Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3537-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3537-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A derivative-free optimisation method for global ocean biogeochemical models
Sophy Oliver
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
Coralia Cartis
Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
Iris Kriest
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Simon F. B Tett
School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
Samar Khatiwala
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
Related authors
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Haichao Guo, Wolfgang Koeve, Andreas Oschlies, Yan-Chun He, Tronje Peer Kemena, Lennart Gerke, and Iris Kriest
Ocean Sci., 21, 1167–1182, https://doi.org/10.5194/os-21-1167-2025, https://doi.org/10.5194/os-21-1167-2025, 2025
Short summary
Short summary
We evaluated the effectiveness of the inverse Gaussian transit time distribution (IG-TTD) with respect to estimating the mean state and temporal changes of seawater age, defined as the duration since water last had contact with the atmosphere, within the tropical thermocline. Results suggest that the IG-TTD underestimates seawater age. Moreover, the IG-TTD constrained by a single tracer gives spurious trends in water age. Incorporating an additional tracer improves IG-TTD's accuracy for estimating temporal change of seawater age.
Wenjun Liang, Simon Frederick Barnard Tett, Lijuan Li, Coralia Cartis, Danya Xu, and Wenjie Dong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3770, https://doi.org/10.5194/egusphere-2024-3770, 2025
Short summary
Short summary
Predicting climate accurately is challenging due to uncertainties in model parameters. This study introduced an automated approach to refine key parameters, focusing on processes like cloud formation and atmospheric circulation. Testing adjustments to 10 and 20 parameters improved the model’s accuracy and stability, reducing errors in long-term simulations. This faster, more reliable method enhances climate models, supporting better future predictions and aiding global decision-making.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Cited articles
Cartis, C., Roberts, L., and Sheridan-Methven, O.: Escaping local minima with
local derivative-free methods: a numerical investigation, Optimization, 0, 1–31,
https://doi.org/10.1080/02331934.2021.1883015, 2021. a, b
Chen, B. and Smith, S. L.: CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical transport applied to the North Pacific, Geosci. Model Dev., 11, 467–495, https://doi.org/10.5194/gmd-11-467-2018, 2018. a
Conn, A. R., Scheinberg, K., and Vicente, L. N.: Introduction to
Derivative-Free Optimization, Society for Industrial and Applied Mathematics (SIAM),
https://doi.org/10.1137/1.9780898718768, 2009. a
DeVries, T.: The oceanic anthropogenic CO2 sink: Storage, air‐sea fluxes,
and transports over the industrial era, Global Biogeochem. Cycles, 28,
631–647, https://doi.org/10.1002/2013GB004739, 2014. a
Dutkiewicz, S., Follows, M. J., and Parekh, P.: Interactions of the iron and
phosphorus cycles: A three-dimensional model study, Global Biogeochem.
Cycles, 19, 1–22, https://doi.org/10.1029/2004GB002342, 2005. a
Garcia, H., Weathers, K., Paver, C., Smolyar, I., Boyer, T., Locarnini, R.,
Zweng, M., Mishonov, A., Baranova, O., Seidov, D., and Reagan, J.: World
Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization,
and Dissolved Oxygen Saturation, edited by: Mishonov, A., NOAA Atlas NESDIS, 83, 38 pp., https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access: 5 May 2022), 2018a. a, b, c
Garcia, H., Weathers, K., Paver, C., Smolyar, I., Boyer, T., Locarnini, R.,
Zweng, M., Mishonov, A., Baranova, O., Seidov, D., and Reagan, J.: World
Ocean Atlas 2018. Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate
and nitrate+nitrite, silicate), edited by: Mishonov, A., NOAA Atlas
NESDIS 84, 35 pp., https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access: 5 May 2022), 2018b. a, b, c
Griewank, A. and Walther, A.: Evaluating derivatives. Principles and
techniques of algorithmic differentiation., Society for Industrial and
Applied Mathematics, 2nd edn., https://doi.org/10.1137/1.9780898717761, 2008. a
Hartley, H. O.: The Modified Gauss-Newton Method for the Fitting of Non-Linear
Regression Functions by Least Squares, Technometrics, 3, 269–280, 1961. a
Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J., and Beaulieu, C.: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621–640, https://doi.org/10.5194/bg-7-621-2010, 2010. a, b
Khatiwala, S.: A computational framework for simulation of biogeochemical
tracers in the ocean, Global Biogeochem. Cycles, 21, 1–14,
https://doi.org/10.1029/2007GB002923, 2007. a
Khatiwala, S.: samarkhatiwala/tmm: Version 2.0 of the Transport Matrix Method software (v2.0), Zenodo [code], https://doi.org/10.5281/zenodo.1246300, 2018. a, b
Khatiwala, S.: MITgcm 2.8deg Transport Matrix configuration, Zenodo [data set], https://doi.org/10.5281/zenodo.5517238, 2021. a
Khatiwala, S., Visbeck, M., and Cane, M. A.: Accelerated simulation of passive
tracers in ocean circulation models, Ocean Model., 9, 51–69,
https://doi.org/10.1016/j.ocemod.2004.04.002, 2005. a, b
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349,
https://doi.org/10.1038/nature08526, 2009. a
Khatiwala, S., Primeau, F., and Holzer, M.: Ventilation of the deep ocean
constrained with tracer observations and implications for radiocarbon
estimates of ideal mean age, Earth Planet. Sc. Lett., 325–326,
116–125, https://doi.org/10.1016/j.epsl.2012.01.038, 2012. a
Khatiwala, S., Palmieri, J., Yool, A., Oliver, S., and Martin, A.: The
Transport Matrix Method interface to the MEDUSA 2.0 global ocean
biogeochemical model, in preparation,
2022.
Kidston, M., Matear, R., and Baird, M. E.: Phytoplankton growth in the
Australian sector of the Southern Ocean, examined by optimising ecosystem
model parameters, J. Marine Syst., 128, 123–137,
https://doi.org/10.1016/j.jmarsys.2013.04.011, 2013. a
Kriest, I.: Calibration of a simple and a complex model of global marine biogeochemistry, Biogeosciences, 14, 4965–4984, https://doi.org/10.5194/bg-14-4965-2017, 2017. a
Kriest, I. and Oschlies, A.: Swept under the carpet: organic matter burial decreases global ocean biogeochemical model sensitivity to remineralization length scale, Biogeosciences, 10, 8401–8422, https://doi.org/10.5194/bg-10-8401-2013, 2013. a
Kriest, I. and Oschlies, A.: MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes, Geosci. Model Dev., 8, 2929–2957, https://doi.org/10.5194/gmd-8-2929-2015, 2015. a, b
Kriest, I., Khatiwala, S., and Oschlies, A.: Towards an assessment of simple
global marine biogeochemical models of different complexity, Prog.
Oceanogr., 86, 337–360, https://doi.org/10.1016/j.pocean.2010.05.002, 2010. a
Kriest, I., Oschlies, A., and Khatiwala, S.: Sensitivity analysis of simple
global marine biogeochemical models, Global Biogeochem. Cycles, 26,
1–15, https://doi.org/10.1029/2011GB004072, 2012. a
Kriest, I., Kähler, P., Koeve, W., Kvale, K., Sauerland, V., and Oschlies, A.: One size fits all? Calibrating an ocean biogeochemistry model for different circulations, Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, 2020. a, b
Kwon, E. Y. and Primeau, F.: Optimization and sensitivity study of a
biogeochemistry ocean model using an implicit solver and in situ phosphate
data, Global Biogeochem. Cycles, 20, 1–13, https://doi.org/10.1029/2005GB002631,
2006. a, b
Kwon, E. Y. and Primeau, F.: Optimization and sensitivity of a global
biogeochemistry ocean model using combined in situ DIC, alkalinity, and
phosphate data, J. Geophys. Res.-Oceans, 113, 1–23,
https://doi.org/10.1029/2007JC004520, 2008. a
Li, X. and Primeau, F. W.: A fast Newton-Krylov solver for seasonally varying
global ocean biogeochemistry models, Ocean Model., 23, 13–20,
https://doi.org/10.1016/j.ocemod.2008.03.001, 2008. a
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible navier stokes model for studies of the ocean on
parallel computers, J. Geophys. Res., 102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997. a
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon
cycling in the northeast Pacific, Deep-Sea Res. Pt. I, 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987. a
Melbourne-Thomas, J., Wotherspoon, S., Corney, S., Molina-Balari, E., Marini,
O., and Constable, A.: Optimal control and system limitation in a Southern
Ocean ecosystem model, Deep-Sea Res. Pt. II, 114, 64–73, https://doi.org/10.1016/j.dsr2.2013.02.017, 2015. a
Niemeyer, D., Kriest, I., and Oschlies, A.: The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model, Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019, 2019. a, b
Nocedal, J. and Wright, S. J. (Eds.): Numerical Optimization, Springer, 2nd edn., ISBN : 978-0-387-22742-9,
2006. a
Oliver, S. and Tett, S.: OPTCLIMSO Optimisation Framework (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.5517610, 2021. a
Oliver, S., Cartis, C., Kriest, I., Tett, S., and Khatiwala, S.: Code and data archive to accompany “A derivative-free optimisation method for global ocean biogeochemical models”, Oliver et al. 2021 (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.5517626, 2021. a
Richards, A.: University of Oxford Advanced Research Computing, Zenodo, https://doi.org/10.5281/zenodo.22558, 2015. a
Sauerland, V., Löptien, U., Leonhard, C., Oschlies, A., and Srivastav, A.: Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0), Geosci. Model Dev., 11, 1181–1198, https://doi.org/10.5194/gmd-11-1181-2018, 2018. a
Sauerland, V., Kriest, I., Oschlies, A., and Srivastav, A.: Multiobjective
Calibration of a Global Biogeochemical Ocean Model Against Nutrients , Oxygen, and Oxygen Minimum Zones, J. Adv. Model. Earth Sy.,
11, 1285–1308, https://doi.org/10.1029/2018MS001510, 2019. a, b
Spitz, Y. H., Moisan, J. R., Abbott, M. R., and Richman, J. G.: Data
assimilation and a pelagic ecosystem model: Parameterization using time
series observations, J. Marine Syst., 16, 51–68,
https://doi.org/10.1016/S0924-7963(97)00099-7, 1998. a
Ward, B. A., Friedrichs, M. A. M., Anderson, T. R., and Oschlies, A.:
Parameter optimisation techniques and the problem of underdetermination in
marine biogeochemical models, J. Marine Syst., 81, 34–43,
https://doi.org/10.1016/j.jmarsys.2009.12.005, 2010. a
Weber, T., Cram, J. A., Leung, S. W., DeVries, T., and Deutsch, C.: Deep ocean
nutrients imply large latitudinal variation in particle transfer efficiency,
P. Natl. Acad. Sci., 113, 8606–8611,
https://doi.org/10.1073/pnas.1604414113, 2016. a, b
Wunsch, C. and Heimbach, P.: How long to oceanic tracer and proxy
equilibrium?, Quaternary Sci. Rev., 27, 637–651,
https://doi.org/10.1016/j.quascirev.2008.01.006, 2008. a
Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-derived data
into a one-dimensional lower trophic level marine ecosystemmodel, J.
Geophys. Res.-Oceans, 119, 2691–2712, https://doi.org/10.1002/2013JC009433,
2014. a
Yool, A., Popova, E. E., and Anderson, T. R.: Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain, Geosci. Model Dev., 4, 381–417, https://doi.org/10.5194/gmd-4-381-2011, 2011. a
Yool, A., Popova, E. E., and Anderson, T. R.: MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies, Geosci. Model Dev., 6, 1767–1811, https://doi.org/10.5194/gmd-6-1767-2013, 2013.
a
Zhao, L., Wei, H., Xu, Y., and Feng, S.: An adjoint data assimilation approach
for estimating parameters in a three-dimensional ecosystem model, Ecol.
Model., 186, 235–250, https://doi.org/10.1016/j.ecolmodel.2005.01.017, 2005. a
Short summary
Global ocean biogeochemical models are used within Earth system models which are used to predict future climate change. However, these are very computationally expensive to run and therefore are rarely routinely improved or calibrated to real oceanic observations. Here we apply a new, fast optimisation algorithm to one such model and show that it can calibrate the model much faster than previously managed, therefore encouraging further ocean biogeochemical model improvements.
Global ocean biogeochemical models are used within Earth system models which are used to predict...