Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2325-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2325-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Institute of Plant Science and Microbiology, Ecological Modeling, Universität Hamburg,
Ohnhorststr. 18, 22609 Hamburg, Germany
Susanne K. M. Arens
GLOBE Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen,
Denmark
Kai Jensen
Institute of Plant Science and Microbiology, Applied Plant Ecology, Universität Hamburg,
Ohnhorststr. 18, 22609 Hamburg, Germany
Tais W. Dahl
GLOBE Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen,
Denmark
Philipp Porada
Institute of Plant Science and Microbiology, Ecological Modeling, Universität Hamburg,
Ohnhorststr. 18, 22609 Hamburg, Germany
Related authors
No articles found.
Youssef Saadaoui, Christian Beer, Peter Mueller, Friederike Neiske, Joscha N. Becker, Annette Eschenbach, and Philipp Porada
EGUsphere, https://doi.org/10.5194/egusphere-2024-1756, https://doi.org/10.5194/egusphere-2024-1756, 2024
Short summary
Short summary
Estuarine marshes are vital for capturing carbon and benefiting the climate. Our research explored how plant-microbe interactions affect carbon cycling, focusing on traits like root oxygen loss. Using a model, we found that accounting for these trait variations significantly changes carbon balance estimates. This suggests that including plant diversity in ecosystem models improves predictions about carbon dynamics in estuarine marshes, highlighting their importance in climate regulation.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Hao Tang, Stefanie Nolte, Kai Jensen, Roy Rich, Julian Mittmann-Goetsch, and Peter Mueller
Biogeosciences, 20, 1925–1935, https://doi.org/10.5194/bg-20-1925-2023, https://doi.org/10.5194/bg-20-1925-2023, 2023
Short summary
Short summary
In order to gain the first mechanistic insight into warming effects and litter breakdown dynamics across whole-soil profiles, we used a unique field warming experiment and standardized plant litter to investigate the degree to which rising soil temperatures can accelerate belowground litter breakdown in coastal wetland ecosystems. We found warming strongly increases the initial rate of labile litter decomposition but has less consistent effects on the stabilization of this material.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Cited articles
Aghamiri, R. R. and Schwartzman, D. W.: Weathering rates of bedrock by lichens:
a mini watershed study, Chem. Geol., 188, 249–259, 2002. a
Algeo, T. J. and Scheckler, S. E.: Land plant evolution and weathering rate
changes in the Devonian, J. Earth Sci., 21, 75–78, 2010. a
Andrews, J. A. and Schlesinger, W. H.: Soil CO2 dynamics, acidification, and
chemical weathering in a temperate forest with experimental CO2 enrichment,
Global Biogeochem. Cy., 15, 149–162, 2001. a
Atkin, O. K., Bruhn, D., Hurry, V. M., and Tjoelker, M. G.: Evans Review No. 2:
The hot and the cold: unravelling the variable response of plant respiration
to temperature, Funct. Plant Biol., 32, 87–105, 2005. a
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P.,
Speck, T., and Stein, W. E.: Early evolution of land plants: phylogeny,
physiology, and ecology of the primary terrestrial radiation, Annu. Rev.
Ecol. Syst., 29, 263–292, 1998. a
Bergman, N. M., Lenton, T. M., and Watson, A. J.: COPSE: a new model of
biogeochemical cycling over Phanerozoic time, Am. J. Sci.,
304, 397–437, 2004. a
Berner, E., Berner, R., and Moulton, K.: Plants and mineral weathering: present and past, Treatise on Geochemistry, 5, 169–188, https://doi.org/10.1016/B0-08-043751-6/05175-6, 2003. a
Berner, R. A.: Atmospheric carbon dioxide levels over Phanerozoic time,
Science, 249, 1382–1386, 1990. a
Berner, R. A.: Weathering, plants, and the long-term carbon cycle, Geochim.
Cosmochim. Ac., 56, 3225–3231, 1992. a
Bluth, G. J. and Kump, L. R.: Lithologic and climatologic controls of river
chemistry, Geochim. Cosmochim. Ac., 58, 2341–2359, 1994. a
Boyce, C. K. and Lee, J.-E.: Plant evolution and climate over geological
timescales, Annu. Rev. Earth Pl. Sc., 45, 61–87, 2017. a
Carriquí, M., Roig-Oliver, M., Brodribb, T. J., Coopman, R., Gill, W.,
Mark, K., Niinemets, Ü., Perera-Castro, A. V., Ribas-Carbó, M., Sack,
L., and Tosens, T.: Anatomical constraints to nonstomatal diffusion conductance and
photosynthesis in lycophytes and bryophytes, New Phytol., 222,
1256–1270, 2019. a
Chang, Y. and Graham, S. W.: Inferring the higher-order phylogeny of mosses
(Bryophyta) and relatives using a large, multigene plastid data set, Am.
J. Bot., 98, 839–849, 2011. a
Chater, C., Kamisugi, Y., Movahedi, M., Fleming, A., Cuming, A. C., Gray,
J. E., and Beerling, D. J.: Regulatory mechanism controlling stomatal
behavior conserved across 400 million years of land plant evolution, Curr.
Biol., 21, 1025–1029, 2011. a
Cochran, M. F. and Berner, R. A.: Enhancement of silicate weathering rates by
vascular land plants: quantifying the effect, Chem. Geol., 107,
213–215, 1993. a
Colbourn, G., Ridgwell, A., and Lenton, T.: The time scale of the silicate
weathering negative feedback on atmospheric CO2, Global Biogeochem.
Cy., 29, 583–596, 2015. a
Dahl, T. W. and Arens, S. K.: The impacts of land plant evolution on Earth's
climate and oxygenation state – An interdisciplinary review, Chem. Geol.,
547, 119665, https://doi.org/10.1016/j.chemgeo.2020.119665, 2020. a
Drever, J. I.: The effect of land plants on weathering rates of silicate
minerals, Geochim. Cosmochim. Ac., 58, 2325–2332, 1994. a
Elick, J. M., Driese, S. G., and Mora, C. I.: Very large plant and root traces from the Early to Middle Devonian: Implications for early
terrestrial ecosystems and atmospheric p(CO2), Geology, 26, 143–146, 1998. a
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth for
temperate agricultural crops, Field Crop. Res., 189, 68–74, 2016. a
Farquhar, G. D. and Von Caemmerer, S.: Modelling of photosynthetic response to environmental
conditions, in: Physiological plant ecology, Vol. 12 B: Water relations and photosynthetic
productivity, edited by: Lange, O. L., Nobel, P. S., Osmond, C. B., Ziegler, H., Springer-Verlag, Berlin
Heidelberg New York, 549–587, https://doi.org/10.1007/978-3-642-68150-9_17, 1982. a, b
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat.
Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017. a
Gensel, P. G., Kotyk, M. E., and Basinger, J. F.: Morphology of Above-and Below-Ground
Structures in Early Devonian (Pragian–Emsian) Plants, Plants invade the land: evolutionary
and environmental perspectives, edited by: Gensel, P. G. and Edwards, D., Columbia University Press, 83–102, https://doi.org/10.7312/gens11160-006, 2001. a
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019. a, b, c, d
Gibling, M., Davies, N., Falcon-Lang, H., Bashforth, A. R., DiMichele, W. A.,
Rygel, M., and Ielpi, A.: Palaeozoic co-evolution of rivers and vegetation: a
synthesis of current knowledge, P. Geologist. Assoc.,
125, 524–533, 2014. a
Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D.,
Kolassa, J., Lee, J.-E., and Gentine, P.: Regionally strong feedbacks between
the atmosphere and terrestrial biosphere, Nat. Geosci., 10, 410–414,
2017. a
Halder, S. and Porada, P.: A dynamic local scale vegetation model for lycopsids (LYCOm), Zenodo [code], https://doi.org/10.5281/zenodo.4960947, 2021. a
Hetherington, A. J. and Dolan, L.: The evolution of lycopsid rooting
structures: conservatism and disparity, New Phytol., 215, 538–544, 2017. a
Hetherington, A. J., Bridson, S. L., Jones, A. L., Hass, H., Kerp, H.,
and Dolan, L.: An evidence-based 3D reconstruction of Asteroxylon
mackiei the most complex plant preserved from the Rhynie
chert, eLife, 10, e69447, https://doi.org/10.7554/eLife.69447, 2021. a
Hikosaka, K. and Hirose, T.: Leaf angle as a strategy for light competition:
optimal and evolutionarily stable light-extinction coefficient within a leaf
canopy, Ecoscience, 4, 501–507, 1997. a
Hilley, G. E. and Porder, S.: A framework for predicting global silicate
weathering and CO2 drawdown rates over geologic time-scales, P. Natl. Acad. Sci. USA, 105, 16855–16859, 2008. a
Ibarra, D. E., Rugenstein, J. K. C., Bachan, A., Baresch, A., Lau, K. V.,
Thomas, D. L., Lee, J.-E., Boyce, C. K., and Chamberlain, C. P.: Modeling the
consequences of land plant evolution on silicate weathering, Am. J. Sci., 319, 1–43, https://doi.org/10.2475/01.2019.01, 2019. a, b, c
Jabro, J. D., Sainju, U. M., Stevens, W. B., and Evans, R. G.: Estimation of
CO2 diffusion coefficient at 0–10 cm depth in undisturbed and tilled soils,
Arch. Agron. Soil Sci., 58, 1–9, https://doi.org/10.1080/03650340.2010.506482, 2012. a
June, T., Evans, J. R., and Farquhar, G. D.: A simple new equation for the
reversible temperature dependence of photosynthetic electron transport: a
study on soybean leaf, Funct. Plant Biol., 31, 275–283, 2004. a
Kelly, E. F., Chadwick, O. A., and Hilinski, T. E.: The effect of plants on
mineral weathering, Biogeochemistry, 42, 21–53, 1998. a
Kenrick, P. and Crane, P. R.: The origin and early evolution of plants on land,
Nature, 389, 33–39, 1997. a
Kenrick, P. and Strullu-Derrien, C.: The origin and early evolution of roots,
Plant Physiol., 166, 570–580, 2014. a
Kenrick, P., Wellman, C. H., Schneider, H., and Edgecombe, G. D.: A timeline for terrestrialization:
consequences for the carbon cycle in the Palaeozoic, Philos. T. R.
Soc. B., 367, 519–536, https://doi.org/10.1098/rstb.2011.0271, 2012. a
Kotyk, M. E., Basinger, J. F., Gensel, P. G., and de Freitas, T. A.:
Morphologically complex plant macrofossils from the Late Silurian of Arctic
Canada, Am. J. Bot., 89, 1004–1013, 2002. a
Lawson, T., von Caemmerer, S., and Baroli, I.: Photosynthesis and
stomatal behaviour, in: Progress in botany, edited by: Lüttge, U. E., Beyschlag, W., Büdel, B., Francis, D.,
Springer, Berlin, 265–304, https://doi.org/10.1007/978-3-642-13145-5_11, 2010. a
Lee, J.-E. and Boyce, K.: Impact of the hydraulic capacity of plants on water
and carbon fluxes in tropical South America, J. Geophys. Res.-Atmos., 115, D23123, https://doi.org/10.1029/2010JD014568, 2010. a
Le Hir, G., Donnadieu, Y., Goddéris, Y., Meyer-Berthaud, B., Ramstein, G.,
and Blakey, R. C.: The climate change caused by the land plant invasion in
the Devonian, Earth Planet. Sc. Lett., 310, 203–212, 2011. a
Maher, K.: The role of fluid residence time and topographic scales in
determining chemical fluxes from landscapes, Earth Planet. Sc.
Lett., 312, 48–58, 2011. a
Maher, K. and Chamberlain, C.: Hydrologic regulation of chemical weathering and
the geologic carbon cycle, Science, 343, 1502–1504, 2014. a
Matsunaga, K. K. and Tomescu, A. M.: Root evolution at the base of the
lycophyte clade: insights from an Early Devonian lycophyte, Ann. Bot.-London,
117, 585–598, https://doi.org/10.1093/aob/mcw006, 2016. a, b, c, d
McAdam, S. A. and Brodribb, T. J.: Ancestral stomatal control results in a
canalization of fern and lycophyte adaptation to drought, New Phytol.,
198, 429–441, 2013. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 42, 55–61, 2000. a
Medlyn, B., Loustau, D., and Delzon, S.: Temperature response of parameters of
a biochemically based model of photosynthesis. I. Seasonal changes in mature
maritime pine (Pinus pinaster Ait.), Plant Cell Environ., 25,
1155–1165, https://doi.org/10.1046/j.1365-3040.2002.00890.x, 2002. a, b
Montanez, I. P.: Modern soil system constraints on reconstructing deep-time
atmospheric CO2, Geochim. Cosmochim. Ac., 101, 57–75, 2013. a
Monteith, J.: Evaporation and surface temperature, Q. J.
Roy. Meteor. Soc., 107, 1–27, https://doi.org/10.1002/qj.49710745102, 1981. a
Morris, J. L., Puttick, M. N., Clark, J. W., Edwards, D., Kenrick, P., Pressel, S., Wellman, C. H., Yang, Z., Schneider, H., and Donoghue, P. C. J.: The timescale of
early land plant evolution, P. Natl. Acad. Sci. USA, 115, E2274–E2283, https://doi.org/10.1073/pnas.1719588115, 2018. a
Moulton, K. L., West, J., and Berner, R. A.: Solute flux and mineral mass
balance approaches to the quantification of plant effects on silicate
weathering, Am. J. Sci., 300, 539–570, 2000. a
Otto-Bliesner, B. L., Brady, E. C., Zhao, A., Brierley, C. M., Axford, Y., Capron, E., Govin, A., Hoffman, J. S., Isaacs, E., Kageyama, M., Scussolini, P., Tzedakis, P. C., Williams, C. J. R., Wolff, E., Abe-Ouchi, A., Braconnot, P., Ramos Buarque, S., Cao, J., de Vernal, A., Guarino, M. V., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P. A., Nisancioglu, K. H., O'ishi, R., Salas y Mélia, D., Shi, X., Sicard, M., Sime, L., Stepanek, C., Tomas, R., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., and Zheng, W.: Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, 2021. a
Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., and Kleidon, A.: The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs, Biogeosciences, 10, 4137–4177, https://doi.org/10.5194/bg-10-4137-2013, 2013. a
Petersen, K. B. and Burd, M.: The adaptive value of heterospory: Evidence from
Selaginella, Evolution, 72, 1080–1091, 2018. a
Porada, P., Weber, B., Elbert, W., Pöschl, U., and Kleidon, A.: Estimating global carbon uptake by lichens and bryophytes with a process-based model, Biogeosciences, 10, 6989–7033, https://doi.org/10.5194/bg-10-6989-2013, 2013. a, b, c, d
Porada, P., Lenton, T., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., Beer,
C., Pöschl, U., and Kleidon, A.: High potential for weathering and
climate effects of non-vascular vegetation in the Late Ordovician, Nat.
Commun., 7, 1–13, https://doi.org/10.1038/ncomms12113, 2016. a, b
Proctor M. C.: The diversification of bryophytes and vascular plants in evolving terrestrial
environments, in: Photosynthesis in bryophytes and early land plants, edited by: Hanson, D. T. and Rice, S. K.,
Springer, Dordrecht, 59–77, 2014. a
Qiu, Y.-L., Li, L., Wang, B., Chen, Z., Knoop, V., Groth-Malonek, M.,
Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa,
C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., Quandt, D., and Davis C. C.: The deepest divergences
in land plants inferred from phylogenomic evidence, P.
Natl. Acad. Sci. USA, 103, 15511–15516, https://doi.org/10.1073/pnas.0603335103, 2006. a
Quirk, J., Leake, J. R., Johnson, D. A., Taylor, L. L., Saccone, L., and
Beerling, D. J.: Constraining the role of early land plants in Palaeozoic
weathering and global cooling, P. Roy. Soc. B-Biol.
Sci., 282, 20151115, https://doi.org/10.1098/rspb.2015.1115, 2015. a
Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N. M., Lindsay,
K., Lee, Y. H., Nevison, C. D., Doney, S. C., Bonan, G., Stöckli, R.,
Covey, C., Running, S. W., and Fung, I. Y.: Systematic assessment of terrestrial biogeochemistry in coupled
climate–carbon models, Global Change Biol., 15, 2462–2484, https://doi.org/10.1111/j.1365-2486.2009.01912.x, 2009. a
Raven, J. A.: Selection pressures on stomatal evolution, New Phytol., 153,
371–386, 2002. a
Ruszala, E. M., Beerling, D. J., Franks, P. J., Chater, C., Casson, S. A.,
Gray, J. E., and Hetherington, A. M.: Land plants acquired active stomatal
control early in their evolutionary history, Curr. Biol., 21, 1030–1035,
2011. a
Savir, Y., Noor, E., Milo, R., and Tlusty, T.: Cross-species analysis traces
adaptation of Rubisco toward optimality in a low-dimensional landscape,
P. Natl. Acad. Sci. USA, 107, 3475–3480, https://doi.org/10.1073/pnas.0911663107, 2010. a, b
Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D.,
Zhang, C., Collelo, G., and Bounoua, L.: A revised land surface
parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation,
J. Climate, 9, 676–705, 1996. a
Shukla, J. and Mintz, Y.: Influence of land-surface evapotranspiration on the
earth's climate, Science, 215, 1498–1501, 1982. a
Song, H., Wignall, P. B., Song, H., Dai, X., and Chu, D.: Seawater temperature
and dissolved oxygen over the past 500 million years, J. Earth
Sci., 30, 236–243, 2019. a
Spencer, V., Nemec Venza, Z., and Harrison, C. J.: What can lycophytes teach us
about plant evolution and development? Modern perspectives on an ancient
lineage, Evol. Dev., 23, 174–196, 2021. a
Stein, W. E., Berry, C. M., Hernick, L. V., and Mannolini, F.: Surprisingly
complex community discovered in the mid-Devonian fossil forest at Gilboa,
Nature, 483, 78–81, 2012. a
Taylor, E. L., Taylor, T. N., and Krings, M.: Paleobotany: the biology
and evolution of fossil plants, Academic Press, Burlington, NY, USA, MA, edn. 2, ISBN 978-0-12-373972-8, 2009. a
Thomas, B. A. and Watson, J.: A rediscovered 114-foot Lepidodendron from
Bolton, Lancashire, Geol. J., 11, 15–20, 1976. a
Tosens, T., Nishida, K., Gago, J., Coopman, R. E., Cabrera, H. M.,
Carriquí, M., Laanisto, L., Morales, L., Nadal, M., Rojas, R., Talts, E., Tomas, M., Hanba, Y.,
Niinemets, U., and Flexas, J.:
The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2
diffusion as a key trait, New Phytol., 209, 1576–1590, 2016. a, b, c, d, e
Valdespino, I. A.: Two New Species and a New Record of Selaginella
(Selaginellaceae) from Bolivia, Novon, 24, 96–105, https://doi.org/10.3417/2011022,
2015a. a
Valdespino, I. A.: Two new species and a new record of Selaginella
(Selaginellaceae) from Bolivia, Novon,
24, 96–105, 2015b. a
Vanderwel, M. C., Slot, M., Lichstein, J. W., Reich, P. B., Kattge, J., Atkin,
O. K., Bloomfield, K. J., Tjoelker, M. G., and Kitajima, K.: Global
convergence in leaf respiration from estimates of thermal acclimation across
time and space, New Phytol., 207, 1026–1037, 2015. a
Vannoppen, W., De Baets, S., Keeble, J., Dong, Y., and Poesen, J.: How do root
and soil characteristics affect the erosion-reducing potential of plant
species?, Ecol. Eng., 109, 186–195, 2017. a
Weedon, G., Gomes, S., Viterbo, P., Shuttleworth, W., Blyth, E.,
Österle, H., Adam, J., Bellouin, N., Boucher, O., and Best, M.:
Creation of the WATCH Forcing Data and Its Use to Assess
Global and Regional Reference Crop Evaporation over Land
during the Twentieth Century, J. Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1, 2011. a
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI Meteorological Forcing Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/486N-8109, 2018. a
Wellman, C. H. and Gray, J.: The microfossil record of early land plants,
Philos. T. Roy. Soc. B, 355, 717–732, 2000. a
Wellman, C. H., Osterloff, P. L., and Mohiuddin, U.: Fragments of the earliest
land plants, Nature, 425, 282–285, 2003. a
Wellman, C. H., Steemans, P., and Vecoli, M.: Palaeophytogeography of
Ordovician–Silurian land plants, Geological Society, London, Memoirs, 38,
461–476, 2013. a
Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci,
N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A.,
Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian,
M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny L., Shaw, A. J., DeGironimo, L.,
Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Chen, T.,
Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan,
Z., Wu, X., Sun, X., Wong, G. K., and Leebens-Mack, J.: Phylotranscriptomic analysis of the origin and early diversification
of land plants, P. Natl. Acad. Sci. USA, 111,
E4859–E4868, https://doi.org/10.1073/pnas.1323926111, 2014. a
Yin-Long, Q.: Phylogeny and evolution of charophytic algae and land plants,
J. Syst. Evol., 46, 287–306, 2008. a
Zhang, L., Hu, Z., Fan, J., Zhou, D., and Tang, F.: A meta-analysis of the
canopy light extinction coefficient in terrestrial ecosystems, Front.
Earth Sci.-PRC, 8, 599–609, https://doi.org/10.1007/s11707-014-0446-7, 2014. a
Zier, J., Belanger, B., Trahan, G., and Watkins, J. E.: Ecophysiology of four
co-occurring lycophyte species: an investigation of functional convergence,
AoB Plants, 7, plv137, https://doi.org/10.1093/aobpla/plv137, 2015. a
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation,...