https://doi.org/10.1002/2015GL066641, 2015.
Keenan, T., Niinemets, Ü., Sabate, S., Gracia, C., and Peñuelas, J.: Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties, Atmos. Chem. Phys., 9, 4053–4076, https://doi.org/10.5194/acp-9-4053-2009, 2009.
Kim, S.-W., Barth, M. C., and Trainer, M.: Impact of turbulent mixing on
isoprene chemistry, Geophys. Res. Lett., 43, 7701–7708,
https://doi.org/10.1002/2016GL069752, 2016.
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan,
G. B., and Slater, A. G.: Parameterization improvements and functional and
structural advances in Version 4 of the Community Land Model, J. Adv. Model.
Earth Sy., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011.
Li, Y., Barth, M. C., Chen, G., Patton, E. G., Kim, S.-W., Wisthaler, A.,
Mikoviny, T., Fried, A., Clark, R., and Steiner, A. L.: Large-eddy simulation
of biogenic VOC chemistry during the DISCOVER-AQ 2011 campaign, J. Geophys.
Res.-Atmos., 121, 8083–8105, https://doi.org/10.1002/2016JD024942, 2016.
Limbeck, A., Kulmala, M., and Puxbaum, H.: Secondary organic aerosol
formation in the atmosphere via heterogeneous reaction of gaseous isoprene
on acidic particles, Geophys. Res. Lett., 30, 1996,
https://doi.org/10.1029/2003GL017738, 2003.
Lin, J. T., Youn, D., Liang, X. Z., and Wuebbles, D. J.: Global model
simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL
mixing, spatial resolution, and emissions, Atmos. Environ., 42,
8470–8483, https://doi.org/10.1016/j.atmosenv.2008.08.012, 2008.
Lin, M., Horowitz, L. W., Xie, Y., Paulot, F., Malyshev, S., Shevliakova,
E., Finco, A., Gerosa, G., Kubistin, D., and Pilegaard, K.: Vegetation
feedbacks during drought exacerbate ozone air pollution extremes in Europe,
Nat. Clim. Change, 10, 444–451, https://doi.org/10.1038/s41558-020-0743-y, 2020.
Martin, M. J., Stirling, C. M., Humphries, S. W., and Long, S. P.: A
process-based model to predict the effects of climatic change on leaf
isoprene emission rates, Ecol. Modell., 131, 161–174,
https://doi.org/10.1016/S0304-3800(00)00258-1, 2000.
Messina, P., Lathière, J., Sindelarova, K., Vuichard, N., Granier, C., Ghattas, J., Cozic, A., and Hauglustaine, D. A.: Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters, Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, 2016.
Morrison, H., Thompson, G. and Tatarskii, V.: Impact of Cloud Microphysics
on the Development of Trailing Stratiform Precipitation in a Simulated
Squall Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev.,
137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
National Centers for Environmental Prediction (NCAR) – National Weather Service
NOAA U. S. Department of Commerce: NCEP North American Regional Reanalysis
(NARR), https://rda.ucar.edu/datasets/ds608.0/
(last access: 25 November 2018), 2005.
Ncep: NCEP FNL Operational Model Global Tropospheric Analyses, continuing
from July 1999, Dataset ds083, 2 Publ. by CISL Data Support,
https://doi.org/10.5065/D6M043C6, 2000.
Niinemets, U., Tenhunen, J. D., Harley, P. C., and Steinbrecher, R.: A model
of isoprene emission based on energetic requirements for isoprene synthesis
and leaf photosynthetic properties for Liquidambar and Quercus, Plant Cell
Environ., 22, 1319–1335, https://doi.org/10.1046/j.1365-3040.1999.00505.x, 1999.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Oleson, W., Lawrence, M., Bonan, B., Flanner, G., Kluzek, E., Lawrence, J.,
Levis, S., Swenson, C., Thornton, E., Dai, A., Decker, M., Dickinson, R.,
Feddema, J., Heald, L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu,
G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A.,
Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical
Description of version 4.0 of the Community Land Model (CLM),
No. NCAR/TN-478+STR, University Corporation for Atmospheric Research, https://doi.org/10.5065/D6FB50WZ, 2010.
Ouwersloot, H. G., Vilà-Guerau de Arellano, J., van Heerwaarden, C. C., Ganzeveld, L. N., Krol, M. C., and Lelieveld, J.: On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces, Atmos. Chem. Phys., 11, 10681–10704, https://doi.org/10.5194/acp-11-10681-2011, 2011.
Pegoraro, E., Rey, A., Bobich, E. G., Barron-Gafford, G., Grieve, K. A.,
Malhi, Y., and Murthy, R.: Effect of elevated CO2 concentration and vapour
pressure deficit on isoprene emission from leaves of Populus deltoides
during drought, Funct. Plant Biol., 31, 1137–1147, https://doi.org/10.1071/FP04142,
2004.
Ryu, Y.-H., Hodzic, A., Barre, J., Descombes, G., and Minnis, P.: Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals, Atmos. Chem. Phys., 18, 7509–7525, https://doi.org/10.5194/acp-18-7509-2018, 2018.
Sakulyanontvittaya, T., Duhl, T., Wiedinmyer, C., Helmig, D., Matsunaga, S.,
Potosnak, M., Milford, J., and Guenther, A.: Monoterpene and sesquiterpene
emission estimates for the United States, Environ. Sci. Technol., 42,
1623–1629, https://doi.org/10.1021/es702274e, 2008.
Sartelet, K. N., Couvidat, F., Seigneur, C., and Roustan, Y.: Impact of
biogenic emissions on air quality over Europe and North America, Atmos.
Environ., 53, 131–141, https://doi.org/10.1016/j.atmosenv.2011.10.046, 2012.
Schwantes, R. H., Emmons, L. K., Orlando, J. J., Barth, M. C., Tyndall, G. S., Hall, S. R., Ullmann, K., St. Clair, J. M., Blake, D. R., Wisthaler, A., and Bui, T. P. V.: Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US, Atmos. Chem. Phys., 20, 3739–3776, https://doi.org/10.5194/acp-20-3739-2020, 2020.
Sha, T., Ma, X., Zhang, H., Janechek, N., Wang, Y., Wang, Y., Castro
García, L., Jenerette, G. D., and Wang, J.: Impacts of Soil NOx Emission
on O3 Air Quality in Rural California, Environ. Sci. Technol., 55,
7113–7122, https://doi.org/10.1021/acs.est.0c06834, 2021.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Chan Miller, C.
E., Abad, G. G., Janz, S. J., Fried, A., Blake, D. R., Weinheimer, A. J.,
Diskin, G. S., Liu, X., and Chance, K.: Revisiting the effectiveness of
HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high
resolution airborne remote sensing observations in a high ozone episode
during the KORUS-AQ campaign, Atmos. Environ., 224, 117341,
https://doi.org/10.1016/J.ATMOSENV.2020.117341, 2020.
Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Ma, P.-L., Liu, X., Ghan, S., Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W., Moore, F., Spackman, J. R., and Val Martin, M.: Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2), Geosci. Model Dev., 8, 1395–1426, https://doi.org/10.5194/gmd-8-1395-2015, 2015.
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016.
van Donkelaar, A., Martin, R. V., Park, R. J., Heald, C. L., Fu, T.-M.,
Liao, H., and Guenther, A.: Model evidence for a significant source of
secondary organic aerosol from isoprene, Atmos. Environ., 41, 1267–1274,
https://doi.org/10.1016/J.ATMOSENV.2006.09.051, 2007.
Visser, A. J., Boersma, K. F., Ganzeveld, L. N., and Krol, M. C.: European NOx emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone, Atmos. Chem. Phys., 19, 11821–11841, https://doi.org/10.5194/acp-19-11821-2019, 2019.
Wang, Y., Tan, X., Huang, L., Wang, Q., Li, H., Zhang, H., Zhang, K., Liu,
Z., Traore, D., Yaluk, E., Fu, J. S. and Li, L.: The impact of biogenic
emissions on ozone formation in the Yangtze River Delta region based on
MEGANv3.1, Air Qual. Atmos. Heal., 14, 763–774,
https://doi.org/10.1007/s11869-021-00977-0, 2021.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
wrf-model: WRF, Github [code], https://github.com/wrf-model/WRF/releases, last access: 26 July 2017.
Yerramilli, A., Challa, V. S., Dodla, V. B. R., Myles, L., Pendergrass, W.
R., Vogel, C. A., Tuluri, F., Baham, J. M., Hughes, R., Patrick, C., Young,
J., and Swanier, S.: Simulation of surface ozone pollution in the Central
Gulf Coast region during summer synoptic condition using WRF/Chem air
quality model, Atmos. Pollut. Res., 3, 55–71, https://doi.org/10.5094/APR.2012.005,
2012.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, 1–29, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., Lin, S., Gu, D., Su, W., and Liu, C.: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China, Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, 2021.
Zhang, Y., Dubey, M. K., Olsen, S. C., Zheng, J., and Zhang, R.: Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-MILAGRO, Atmos. Chem. Phys., 9, 3777–3798, https://doi.org/10.5194/acp-9-3777-2009, 2009.
Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., Gu, D., Shrivastava, M., Liu, Y., Walters, S., Pfister, G., Jin, J., Shilling, J. E., and Warneke, C.: Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California, Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(11879 KB) - Full-text XML
- Corrigendum
-
Supplement
(4890 KB) - BibTeX
- EndNote
Short summary
In the present study, we explore the effect of making simple changes to the existing WRF-Chem MEGAN v2.04 emissions to provide MEGAN updates that can be used independently of the land surface model chosen. The changes made to the MEGAN algorithm implemented in WRF-Chem were the following: (i) update of the emission activity factors, (ii) update of emission factor values for each plant functional type (PFT), and (iii) the assignment of the emission factor by PFT to isoprene.
In the present study, we explore the effect of making simple changes to the existing WRF-Chem...