Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1079-2022
https://doi.org/10.5194/gmd-15-1079-2022
Methods for assessment of models
 | 
04 Feb 2022
Methods for assessment of models |  | 04 Feb 2022

Integration-based extraction and visualization of jet stream cores

Lukas Bösiger, Michael Sprenger, Maxi Boettcher, Hanna Joos, and Tobias Günther

Related authors

Transient Flow Patterns of an Annular-like Stratospheric Polar Vortex
Huw Davies and Michael Sprenger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3017,https://doi.org/10.5194/egusphere-2025-3017, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
An object-based and Lagrangian view on an intense hailstorm day in Switzerland as represented in COSMO-1E ensemble hindcast simulations
Killian P. Brennan, Michael Sprenger, André Walser, Marco Arpagaus, and Heini Wernli
Weather Clim. Dynam., 6, 645–668, https://doi.org/10.5194/wcd-6-645-2025,https://doi.org/10.5194/wcd-6-645-2025, 2025
Short summary
Clear-air turbulence derived from in situ aircraft observation – a weather feature-based typology using ERA5 reanalysis
Ming Hon Franco Lee and Michael Sprenger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1949,https://doi.org/10.5194/egusphere-2025-1949, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
The interaction of warm conveyor belt outflows with the upper-level waveguide: a four-type climatological classification
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1731,https://doi.org/10.5194/egusphere-2025-1731, 2025
Short summary
Revealing the dynamics of a local Alpine windstorm using large-eddy simulations
Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
Weather Clim. Dynam., 6, 447–469, https://doi.org/10.5194/wcd-6-447-2025,https://doi.org/10.5194/wcd-6-447-2025, 2025
Short summary

Related subject area

Atmospheric sciences
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary
Chempath 1.0: an open-source pathway analysis program for photochemical models
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025,https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary

Cited articles

Ahrens, C. D. and Henson, R.: Meteorology Today: An Introduction to Weather, Climate and the Environment, Cengage Learning, Boston, MA, USA, 2021. a, b, c
Akritidis, D., Pozzer, A., Zanis, P., Tyrlis, E., Škerlak, B., Sprenger, M., and Lelieveld, J.: On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East, Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, 2016. a
Archer, C. L. and Caldeira, K.: Historical trends in the jet streams, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033614, 2008. a
Bader, R., Sprenger, M., Ban, N., Rüdisühli, S., Schär, C., and Günther, T.: Extraction and Visual Analysis of Potential Vorticity Banners around the Alps, IEEE T. Vis. Comput. Gr., 26, 259–269, https://doi.org/10.1109/TVCG.2019.2934310, 2020. a, b
Banks, D. and Singer, B.: Vortex tubes in turbulent flows: identification, representation, reconstruction, in: Proceedings Visualization '94, IEEE Computer Society, Los Alamitos, CA, USA, 21 October 1994, 132–139, https://doi.org/10.1109/VISUAL.1994.346327, 1994. a, b, c, d
Download
Short summary
Jet streams are coherent air flows that interact with atmospheric structures such as warm conveyor belts (WCBs) and the tropopause. Individually, these structures have a significant impact on the weather evolution. A first step towards a deeper understanding of the meteorological processes is to extract jet stream core lines, for which we develop a novel feature extraction algorithm. Based on the line geometry, we automatically detect and visualize potential interactions between WCBs and jets.
Share