Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3845-2022
https://doi.org/10.5194/gmd-15-3845-2022
Development and technical paper
 | 
12 May 2022
Development and technical paper |  | 12 May 2022

Modeling the high-mercury wet deposition in the southeastern US with WRF-GC-Hg v1.0

Xiaotian Xu, Xu Feng, Haipeng Lin, Peng Zhang, Shaojian Huang, Zhengcheng Song, Yiming Peng, Tzung-May Fu, and Yanxu Zhang

Data sets

WRF-GC-Hg v1.0 X. Xu and Y. Zhang https://doi.org/10.5281/zenodo.6366777

Model code and software

WRF-GC v1.0 H. Lin, X. Feng, T.-M. Fu, H. Tian, Y. Ma, L. Zhang, D. J. Jacob, R. M. Yantosca, M. P. Sulprizio, E. W. Lundgren, J. Zhuang, Q. Zhang, X. Lu, L. Zhang, L. Shen, J. Guo, S. D. Eastham, and C. A. Keller https://doi.org/10.5281/zenodo.3550330

Download
Short summary
Mercury is one of the most toxic pollutants in the environment, and wet deposition is a major process for atmospheric mercury to enter, causing ecological and human health risks. High-mercury wet deposition in the southeastern US has been a problem for many years. Here we employed a newly developed high-resolution WRF-GC model with the capability to simulate mercury to study this problem. We conclude that deep convection caused enhanced mercury wet deposition in the southeastern US.