Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model
Ignacio Hermoso de Mendoza
CORRESPONDING AUTHOR
Centre de Recherche sur la dynamique du système Terre (GEOTOP), Université du Québec Montréal (UQAM), Montréal, Quebec, H2X 3R9, Canada
Etienne Boucher
Centre de Recherche sur la dynamique du système Terre (GEOTOP), Université du Québec Montréal (UQAM), Montréal, Quebec, H2X 3R9, Canada
Centre d'études nordiques (CEN), Université de Laval, Québec City, Quebec, G1V 0A6, Canada
Fabio Gennaretti
Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue (UQAT), Amos, Quebec, J9T 2L8, Canada
Aliénor Lavergne
Carbon Cycle Research Group, Space and Atmospheric Physics, Physics Department, Imperial College London, London, SW7 2AZ, United Kingdom
Robert Field
NASA Goddard Institute for Space Studies, Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
Laia Andreu-Hayles
Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
Ecological and Forestry Applications Research Centre (CREAF), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, Spain
Related authors
Ignacio Hermoso de Mendoza, Hugo Beltrami, Andrew H. MacDougall, and Jean-Claude Mareschal
Geosci. Model Dev., 13, 1663–1683, https://doi.org/10.5194/gmd-13-1663-2020, https://doi.org/10.5194/gmd-13-1663-2020, 2020
Short summary
Short summary
We study the impact that the thickness of the subsurface and the geothermal gradient have in land models for climate simulations. To do this, we modify the Community Land Model version 4.5. In a scenario of rising atmospheric temperatures, the temperature of an insufficiently deep subsurface rises faster than it would in the real land. For the model, this produces faster permafrost thawing and increased emissions of land carbon to the atmosphere.
Ignacio Hermoso de Mendoza, Jean-Claude Mareschal, and Hugo Beltrami
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-116, https://doi.org/10.5194/cp-2016-116, 2016
Preprint retracted
Short summary
Short summary
We simulated ice flow and heat conduction at the Dome C site in Antarctica with a 1D numerical model, using as inputs past conditions at the site over the past 800Ky. Several model parameters (basal heat flux, flux function parameter, ice surface velocity and air-ice temperature offset) are set as free parameters whose values yield different temperature profiles that we can compare to that at Dome C. Using this criteria, we estimate these free parameters through Montecarlo methods.
Ming Luo, Helen M. Worden, Robert D. Field, Kostas Tsigaridis, and Gregory S. Elsaesser
Atmos. Meas. Tech., 17, 2611–2624, https://doi.org/10.5194/amt-17-2611-2024, https://doi.org/10.5194/amt-17-2611-2024, 2024
Short summary
Short summary
The TROPESS CrIS single-pixel CO profile retrievals are compared to the MOPITT CO products in steps of adjusting them to the common a priori assumptions. The two data sets are found to agree within 5 %. We also demonstrated and analyzed the proper steps in evaluating GISS ModelE CO simulations using satellite CO retrieval products for the western US wildfire events in September 2020.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Mariano S. Morales, Doris B. Crispín-DelaCruz, Claudio Álvarez, Duncan A. Christie, M. Eugenia Ferrero, Laia Andreu-Hayles, Ricardo Villalba, Anthony Guerra, Ginette Ticse-Otarola, Ernesto C. Rodríguez-Ramírez, Rosmery LLocclla-Martínez, Joali Sanchez-Ferrer, and Edilson J. Requena-Rojas
Clim. Past, 19, 457–476, https://doi.org/10.5194/cp-19-457-2023, https://doi.org/10.5194/cp-19-457-2023, 2023
Short summary
Short summary
In this study, we develop the first tree-ring-based precipitation reconstruction for the northern South American Altiplano back to 1625 CE. We established that the occurrence rate of extreme dry events together with a shift in mean dry conditions for the late 20th–beginning of the 21st century is unprecedented in the past 389 years, consistent with other paleoclimatic records. Our reconstruction provides valuable information about El Niño–Southern Oscillation influences on local precipitation.
Robert D. Field, Jonathan E. Hickman, Igor V. Geogdzhayev, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 18333–18350, https://doi.org/10.5194/acp-21-18333-2021, https://doi.org/10.5194/acp-21-18333-2021, 2021
Short summary
Short summary
In this study, we examined changes in atmospheric composition over China from satellite measurements during the COVID lockdowns of 2020. We found that interpreting changes in 2020 depended strongly on the background period and whether trends were accounted for. In most cases, pollution levels in 2020 were lower than during the previous few years when pollution levels appear to have stabilized.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Robert D. Field
Nat. Hazards Earth Syst. Sci., 20, 1123–1147, https://doi.org/10.5194/nhess-20-1123-2020, https://doi.org/10.5194/nhess-20-1123-2020, 2020
Short summary
Short summary
This paper compares fire weather indices calculated from the NASA MERRA-2 reanlaysis to those calculated from a global network of weather stations, finding that, globally, biases in reanalysis fire weather are influenced firstly by temperature and relative humidity and, in certain regions, by precipitation biases. Fire weather forecasts using short-term NASA GEOS-5 weather forecasts are skillful 2 d ahead of time. This skill decreases more quickly with longer lead times at high latitudes.
Ignacio Hermoso de Mendoza, Hugo Beltrami, Andrew H. MacDougall, and Jean-Claude Mareschal
Geosci. Model Dev., 13, 1663–1683, https://doi.org/10.5194/gmd-13-1663-2020, https://doi.org/10.5194/gmd-13-1663-2020, 2020
Short summary
Short summary
We study the impact that the thickness of the subsurface and the geothermal gradient have in land models for climate simulations. To do this, we modify the Community Land Model version 4.5. In a scenario of rising atmospheric temperatures, the temperature of an insufficiently deep subsurface rises faster than it would in the real land. For the model, this produces faster permafrost thawing and increased emissions of land carbon to the atmosphere.
Joshua P. Heyer, Mitchell J. Power, Robert D. Field, and Margreet J. E. van Marle
Biogeosciences, 15, 4317–4331, https://doi.org/10.5194/bg-15-4317-2018, https://doi.org/10.5194/bg-15-4317-2018, 2018
Short summary
Short summary
A variety of data were explored to better understand relationships among climate, fire, smoke emissions, and human land use in lowland Bolivia. Paleosedimentary work and modern fire records have linked drought to fire in the southern Amazon. From 2000 to 2015, our results indicate drought was the dominant control on wildfire in lowland Bolivia and in Noel Kempff Mercado National Park. Note that fire was most common in the Cerrado and seasonally inundated wetland biomes.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Margreet J. E. van Marle, Silvia Kloster, Brian I. Magi, Jennifer R. Marlon, Anne-Laure Daniau, Robert D. Field, Almut Arneth, Matthew Forrest, Stijn Hantson, Natalie M. Kehrwald, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stéphane Mangeon, Chao Yue, Johannes W. Kaiser, and Guido R. van der Werf
Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, https://doi.org/10.5194/gmd-10-3329-2017, 2017
Short summary
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Rob Wilson, Rosanne D'Arrigo, Laia Andreu-Hayles, Rose Oelkers, Greg Wiles, Kevin Anchukaitis, and Nicole Davi
Clim. Past, 13, 1007–1022, https://doi.org/10.5194/cp-13-1007-2017, https://doi.org/10.5194/cp-13-1007-2017, 2017
Short summary
Short summary
Blue intensity shows great potential for reconstructing past summer temperatures from conifer trees growing at high latitude or the treeline. However, conifer species that express a strong colour difference between the heartwood and sapwood can impart a long-term trend bias in the resultant reconstructions. Herein, we highlight this issue using eight mountain hemlock sites across the Gulf of Alaska and explore how a non-biased reconstruction of past temperature could be derived using such data.
Ignacio Hermoso de Mendoza, Jean-Claude Mareschal, and Hugo Beltrami
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-116, https://doi.org/10.5194/cp-2016-116, 2016
Preprint retracted
Short summary
Short summary
We simulated ice flow and heat conduction at the Dome C site in Antarctica with a 1D numerical model, using as inputs past conditions at the site over the past 800Ky. Several model parameters (basal heat flux, flux function parameter, ice surface velocity and air-ice temperature offset) are set as free parameters whose values yield different temperature profiles that we can compare to that at Dome C. Using this criteria, we estimate these free parameters through Montecarlo methods.
M. Naulier, M. M. Savard, C. Bégin, F. Gennaretti, D. Arseneault, J. Marion, A. Nicault, and Y. Bégin
Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, https://doi.org/10.5194/cp-11-1153-2015, 2015
Short summary
Short summary
This paper presents a millennial δ18O series and the reconstruction of the maximal temperature. The maximal replication and annual resolution have been obtained by using cohort sampling method. Three contrasted climatic periods have been identified: the medieval warm period (~997-1250; the warmest), the little ice age (~1450-1880) and the modern period (1970-2000) that is one of the fastest warming over the last millennium.
R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J. de Groot, A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, and X. Wang
Nat. Hazards Earth Syst. Sci., 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015, https://doi.org/10.5194/nhess-15-1407-2015, 2015
Short summary
Short summary
We have developed a global database of daily, gridded Fire Weather Index System calculations beginning in 1980. Input data and two different estimates of precipitation from rain gauges were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications. This data set can be used for analyzing historical relationships between fire weather and fire activity, and in identifying large-scale atmosphere–ocean controls on fire weather.
A. C. Spessa, R. D. Field, F. Pappenberger, A. Langner, S. Englhart, U. Weber, T. Stockdale, F. Siegert, J. W. Kaiser, and J. Moore
Nat. Hazards Earth Syst. Sci., 15, 429–442, https://doi.org/10.5194/nhess-15-429-2015, https://doi.org/10.5194/nhess-15-429-2015, 2015
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013, https://doi.org/10.5194/acp-13-2563-2013, 2013
Related subject area
Biogeosciences
Including the phosphorus cycle into the LPJ-GUESS dynamic global vegetation model (v4.1, r10994) – global patterns and temporal trends of N and P primary production limitation
A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Sources of uncertainty in the SPITFIRE global fire model: development of LPJmL-SPITFIRE1.9 and directions for future improvements
The unicellular NUM v.0.91: a trait-based plankton model evaluated in two contrasting biogeographic provinces
FESOM2.1-REcoM3-MEDUSA2: an ocean–sea ice–biogeochemistry model coupled to a sediment model
Satellite-based modeling of wetland methane emissions on a global scale (SatWetCH4 1.0)
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
Parameterisation toolbox for physical-biogeochemical model compatible with FABM. Case study: the coupled 1D GOTM-ECOSMO E2E for the Sylt-Romo Bight, North Sea
China Wildfire Emission (ChinaWED v1) for the period 2012–2022
Estimation of above- and below-ground ecosystem parameters for the DVM-DOS-TEM v0.7.0 model using MADS v1.7.3: a synthetic case study
H2MV (v1.0): Global Physically-Constrained Deep Learning Water Cycle Model with Vegetation
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
ML4Fire-XGBv1.0: Improving North American wildfire prediction by integrating a machine-learning fire model in a land surface model
Alquimia v1.0: A generic interface to biogeochemical codes – A tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Process-based Modeling of Solar-induced Chlorophyll Fluorescence with VISIT-SIF version 1.0
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
In silico calculation of soil pH by SCEPTER v1.0
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45
Inferring the tree regeneration niche from inventory data using a dynamic forest model
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
A model of the within-population variability of budburst in forest trees
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025, https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary
Short summary
We describe and test the size-based Nutrient-Unicellular-Multicellular model, which defines unicellular plankton using a single set of parameters, on a eutrophic and oligotrophic ecosystem. The results demonstrate that both sites can be modeled with similar parameters and robust performance over a wide range of parameters. The study shows that the model is useful for non-experts and applicable for modeling ecosystems with limited data. It holds promise for evolutionary and deep-time climate models.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025, https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change, the carbon storage in sediments slows down carbon cycling and influences feedbacks in the atmosphere–ocean–sediment system. This paper describes the coupling of a sediment model to an ocean biogeochemistry model and presents results under the pre-industrial climate and under CO2 perturbation.
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025, https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Short summary
Despite their importance, uncertainties remain in the evaluation of the drivers of temporal variability of methane emissions from wetlands on a global scale. Here, a simplified global model is developed, taking advantage of advances in remote-sensing data and in situ observations. The model reproduces the large spatial and temporal patterns of emissions, albeit with limitations in the tropics due to data scarcity. This model, while simple, can provide valuable insights into sensitivity analyses.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025, https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land surface models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes of and variability in carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research into these processes.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-223, https://doi.org/10.5194/gmd-2024-223, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions have changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024, https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
Short summary
In this study, we incorporate sea surfactants and wave-breaking processes into MITgcm-ECCOv4-Hg. The updated model shows increased fluxes in high-wind-speed and high-wave regions and vice versa, enhancing spatial heterogeneity. It shows that elemental mercury (Hg0) transfer velocity is more sensitive to wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024, https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values aiming to strike a balance between their local precision and broad applicability. Using the Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Hoa T. T. Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2710, https://doi.org/10.5194/egusphere-2024-2710, 2024
Short summary
Short summary
Parameterisation is key in modeling to reproduce observations well but is often done manually. This study presents a Particle Swarm Optimizer-based toolbox for marine ecosystem models, compatible with the Framework for Aquatic Biogeochemical Models, thus enhancing its reusability. Applied to the Sylt ecosystem, the toolbox effectively (1) identified multiple parameter sets that matched observations well, thus providing different insights into ecosystem dynamics, (2) optimized model complexity.
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-170, https://doi.org/10.5194/gmd-2024-170, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Wildfires release large amounts of greenhouse gases, contributing to global warming. We developed a new model that provides near-real-time estimates of wildfire emissions in China. Our model improves the accuracy of burned area measurements and incorporates advanced data in fuel loads and emission factors. We found that most emissions come from agricultural fires, while emissions from forests and grasslands are decreasing. This model will help reduce the environmental impacts of wildfires.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
EGUsphere, https://doi.org/10.5194/egusphere-2024-2044, https://doi.org/10.5194/egusphere-2024-2044, 2024
Short summary
Short summary
We use an innovative approach to study the Earth's water cycle by blending advanced computer learning techniques with a traditional water cycle model. We developed a model that learns from meteorological data, with a special focus on understanding how vegetation influences water movement. Our model closely aligns with real-world observations, yet there are areas that need improvement. This study opens up new possibilities to better understand the water cycle and its interactions with vegetation.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Sergi Molins, Benjamin Andre, Jeffrey Johnson, Glenn Hammond, Benjamin Sulman, Konstantin Lipnikov, Marcus Day, James Beisman, Daniil Svyatsky, Hang Deng, Peter Lichtner, Carl Steefel, and David Moulton
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-108, https://doi.org/10.5194/gmd-2024-108, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
EGUsphere, https://doi.org/10.5194/egusphere-2024-1542, https://doi.org/10.5194/egusphere-2024-1542, 2024
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical process-based model developed to represent the global SIF observed by GOSAT. Our model simulation reproduced the global distribution and seasonal variations of GOSAT SIF. The model can be utilized to improve photosynthetic process through the combination of biogeochemical modeling and GOSAT SIF.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1360, https://doi.org/10.5194/egusphere-2024-1360, 2024
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, crucial for understanding their role in the global carbon cycle. By analyzing over 22,000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate the top 10 cm of ocean sediments hold about 171 petagrams of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024, https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Short summary
Many forest models include detailed mechanisms of forest growth and mortality, but regeneration is often simplified. Testing and improving forest regeneration models is challenging. We address this issue by exploring how forest inventories from unmanaged European forests can be used to improve such models. We find that competition for light among trees is captured by the model, unknown model components can be informed by forest inventory data, and climatic effects are challenging to capture.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024, https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
Short summary
Quantification of carbon fluxes of crops is an essential building block for the construction of a monitoring, reporting, and verification approach. We developed an end-to-end platform (AgriCarbon-EO) that assimilates, through a Bayesian approach, high-resolution (10 m) optical remote sensing data into radiative transfer and crop modelling at regional scale (100 x 100 km). Large-scale estimates of carbon flux are validated against in situ flux towers and yield maps and analysed at regional scale.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Cited articles
Barnhart, T. B., Molotch, N. P., Livneh, B., Harpold, A. A., Knowles, J. F., and Schneider, D.: Snowmelt rate dictates streamflow, Geophys. Res. Lett., 43, 8006–8016, https://doi.org/10.1002/2016GL069690, 2016. a
Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn, A. L., Barr, A. G., and Wofsy, S. C.: Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada,
Glob. Change Biol.,
13,
89–107, doi10.1111/j.1365-2486.2006.01281.x,
2007 a
Berghuijs, W., Woods, R., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/NCLIMATE2246, 2014. a
Beria, H., Larsen, J. R., Ceperley, N. C., Michelon, A., Vennemann, T., and Schaefli, B.: Understanding snow hydrological processes through the lens of stable water isotopes, Wiley Interdisciplinary Reviews: Water, 5, e1311, https://doi.org/10.1002/wat2.1311, 2018. a, b
Bernacchi, C., Singsaas, E., Pimentel, C., Portis Jr, A., and Long, S. P.: Improved temperature response functions for models of Rubisco-limited photosynthesis, Plant Cell Environ., 24, 253–259, https://doi.org/10.1111/j.1365-3040.2001.00668.x, 2001. a
Blanken, P. and Black, T.: The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada, Hydrol. Process., 18, 1561–1578, https://doi.org/10.1002/hyp.1406, 2004. a, b
Boisvenue, C. and Running, S. W.: Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century, Glob. Change Biol., 12, 862–882, https://doi.org/10.1111/j.1365-2486.2006.01134.x, 2006. a
Boivin, S. and Bégin, Y.: Development of a black spruce (Picea mariana) shoreline stand in relation to snow level variations at Lake Bienville in northern Quebec, Can. J. Forest Res., 27, 295–303, 1997. a
Boucher, É., Guiot, J., Hatté, C., Daux, V., Danis, P.-A., and Dussouillez, P.: An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations, Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, 2014. a, b
Boucher, E., Nicault, A., Arseneault, D., Bégin, Y., and Karami, M.: Decadal variations in Eastern Canada's taiga wood biomass production forced by ocean-atmosphere interactions, Sci. Rep., 7, 2457, https://doi.org/10.1038/s41598-017-02580-9, 2017. a
Buhay, W., Edwards, T., and Aravena, R.: Evaluating kinetic fractionation factors used for ecologic and paleoclimatic reconstructions from oxygen and hydrogen isotope ratios in plant water and cellulose, Geochim. Cosmochim. Ac., 60, 2209–2218, https://doi.org/10.1016/0016-7037(96)00073-7, 1996. a, b
Cernusak, L. A. and English, N. B.: Beyond tree-ring widths: stable isotopes sharpen the focus on climate responses of temperate forest trees, Tree Physiol., 35, 1–3, https://doi.org/10.1093/treephys/tpu115, 2015. a
Coulthard, B. L., Anchukaitis, K. J., Pederson, G. T., Cook, E., Littell, J., and Smith, D. J.: Snowpack signals in North American tree rings, Environ. Res. Lett., 16, 034037, https://doi.org/10.1088/1748-9326/abd5de, 2021. a, b
Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, Consiglio nazionale delle richerche, Laboratorio de geologia nucleare Pisa, 1965. a
Danis, P.-A., Hatté, C., Misson, L., and Guiot, J.: MAIDENiso: a multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes, Can. J. Forest Res., 42, 1697–1713, https://doi.org/10.1139/x2012-089, 2012. a, b, c, d
De Pury, D. and Farquhar, G.: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models, Plant Cell Environ., 20, 537–557, https://doi.org/10.1111/j.1365-3040.1997.00094.x, 1997. a
DeNiro, M. J. and Epstein, S.: Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide, and water, Science, 204, 51–53, https://doi.org/10.1126/science.204.4388.51, 1979. a
D'Orangeville, L., Houle, D., Duchesne, L., Phillips, R. P., Bergeron, Y., and Kneeshaw, D.: Beneficial effects of climate warming on boreal tree growth may be transitory, Nat. Commun., 9, 1–10, https://doi.org/10.1038/s41467-018-05705-4, 2018. a
Drew, D. M., Downes, G. M., and Battaglia, M.: CAMBIUM, a process-based model of daily xylem development in Eucalyptus, J. Theor. Biol., 264, 395–406, https://doi.org/10.1016/j.jtbi.2010.02.013, 2010. a
Du, J., He, Z., Yang, J., Chen, L., and Zhu, X.: Detecting the effects of climate change on canopy phenology in coniferous forests in semi-arid mountain regions of China, Int. J. Remote Sens., 35, 6490–6507, https://doi.org/10.1080/01431161.2014.955146, 2014. a
Evaristo, J., Jasechko, S., and McDonnell, J. J.: Global separation of plant transpiration from groundwater and streamflow, Nature, 525, 91–94, https://doi.org/10.1038/nature14983, 2015. a
Farquhar, G., Hubick, K., Condon, A., and Richards, R.: Carbon isotope fractionation and plant water-use efficiency, in: Stable isotopes in ecological research, Springer, 21–40, https://doi.org/10.1007/978-1-4612-3498-2_2, 1989. a, b
Farquhar, G., Barbour, M., and Henry, B.: Interpretation of oxygen isotope composition of leaf material, in: Stable isotopes: Integration of Biological, Ecological and Geochemical Processes, Garland Science, ISBN: 9781003076865, 27–62, 1998. a
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/bf00386231, 1980. a
Field, R., Andreu-Hayles, L., D'Arrigo, R., Oelkers, R., Luckman, B., Morimoto, D., Boucher, E., Gennaretti, F., Hermoso, I., Lavergne, A., and Lévesque, M.: Tree-ring Cellulose δ18O Records Similar Large-scale Climate Influences as Precipitation δ18O in the Northwest Territories of Canada, Clim. Dynam., 58, 759–776, https://doi.org/10.1007/s00382-021-05932-4,
2021. a, b
Fritts, H. C., Vaganov, E. A., Sviderskaya, I. V., and Shashkin, A. V.: Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density, Clim. Res., 1, 97–116, https://doi.org/10.3354/cr001097, 1991. a
Gaucherel, C., Campillo, F., Misson, L., Guiot, J., and Boreux, J.-J.: Parameterization of a process-based tree-growth model: comparison of optimization, MCMC and particle filtering algorithms, Environ. Modell. Softw., 23, 1280–1288, https://doi.org/10.1016/j.envsoft.2008.03.003, 2008. a
Gea-Izquierdo, G., Guibal, F., Joffre, R., Ourcival, J. M., Simioni, G., and Guiot, J.: Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series, Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, 2015. a, b, c
Gennaretti, F., Gea-Izquierdo, G., Boucher, E., Berninger, F., Arseneault, D., and Guiot, J.: Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest, Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, 2017a. a, b, c, d, e, f, g, h
Gennaretti, F., Huard, D., Naulier, M., Savard, M., Bégin, C., Arseneault, D., and Guiot, J.: Bayesian multiproxy temperature reconstruction with black spruce ring widths and stable isotopes from the northern Quebec taiga, Clim. Dynam., 0, 4107–4119, https://doi.org/10.1007/s00382-017-3565-5, 2017b. a
Girardin, M. P., Raulier, F., Bernier, P. Y., and Tardif, J. C.: Response of tree growth to a changing climate in boreal central Canada: a comparison of empirical, process-based, and hybrid modelling approaches, Ecol. Model., 213, 209–228, https://doi.org/10.1029/2010JG001287, 2008. a
Guiot, J., Boucher, E., and Gea-Izquierdo, G.: Process models and model-data fusion in dendroecology, Frontiers in Ecology and Evolution, 2, 52, https://doi.org/10.3389/fevo.2014.00052, 2014. a, b
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Helliker, B. R. and Richter, S. L.: Subtropical to boreal convergence of tree-leaf temperatures, Nature, 454, 511–514, https://doi.org/10.1038/nature07031, 2008. a
Hermoso de Mendoza, I., Boucher, E., Gennaretti, F., and Lavergne, A.: MAIDENiso (Version v2021), Zenodo [code], https://doi.org/10.5281/zenodo.5597877, 2021a. a
Hermoso de Mendoza, I., Boucher, E., Gennaretti, F., and Lavergne, A.: MAIDENiso-snowless (Version v2021), Zenodo [code], https://doi.org/10.5281/zenodo.5598076, 2021b. a
Hermoso de Mendoza, I., Boucher, E., Andreu-Hayles, L., Gennaretti, F., and Lavergne, A.: Meteorology, MAIDENiso parameter files and observational data for Tungsten, Caniapiscau, and associated GPP stations, Zenodo [data set], https://doi.org/10.5281/zenodo.5599091, 2021c. a
Hölttä, T., Mäkinen, H., Nöjd, P., Mäkelä, A., and Nikinmaa, E.: A physiological model of softwood cambial growth, Tree Physiol., 30, 1235–1252, https://doi.org/10.1093/treephys/tpq068, 2010. a
Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Ac., 58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994. a
Huang, R., Zhu, H., Liang, E., Grießinger, J., Wernicke, J., Yu, W., Hochreuther, P., Risi, C., Zeng, Y., Fremme, A., Sodemann, H., and Bräuning, A.: Temperature signals in tree-ring oxygen isotope series from the northern slope of the Himalaya, Earth Planet. Sc. Lett., 506, 455–465, https://doi.org/10.1016/j.epsl.2018.11.002, 2019. a
Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P.: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003, J. Appl. Meteorol. Clim., 48, 725–741, https://doi.org/10.1175/2008JAMC1979.1, 2009. a
Jarvis, P. and Linder, S.: Constraints to growth of boreal forests, Nature, 405, 904–905, 2000. a
Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl Jr, C. A., Guenther, P. R., Waterman, L. S., and Chin, J. F.: Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii, Tellus, 28, 538–551, https://doi.org/10.3402/tellusa.v28i6.11322, 1976. a
Knauer, J., Werner, C., and Zaehle, S.: Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis, J. Geophys. Res.-Biogeo., 120, 1894–1911, https://doi.org/10.1002/2015jg003114, 2015. a
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019. a
Kurita, N., Yoshida, N., Inoue, G., and Chayanova, E. A.: Modern isotope climatology of Russia: A first assessment, J. Geophys. Res.-Atmos., 109, D03104, https://doi.org/10.1029/2003jd003404, 2004. a
Lavergne, A., Gennaretti, F., Risi, C., Daux, V., Boucher, E., Savard, M. M., Naulier, M., Villalba, R., Bégin, C., and Guiot, J.: Modelling tree ring cellulose δ18O variations in two temperature-sensitive tree species from North and South America, Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, 2017. a, b, c, d, e, f, g
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C.,, Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M., and Zeng, X.: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019. a, b, c
Leuning, R., Kelliher, F. M., De Pury, D., and Schulze, E.-D.: Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies, Plant Cell Environ., 18, 1183–1200, https://doi.org/10.1111/j.1365-3040.1995.tb00628.x, 1995. a
Li, D., Wrzesien, M. L., Durand, M., Adam, J., and Lettenmaier, D. P.: How much runoff originates as snow in the western United States, and how will that change in the future?, Geophys. Res. Lett., 44, 6163–6172, https://doi.org/10.1002/2017GL073551, 2017. a
Li, G., Harrison, S. P., Prentice, I. C., and Falster, D.: Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth, Biogeosciences, 11, 6711–6724, https://doi.org/10.5194/bg-11-6711-2014, 2014. a
Loescher, H., Hanson, C., and Ocheltree, T.: The psychrometric constant is not constant: A novel approach to enhance the accuracy and precision of latent energy fluxes through automated water vapor calibrations, J. Hydrometeorol., 10, 1271–1284, https://doi.org/10.1175/2009JHM1148.1, 2009. a
McCabe, G. J. and Wolock, D. M.: Recent declines in western US snowpack in the context of twentieth-century climate variability, Earth Interact., 13, 1–15, https://doi.org/10.1175/2009EI283.1, 2009. a
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions, chap. 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, ISBN-10: 1009157973, 2019. a
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., B. Ek, M., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American regional reanalysis, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006. a, b, c
Miller, J. R., Russell, G. L., and Caliri, G.: Continental-scale river flow in climate models, J. Climate, 7, 914–928, https://doi.org/10.1175/1520-0442(1994)007<0914:CSRFIC>2.0.CO;2, 1994. a
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I–A discussion of principles, J. Hydrol., 10, 282–290, 1970. a
Naulier, M., Savard, M. M., Bégin, C., Marion, J., Arseneault, D., and Bégin, Y.: Carbon and oxygen isotopes of lakeshore black spruce trees in northeastern Canada as proxies for climatic reconstruction, Chem. Geol., 374, 37–43, 2014. a
Naulier, M., Savard, M. M., Bégin, C., Gennaretti, F., Arseneault, D., Marion, J., Nicault, A., and Bégin, Y.: A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees, Clim. Past, 11, 1153–1164, https://doi.org/10.5194/cp-11-1153-2015, 2015a. a
Naulier, M., Savard, M. M., Bégin, C., Marion, J., Nicault, A., and Bégin, Y.: Temporal instability of isotopes–climate statistical relationships–A study of black spruce trees in northeastern Canada, Dendrochronologia, 34, 33–42, 2015b. a
Nicault, A., Boucher, E., Bégin, C., Guiot, J., Marion, J., Perreault, L., Roy, R., Savard, M. M., and Bégin, Y.: Hydrological reconstruction from tree-ring multi-proxies over the last two centuries at the Caniapiscau Reservoir, northern Québec, Canada, J. Hydrol., 513, 435–445, https://doi.org/10.1016/j.jhydrol.2014.03.054, 2014. a
Nicault, A., Boucher, E., Tapsoba, D., Arseneault, D., Berninger, F., Bégin, C., DesGranges, J.-L., Guiot, J., Marion, J., Wicha, S., and Bégin, Y.: Spatial analysis of black spruce (Picea mariana (Mill.) BSP) radial growth response to climate in northern Québec–Labrador Peninsula, Canada, Can. J. Forest Res., 45, 343–352, https://doi.org/10.1139/cjfr-2014-0080, 2015. a
Nossent, J. and Bauwens, W.: Application of a normalized Nash-Sutcliffe efficiency to improve the accuracy of the Sobol'sensitivity analysis of a hydrological model, Math. Comput. Simulat., 55, 271–280, 2011. a
Oki, T., Nishimura, T., and Dirmeyer, P.: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP), J. Meteorol. Soc. Jpn. Ser. II, 77, 235–255, https://doi.org/10.2151/jmsj1965.77.1B_235, 1999. a
Ols, C., Trouet, V., Girardin, M. P., Hofgaard, A., Bergeron, Y., and Drobyshev, I.: Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate, Global Planet. Change, 165, 1–12, 2018. a
Perkins, D. L. and Swetnam, T. W.: A dendroecological assessment of whitebark pine in the Sawtooth–Salmon River region, Idaho, Can. J. Forest Res., 26, 2123–2133, https://doi.org/10.1139/x26-241, 1996. a
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M., Pétron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007. a
Peterson, D. W. and Peterson, D. L.: Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains, Can. J. Forest Res., 24, 1921–1932, https://doi.org/10.1139/x94-247, 1994. a
Porter, T. J., Pisaric, M. F., Field, R. D., Kokelj, S. V., Edwards, T. W., deMontigny, P., Healy, R., and LeGrande, A. N.: Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada, Clim. Dynam., 42, 771–785, https://doi.org/10.1007/s00382-013-1674-3, 2014. a
Rathgeber, C., Nicault, A., Kaplan, J. O., and Guiot, J.: Using a biogeochemistry model in simulating forests productivity responses to climatic change and [CO2] increase: example of Pinus halepensis in Provence (south-east France), Ecol. Model., 166, 239–255, https://doi.org/10.1016/S0304-3800(03)00161-3, 2003. a, b
Roden, J. S. and Ehleringer, J. R.: Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees, Oecologia, 123, 481–489, https://doi.org/10.1007/s004420000349, 2000. a, b
Running, S. W., Nemani, R. R., and Hungerford, R. D.: Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis, Can. J. Forest Res., 17, 472–483, https://doi.org/10.1139/x87-081, 1987. a
Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K.,
Baker, I., Barr, A., Bartlett, P., Boone, A., Deng, H., Dou-
ville, H., Dutra, E., Elder, K., Ellis, C., Feng, X., Gelfan,
A., Goodbody, A., Gusev, Y., Gustafsson, D., Hellström, R.,
Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina, A.,
Lettenmaier, D., Li, W. P., Luce, C., Martin, E., Nasonova,
O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M.,
Schädler, G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli,
R., Strasser, U., Su, H., Suzuki, K., Takata, K., Tanaka, K.,
Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A., Xia, K.,
Xue, Y., and Yamazaki, T.: Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111,
https://doi.org/10.1029/2008JD011063, 2009. a
Saurer, M., Aellen, K., and Siegwolf, R.: Correlating δ13C and δ18O in cellulose of trees, Plant Cell Environ., 20, 1543–1550, https://doi.org/10.1046/j.1365-3040.1997.d01-53.x, 1997. a, b
Shishov, V. V., Tychkov, I. I., Popkova, M. I., Ilyin, V. A., Bryukhanova, M. V., and Kirdyanov, A. V.: VS-oscilloscope: a new tool to parameterize tree radial growth based on climate conditions, Dendrochronologia, 39, 42–50, https://doi.org/10.1016/j.dendro.2015.10.001, 2016. a, b
Southworth, F., Peterson, B., and Lambert, B.: Development of a regional routing model for strategic waterway analysis, Transp. Res. Record, 1993, 109–116, https://doi.org/10.3141/1993-15, 2007. a
St. George, S., Meko, D. M., Girardin, M.-P., MacDonald, G. M., Nielsen, E., Pederson, G. T., Sauchyn, D. J., Tardif, J. C., and Watson, E.: The tree-ring record of drought on the Canadian Prairies, J. Climate, 22, 689–710, https://doi.org/10.1175/2008JCLI2441.1, 2009. a
Sternberg, L. D. S., Deniro, M. J., and Savidge, R. A.: Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis, Plant Physiol., 82, 423–427, https://doi.org/10.1104/pp.82.2.423, 1986. a, b
Stigter, E. E., Litt, M., Steiner, J. F., Bonekamp, P. N., Shea, J. M., Bierkens, M. F., and Immerzeel, W. W.: The importance of snow sublimation on a Himalayan glacier, Front. Earth Sci.-Cryosphere, 6, 108, https://doi.org/10.3389/feart.2018.00108, 2018. a
Szejner, P., Wright, W. E., Belmecheri, S., Meko, D., Leavitt, S. W., Ehleringer, J. R., and Monson, R. K.: Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using tree-ring stable isotopes, Glob. Change Biol., 24, 5332–5347, https://doi.org/10.1111/gcb.14395, 2018.
a
Ueyama, M., Iwata, H., and Harazono, Y.: AmeriFlux US-Uaf University of Alaska, Fairbanks, Ver. 8.5, https://doi.org/10.17190/AMF/1480322, 2021. a
Vaganov, E. A., Hughes, M. K., and Shashkin, A. V.: Growth dynamics of conifer tree rings: images of past and future environments, vol. 183, Springer Science & Business Media, https://doi.org/10.1007/3-540-31298-6, 2006. a
van Kampenhout, L., Lenaerts, J. T., Lipscomb, W. H., Sacks, W. J., Lawrence, D. M., Slater, A. G., and van den Broeke, M. R.: Improving the representation of polar snow and firn in the Community Earth System Model, J. Adv. Model. Earth Sy., 9, 2583–2600, https://doi.org/10.1002/2017MS000988, 2017. a
Woodhouse, C. A.: A 431-yr reconstruction of western Colorado snowpack from tree rings, J. Climate, 16, 1551–1561, https://doi.org/10.1175/1520-0442(2003)016<1551:AYROWC>2.0.CO;2, 2003. a
Yakir, D.: Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates, Plant Cell Environ., 15, 1005–1020, https://doi.org/10.1111/j.1365-3040.1992.tb01652.x, 1992. a, b
Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T.: Historical isotope simulation using reanalysis atmospheric data, J. Geophys. Res.-Atmos., 113, D19108, https://doi.org/10.1029/2008JD010074, 2008. a
Zhu, H., Huang, R., Asad, F., Liang, E., Bräuning, A., Zhang, X., Dawadi, B., Man, W., and Grießinger, J.: Unexpected climate variability inferred from a 380 year tree-ring earlywood oxygen isotope record in the Karakoram, Northern Pakistan, Clim. Dynam., 57, 701–715,
https://doi.org/10.1007/s00382-021-05736-6, 2021. a
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This...