Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5211-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as an integral part of the radiative transfer code 4A/OP v1.5
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Cyril Crevoisier
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Raymond Armante
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Jean-Louis Dufresne
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Nicolas Meilhac
FX CONSEIL, École Polytechnique, 91128, Palaiseau CEDEX, France
Related authors
No articles found.
Gerald Wetzel, Anne Kleinert, Sören Johansson, Felix Friedl-Vallon, Michael Höpfner, Jörn Ungermann, Tom Neubert, Valéry Catoire, Cyril Crevoisier, Andreas Engel, Thomas Gulde, Patrick Jacquet, Oliver Kirner, Erik Kretschmer, Thomas Kulessa, Johannes C. Laube, Guido Maucher, Hans Nordmeyer, Christof Piesch, Peter Preusse, Markus Retzlaff, Georg Schardt, Johan Schillings, Herbert Schneider, Axel Schönfeld, Tanja Schuck, Wolfgang Woiwode, Martin Riese, and Peter Braesicke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1838, https://doi.org/10.5194/egusphere-2025-1838, 2025
Short summary
Short summary
We present vertical trace gas profiles from the first balloon flight of the newly developed GLORIA-B limb-imaging Fourier-Transform spectrometer. Longer-lived gases are compared to external measurements to assess the quality of the GLORIA-B observations. Diurnal changes of photochemically active species are compared to model simulations. GLORIA-B demonstrates the capability of balloon-borne limb imaging to provide high-resolution vertical profiles of trace gases up to the middle stratosphere.
Julie Carles, Nicolas Bellouin, Najda Villefranque, and Jean-Louis Dufresne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3642, https://doi.org/10.5194/egusphere-2024-3642, 2025
Short summary
Short summary
Cirrus and contrails affect Earth’s energy balance with a lot of remaining uncertainty. The balance between solar and terrestrial radiation is delicate to calculate, and factors as cloud optical depth, shape, Sun position are crucial to estimate the effect of those clouds on radiation. Also, often neglected three dimensional paths of radiation, or 3D effects, may be important to account for at climatic scale.
Félix Langot, Cyril Crevoisier, Thomas Lauvaux, Charbel Abdallah, Jérôme Pernin, Xin Lin, Marielle Saunois, Axel Guedj, Thomas Ponthieu, Anke Roiger, Klaus-Dirk Gottschaldt, and Alina Fiehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3559, https://doi.org/10.5194/egusphere-2024-3559, 2024
Short summary
Short summary
Our study compares outputs from meteorological and atmospheric composition models to data from the MAGIC2021 campaign that took place in Sweden. Our results highlight performance differences among models, revealing strengths and weaknesses of different modelling techniques. We also found that wetland emission inventories overestimated emissions in regional simulations. This work helps refining methane emission predictions, essential for understanding climate change.
Matthieu Dogniaux and Cyril Crevoisier
Atmos. Meas. Tech., 17, 5373–5396, https://doi.org/10.5194/amt-17-5373-2024, https://doi.org/10.5194/amt-17-5373-2024, 2024
Short summary
Short summary
Many CO2-observing satellite concepts, with very different design choices and trade-offs, are expected to be put into orbit during the upcoming decade. This work uses numerical simulations to explore the impact of critical design parameters on the performance of upcoming CO2-observing satellite concepts.
Anna Agustí-Panareda, Jérôme Barré, Sébastien Massart, Antje Inness, Ilse Aben, Melanie Ades, Bianca C. Baier, Gianpaolo Balsamo, Tobias Borsdorff, Nicolas Bousserez, Souhail Boussetta, Michael Buchwitz, Luca Cantarello, Cyril Crevoisier, Richard Engelen, Henk Eskes, Johannes Flemming, Sébastien Garrigues, Otto Hasekamp, Vincent Huijnen, Luke Jones, Zak Kipling, Bavo Langerock, Joe McNorton, Nicolas Meilhac, Stefan Noël, Mark Parrington, Vincent-Henri Peuch, Michel Ramonet, Miha Razinger, Maximilian Reuter, Roberto Ribas, Martin Suttie, Colm Sweeney, Jérôme Tarniewicz, and Lianghai Wu
Atmos. Chem. Phys., 23, 3829–3859, https://doi.org/10.5194/acp-23-3829-2023, https://doi.org/10.5194/acp-23-3829-2023, 2023
Short summary
Short summary
We present a global dataset of atmospheric CO2 and CH4, the two most important human-made greenhouse gases, which covers almost 2 decades (2003–2020). It is produced by combining satellite data of CO2 and CH4 with a weather and air composition prediction model, and it has been carefully evaluated against independent observations to ensure validity and point out deficiencies to the user. This dataset can be used for scientific studies in the field of climate change and the global carbon cycle.
Matthieu Dogniaux, Cyril Crevoisier, Silvère Gousset, Étienne Le Coarer, Yann Ferrec, Laurence Croizé, Lianghai Wu, Otto Hasekamp, Bojan Sic, and Laure Brooker
Atmos. Meas. Tech., 15, 4835–4858, https://doi.org/10.5194/amt-15-4835-2022, https://doi.org/10.5194/amt-15-4835-2022, 2022
Short summary
Short summary
The Space Carbon Observatory (SCARBO) concept proposes a constellation of small satellites that would carry a miniaturized Fabry–Pérot imaging interferometer named NanoCarb and an aerosol instrument named SPEXone. In this work, we assess the performance of this concept for the retrieval of the total weighted columns of CO2 and CH4 and show the interest of adding the SPEXone aerosol instrument to improve the CO2 and CH4 column retrieval.
Matthias Schneider, Benjamin Ertl, Qiansi Tu, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, André Butz, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Kimberly Strong, Debra Wunch, Thorsten Warneke, Coleen Roehl, Paul O. Wennberg, Isamu Morino, Laura T. Iraci, Kei Shiomi, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech., 15, 4339–4371, https://doi.org/10.5194/amt-15-4339-2022, https://doi.org/10.5194/amt-15-4339-2022, 2022
Short summary
Short summary
We present a computationally very efficient method for the synergetic use of level 2 remote-sensing data products. We apply the method to IASI vertical profile and TROPOMI total column space-borne methane observations and thus gain sensitivity for the tropospheric methane partial columns, which is not achievable by the individual use of TROPOMI and IASI. These synergetic effects are evaluated theoretically and empirically by inter-comparisons to independent references of TCCON, AirCore, and GAW.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Matthieu Dogniaux, Cyril Crevoisier, Raymond Armante, Virginie Capelle, Thibault Delahaye, Vincent Cassé, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. Garcia, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, David F. Pollard, Coleen M. Roehl, Kei Shiomi, Kimberly Strong, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 4689–4706, https://doi.org/10.5194/amt-14-4689-2021, https://doi.org/10.5194/amt-14-4689-2021, 2021
Short summary
Short summary
We present the Adaptable 4A Inversion (5AI), an implementation of the optimal estimation (OE) algorithm, relying on the Automatized Atmospheric Absorption Atlas (4A/OP) radiative transfer model, that enables the retrieval of greenhouse gas atmospheric weighted columns from infrared measurements. It is tested on a sample of Orbiting Carbon Observatory-2 observations, and its results satisfactorily compare to several reference products, thus showing the reliability of 5AI OE implementation.
Cited articles
Achard, V.:
Trois problèmes clés de l'analyse 3D de la structure thermodynamique de l'atmosphère par satellite: Mesure du contenu en ozone; classification des masses d'air; modélisation hyper rapide du transfert radiatif, PhD thesis, Université Paris VI, LMD, Ecole Polytechnique, 91128 Palaiseau CEDEX, France, 1991. a, b
Alvarado, M. J., Payne, V. H., Mlawer, E. J., Uymin, G., Shephard, M. W., Cady-Pereira, K. E., Delamere, J. S., and Moncet, J.-L.:
Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies, Atmos. Chem. Phys., 13, 6687–6711, https://doi.org/10.5194/acp-13-6687-2013, 2013. a
Andrews, T.:
MOHC HadGEM3-GC31-LL model output prepared for CMIP6 RFMIP rad-irf. Version 20191030, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.6320, 2019. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y., Dufresne, J.-L., Sima, A., and Tellier, Y.:
IPSL 4AOP-v1-5 model output prepared for CMIP6 RFMIP rad-irf. Version 20200611, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.12369, 2020. a
Brath, M.:
UHH ARTS2.3 model output prepared for CMIP6 RFMIP rad-irf. Version 20190620, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.8919, 2019. a
Buehler, S. A., von Engeln, A., Brocard, E., John, V. O., Kuhn, T., and Eriksson, P.:
Recent developments in the line-by-line modeling of outgoing longwave radiation, J. Quant. Spectrosc. Ra., 98, 446–457, https://doi.org/10.1016/j.jqsrt.2005.11.001, 2006. a, b
Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.:
ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition, Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, 2018. a, b
Cheruy, F., Scott, N. A., Armante, R., Tournier, B., and Chedin, A.:
Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared, J. Quant. Spectrosc. Ra., 53, 597–611, https://doi.org/10.1016/0022-4073(95)00026-H, 1995. a, b
Chevallier, F., Chéruy, F., Scott, N. A., and Chédin, A.:
A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget, J. Appl. Meteorol., 37, 1385–1397, https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2, 1998. a, b
Chevallier, F., Chéruy;, F., Armante, R., Stubenrauch, C. J., and Scott, N. A.:
Retrieving the Clear-Sky Vertical Longwave Radiative Budget from TOVS: Comparison of a Neural Network–Based Retrieval and a Method Using Geophysical Parameters, J. Appl. Meteorol., 39, 1527–1543, https://doi.org/10.1175/1520-0450(2000)039<1527:RTCSVL>2.0.CO;2, 2000. a
Chédin, A., Scott, N. A., Wahiche, C., and Moulinier, P.:
The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series, J. Appl. Meteorol., 24, 128–143, https://doi.org/10.1175/1520-0450(1985)024<0128:TIIIMA>2.0.CO;2, 1985. a
Chédin, A., Scott, N. A., Husson, N., Flobert, J., Levy, C., and Moine, P.:
Satellite meteorology and atmospheric spectroscopy. Recent progress in earth remote sensing from the satellites of the Tiros-N series., J. Quant. Spect. Ra., 40, 257–273, https://doi.org/10.1016/0022-4073(88)90119-7, 1988. a
Chédin, A., Scott, N. A., Claud, C., Bonnet, B., Escobar, J., Dardaillon, S., Cheruy, F., and Husson, N.:
Global scale observation of the earth for climate studies, Adv. Space Res., 14, 155–159, https://doi.org/10.1016/0273-1177(94)90364-6, 1994. a
Chéruy, F., Chevallier, F., Morcrette, J.-J., Scott, N. A., and Chédin, A.:
A fast method using neural networks for computing the vertical distribution of the thermal component of the Earth radiative budget, C. R. Acad. Sci. Paris, 322, série II, 665–672, 1996. a
Clough, S. A. and Iacono, M. J.:
Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons, J. Geophys. Res.-Atmos., 100, 16519–16535, https://doi.org/10.1029/95JD01386, 1995. a, b
Clough, S. A., Iacono, M. J., and J.-L., M.:
Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor, J. Geophys. Res., 97, 15761–15785, https://doi.org/10.1029/92JD01419, 1992. a, b
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.:
Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a, b
Delahaye, T., Armante, R., Scott, N. A., Jacquinet-Husson, N., Chédin, A., Crépeau, L., Crevoisier, C., Douet, V., Perrin, A., Barbe, A., Boudon, V., Campargue, A., Coudert, L. H., Ebert, V., Flaud, J.-M., Gamache, R. R., Jacquemart, D., Jolly, A., Kwabia Tchana, F., Kyuberis, A., Li, G., Lyulin, O. M., Manceron, L., Mikhailenko, S., Moazzen-Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A., Perevalov, V. I., Richard, C., Starikova, E., Tashkun, S. A., Tyuterev, V. G., Vander Auwera, J., Vispoel, B., Yachmenev, A., and Yurchenko, S.:
The 2020 edition of the GEISA spectroscopic database, J. Molecul. Spectrosc., 380, 111510, https://doi.org/10.1016/j.jms.2021.111510, 2021. a
Dogniaux, M., Crevoisier, C., Armante, R., Capelle, V., Delahaye, T., Cassé, V., De Mazière, M., Deutscher, N. M., Feist, D. G., Garcia, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Pollard, D. F., Roehl, C. M., Shiomi, K., Strong, K., Té, Y., Velazco, V. A., and Warneke, T.:
The Adaptable 4A Inversion (5AI): description and first retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations, Atmos. Meas. Tech., 14, 4689–4706, https://doi.org/10.5194/amt-14-4689-2021, 2021. a
Dudhia, A.:
The Reference Forward Model (RFM), J. Quant. Spectrosc. Ra., 186, 243–253, https://doi.org/10.1016/j.jqsrt.2016.06.018, 2017. a, b
Edwards, J. M. and Slingo, A.:
Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model, Q. J. Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107, 1996. a
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.:
ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.:
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Feigelson, E. M., Fomin, B. A., Gorchakova, I. A., Rozanov, E. V., Timofeyev, Y. M., Trotsenko, A. N., and Schwarzkopf, M. D.:
Calculation of longwave radiation fluxes in atmospheres, J. Geophys. Res.-Atmos., 96, 8985–9001, https://doi.org/10.1029/91JD00449, 1991. a
Hartmann, D. L., Ramanathan, V., Berroir, A., and Hunt, G. E.:
Earth Radiation Budget data and climate research, Rev. Geophys., 24, 439–468, https://doi.org/10.1029/RG024i002p00439, 1986. a
Huang, Y., Ramaswamy, V., and Soden, B.:
An investigation of the sensitivity of the clear-sky outgoing longwave radiation to atmospheric temperature and water vapor, J. Geophys. Res.-Atmos., 112, D05104, https://doi.org/10.1029/2005JD006906, 2007. a
Jacquinet-Husson, N., Arié, E., Ballard, J., Barbe, A., Bjoraker, G., Bonnet, B., Brown, L. R., Camy-Peyret, C., Champion, J. P., Chédin, A., Chursin, A., Clerbaux, C., Duxbury, G., Flaud, J. M., Fourrié, N., Fayt, A., Graner, G., Gamache, R., Goldman, A., Golovko, V., Guelachvili, G., Hartmann, J. M., Hilico, J. C., Hillman, J., Lefèvre, G., Lellouch, E., Mikhaïlenko, S. N., Naumenko, O. V., Nemtchinov, V., Newnham, D. A., Nikitin, A., Orphal, J., Perrin, A., Reuter, D. C., Rinsland, C. P., Rosenmann, L., Rothman, L. S., Scott, N. A., Selby, J., Sinitsa, L. N., Sirota, J. M., Smith, A. M., Smith, K. M., Tyuterev, V. G., Tipping, R. H., Urban, S., Varanasi, P., and Weber, M.:
The 1997 Spectroscopic GEISA Databank, J. Quant. Spectrosc. Ra., 62, 205–254, https://doi.org/10.1016/S0022-4073(98)00111-3, 1999. a
Jacquinet-Husson, N., Armante, R., Scott, N. A., Chédin, A., Crépeau, L., Boutammine, C., Bouhdaoui, A., Crevoisier, C., Capelle, V., Boonne, C., Poulet-Crovisier, N., Barbe, A., Chris Benner, D., Boudon, V., Brown, L. R., Buldyreva, J., Campargue, A., Coudert, L. H., Devi, V. M., Down, M. J., Drouin, B. J., Fayt, A., Fittschen, C., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hill, C., Hodnebrog, Ø., Hu, S.-M., Jacquemart, D., Jolly, A., Jiménez, E., Lavrentieva, N. N., Liu, A.-W., Lodi, L., Lyulin, O. M., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A., Nielsen, C. J., Orphal, J., Perevalov, V. I., Perrin, A., Polovtseva, E., Predoi-Cross, A., Rotger, M., Ruth, A. A., Yu, S. S., Sung, K., Tashkun, S. A., Tennyson, J., Tyuterev, V. G., Vander Auwera, J., Voronin, B. A., and Makie, A.:
The 2015 edition of the GEISA spectroscopic database, J. Molecul. Spectrosc., 327, 31–72, https://doi.org/10.1016/j.jms.2016.06.007, 2016. a, b
Jeevanjee, N. and Fueglistaler, S.:
Simple Spectral Models for Atmospheric Radiative Cooling, J. Atmos. Sci., 77, 479–497, https://doi.org/10.1175/JAS-D-18-0347.1, 2020. a, b, c
Jeevanjee, N., Seeley, J. T., Paynter, D., and Fueglistaler, S.:
An Analytical Model for Spatially Varying Clear-Sky CO2 Forcing, J. Climate, 34, 9463–9480, https://doi.org/10.1175/JCLI-D-19-0756.1, 2021. a
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.:
The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018. a
Lamouroux, J., Régalia, L., Thomas, X., Vander Auwera, J., Gamache, R. R., and Hartmann, J.-M.:
CO2 line-mixing database and software update and its tests in the 2.1 µm and 4.3 µm regions, J. Quant. Spectrosc. Ra., 151, 88–96, https://doi.org/10.1016/j.jqsrt.2014.09.017, 2015. a, b
Liou, K. N.: An Introduction to Atmospheric Radiation (second edition), International Geophysics Series, vol. 84, Academic Press, London UK, December 2002. a
Luther, F. M., Ellingson, R. G., Fouquart, Y., Fels, S., Scott, N. A., and Wiscombe, W. J.:
Intercomparison of Radiation Codes in Climate Models (ICRCCM): longwave clear sky results., B. Am. Meteorol. Soc., 69, 40–48, https://doi.org/10.1175/1520-0477-69.1.40, 1988. a
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.:
Historical greenhouse gas concentrations for climate modelling (CMIP6), Geoscientific Model Development, 10, 2057–2116, https://doi.org/10.3929/ethz-b-000191830, 2017. a, b
Mlawer, E. and Pernak, R.:
AER LBLRTM model output prepared for CMIP6 RFMIP rad-irf. Version 20190517, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.2528, 2019. a
Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J., and Tobin, D. C.:
Development and recent evaluation of the MT_CKD model of continuum absorption, Philos. T. R. Soc. A, 370, 2520–2556, https://doi.org/10.1098/rsta.2011.0295, 2012. a
Mlynczak, M. G., Daniels, T. S., Kratz, D. P., Feldman, D. R., Collins, W. D., Mlawer, E. J., Alvarado, M. J., Lawler, J. E., Anderson, L. W., Fahey, D. W., Hunt, L. A., and Mast, J. C.:
The spectroscopic foundation of radiative forcing of climate by carbon dioxide, Geophys. Res. Lett., 43, 5318–5325, https://doi.org/10.1002/2016GL068837, 2016. a
Paynter, D. J., Menzel, R., Freidenreich, S., Schwarzkopf, D. M., Jones, A., Wright, G., and Rand, K.:
NOAA-GFDL GFDL-GRTCODE model output prepared for CMIP6 RFMIP rad-irf. Version 20180701, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.10708, 2018a. a
Paynter, D. J., Menzel, R., Freidenreich, S., Schwarzkopf, D. M., Jones, A., Wright, G., and Rand, K.:
NOAA-GFDL GFDL-RFM-DISORT model output prepared for CMIP6 RFMIP rad-irf. Version 20180701, WCRP [data set], https://doi.org/10.22033/ESGF/CMIP6.10709, 2018b. a
Pincus, R.:
input4MIPs.CMIP6.RFMIP.UColorado.UColorado-RFMIP-1-2. Version: 20190401, WCRP [data set], https://doi.org/10.22033/ESGF/input4MIPs.10421, 2019. a
Pincus, R., Forster, P. M., and Stevens, B.:
The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6, Geosci. Model Dev., 9, 3447–3460, https://doi.org/10.5194/gmd-9-3447-2016, 2016. a, b, c, d
Pincus, R., Buehler, S. A., Brath, M., Crevoisier, C., Jamil, O., Evans, K. F., Manners, J., Menzel, R. L., Mlawer, E. J., Paynter, D., Pernak, R. L., and Tellier, Y.:
Benchmark Calculations of Radiative Forcing by Greenhouse Gases, J. Geophys. Res.-Atmos., 125, https://doi.org/10.1029/2020jd033483, 2020. a, b, c, d, e
Ridgway, W. L., Harshvardhan, and Arking, A.:
Computation of atmospheric cooling rates by exact and approximate methods, J. Geophys. Res.-Atmos., 96, 8969–8984, https://doi.org/10.1029/90JD01858, 1991. a, b, c
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G.:
The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 130, 4–50, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013. a
Schuster, A.:
Radiation Through a Foggy Atmosphere, Astrophys. J., 21, 1, https://doi.org/10.1086/141186, 1905. a
Scott, N. A.:
A direct method of computation of the transmission function of an inhomogeneous gaseous medium – I: Description of the method, J. Quant. Spectrosc. Ra., 14, 691–704, https://doi.org/10.1016/0022-4073(74)90116-2, 1974. a
Scott, N. A. and Chedin, A.:
A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas, J. Appl. Meteorol., 20, 802–812, https://doi.org/10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2, 1981. a, b, c
Stamnes, K., Thomas, G. E., and Stamnes, J. J.:
Radiative Transfer in the Atmosphere and Ocean, 2 edn., https://doi.org/10.1017/9781316148549, Cambridge University Press, 2017. a, b
Tellier, Y., Crevoisier, C., Armante, R., Dufresne, J.-L., and Meilhac, N.:
4A-Flux v1.0: the radiative flux and heating rate module integrated into 4A/OP v1.5 radiative transfer code, Zenodo [code], https://doi.org/10.5281/zenodo.5667737, 2021. a
Tournier, B., Armante, R., and Scott, N. A.:
Stransac-93, 4A-93. Développement et validation des nouvelles versions des codes de transfert radiatif pour application au projet IASI, Internal Rep. LMD, No. 201, LMD/CNRS, Ecole Polytechnique, Palaiseau, France, 1995. a
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.:
Earth's Global Energy Budget, B. Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.:
The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
a
Wiscombe, W. J.:
Extension of the doubling method to inhomogeneous sources, J. Quant. Spectrosc. Ra., 16, 477–489, https://doi.org/10.1016/0022-4073(76)90083-2, 1976. a
Short summary
Accurate radiative transfer models (RTMs) are required to improve climate model simulations. We describe the module named 4A-Flux, which is implemented into 4A/OP RTM, aimed at calculating spectral longwave radiative fluxes given a description of the surface, atmosphere, and spectroscopy. In Pincus et al. (2020), 4A-Flux has shown good agreement with state-of-the-art RTMs. Here, it is applied to perform sensitivity studies and will be used to improve the understanding of radiative flux modeling.
Accurate radiative transfer models (RTMs) are required to improve climate model simulations. We...