Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5211-2022
https://doi.org/10.5194/gmd-15-5211-2022
Model description paper
 | 
07 Jul 2022
Model description paper |  | 07 Jul 2022

Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as an integral part of the radiative transfer code 4A/OP v1.5

Yoann Tellier, Cyril Crevoisier, Raymond Armante, Jean-Louis Dufresne, and Nicolas Meilhac

Related authors

Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN
Yoann Tellier, Clémence Pierangelo, Martin Wirth, Fabien Gibert, and Fabien Marnas
Atmos. Meas. Tech., 11, 5865–5884, https://doi.org/10.5194/amt-11-5865-2018,https://doi.org/10.5194/amt-11-5865-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025,https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025,https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary

Cited articles

Achard, V.: Trois problèmes clés de l'analyse 3D de la structure thermodynamique de l'atmosphère par satellite: Mesure du contenu en ozone; classification des masses d'air; modélisation hyper rapide du transfert radiatif, PhD thesis, Université Paris VI, LMD, Ecole Polytechnique, 91128 Palaiseau CEDEX, France, 1991. a, b
Alvarado, M. J., Payne, V. H., Mlawer, E. J., Uymin, G., Shephard, M. W., Cady-Pereira, K. E., Delamere, J. S., and Moncet, J.-L.: Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies, Atmos. Chem. Phys., 13, 6687–6711, https://doi.org/10.5194/acp-13-6687-2013, 2013. a
Andrews, T.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 RFMIP rad-irf. Version 20191030, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.6320, 2019. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Dufresne, J.-L., Sima, A., and Tellier, Y.: IPSL 4AOP-v1-5 model output prepared for CMIP6 RFMIP rad-irf. Version 20200611, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.12369, 2020. a
Brath, M.: UHH ARTS2.3 model output prepared for CMIP6 RFMIP rad-irf. Version 20190620, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.8919, 2019. a
Download
Short summary
Accurate radiative transfer models (RTMs) are required to improve climate model simulations. We describe the module named 4A-Flux, which is implemented into 4A/OP RTM, aimed at calculating spectral longwave radiative fluxes given a description of the surface, atmosphere, and spectroscopy. In Pincus et al. (2020), 4A-Flux has shown good agreement with state-of-the-art RTMs. Here, it is applied to perform sensitivity studies and will be used to improve the understanding of radiative flux modeling.
Share