Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2325-2022
https://doi.org/10.5194/gmd-15-2325-2022
Model description paper
 | 
18 Mar 2022
Model description paper |  | 18 Mar 2022

A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)

Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada

Related authors

Exploring effects of variation in plant root traits on carbon emissions from estuarine marshes
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756,https://doi.org/10.5194/egusphere-2024-1756, 2024
Short summary
Exploring environmental and physiological drivers of the annual carbon budget of biocrusts from various climatic zones with a mechanistic data-driven model
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023,https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Warming accelerates belowground litter turnover in salt marshes – insights from a Tea Bag Index study
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023,https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Plant genotype controls wetland soil microbial functioning in response to sea-level rise
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021,https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021,https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary

Related subject area

Biogeosciences
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary
Estimation of above- and below-ground ecosystem parameters for DVM-DOS-TEM v0.7.0 using MADS v1.7.3
Elchin E. Jafarov, Hélène Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev., 18, 3857–3875, https://doi.org/10.5194/gmd-18-3857-2025,https://doi.org/10.5194/gmd-18-3857-2025, 2025
Short summary
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary

Cited articles

Aghamiri, R. R. and Schwartzman, D. W.: Weathering rates of bedrock by lichens: a mini watershed study, Chem. Geol., 188, 249–259, 2002. a
Algeo, T. J. and Scheckler, S. E.: Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events, Philos. T. Roy. Soc. B, 353, 113–130, 1998. a, b, c
Algeo, T. J. and Scheckler, S. E.: Land plant evolution and weathering rate changes in the Devonian, J. Earth Sci., 21, 75–78, 2010. a
Andrews, J. A. and Schlesinger, W. H.: Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment, Global Biogeochem. Cy., 15, 149–162, 2001. a
Arens, S. and Kleidon, A.: Eco-hydrological versus supply-limited weathering regimes and the potential for biotic enhancement of weathering at the global scale, Appl. Geochem., 26, S274–S278, 2011. a, b, c, d
Download
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Share