Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6919-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6919-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models
Instituto de Matemática e Estatística da Universidade de São Paulo, Rua do Matão, 1010 – Butantã, São Paulo – SP, 05508-090, Brazil
Pedro S. Peixoto
Instituto de Matemática e Estatística da Universidade de São Paulo, Rua do Matão, 1010 – Butantã, São Paulo – SP, 05508-090, Brazil
Related authors
No articles found.
Keerthi Gaddameedi, François Hamon, Dominik Huber, Thibaut Lunet, Pedro S. Peixoto, João Guilherme Caldas Steinstraesser, Martin Schreiber, and Valentina Schüller
EGUsphere, https://doi.org/10.5194/egusphere-2025-5156, https://doi.org/10.5194/egusphere-2025-5156, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present the open-source software SWEET, with core written in C++, dedicated to the numerical simulation of global spectral methods for the rotating shallow water equations on the biperiodic plane and on the sphere. SWEET is designed to provide a fast and efficient environment for research around time integration methods relevant to atmospheric circulation models. The software offers a versatile implementation that allows users to easily set up and run custom time-stepping schemes.
William C. Radünz, Bruno Carmo, Julie K. Lundquist, Stefano Letizia, Aliza Abraham, Adam S. Wise, Miguel Sanchez Gomez, Nicholas Hamilton, Raj K. Rai, and Pedro S. Peixoto
Wind Energ. Sci., 10, 2365–2393, https://doi.org/10.5194/wes-10-2365-2025, https://doi.org/10.5194/wes-10-2365-2025, 2025
Short summary
Short summary
We explore how simple terrain influences spatial variations in wind speed and wind farm performance during a low-level jet. Using simulations, field observations, and turbine production data, we find that downstream turbines produce more power than upstream ones, despite being subjected to wake effects. This counterintuitive result arises because the low-level jet and winds near turbine rotors are highly sensitive to topographic features, leading to stronger winds at the downstream turbines.
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev., 15, 5857–5881, https://doi.org/10.5194/gmd-15-5857-2022, https://doi.org/10.5194/gmd-15-5857-2022, 2022
Short summary
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.
Cited articles
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5C8276M, 2009. a, b, c, d
Barros, S. and Garcia, C.: A Global Semi-Implicit Semi-Lagrangian Shallow-Water Model on Locally Refined Grids, Mon. Weather Rev., 132, 53–65,
https://doi.org/10.1175/1520-0493(2004)132<0053:AGSSSM>2.0.CO;2, 2004. a
Behrens, J.: Adaptive Atmospheric Modeling-Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications, Lecture Notes in Computational Science and Engineering, vol. 54, Springer, Berlin, Germany, 2006. a
Brachet, M. and Croisille, J.-P.: Spherical shallow-water wave simulation by a cubed-sphere finite-difference solver, Q. J. Roy. Meteor. Soc., 147,
786–800, https://doi.org/10.1002/qj.3946, 2021. a
Chou, S. C., Dereczynski, C., Gomes, J. L., Pesquero, J. F., Avila, A. M.
H. d., Resende, N. C., Alves, L. F., Ruiz-Cárdenas, R., Souza, C. R. d.,
and Bustamante, J. F. F.: Ten-year seasonal climate reforecasts over South
America using the Eta Regional Climate Model, An. Acad. Bras. Cienc., 92, 3, https://doi.org/10.1590/0001-3765202020181242, 2020. a
Du, Q., Faber, V., and Gunzburger, M.: Centroidal Voronoi Tessellations:
Applications and Algorithms, SIAM Rev., 41, 637–676,
https://doi.org/10.1137/S0036144599352836, 1999. a, b
Du, Q., Gunzburger, M., and Ju, L.: Constrained Centroidal Voronoi
Tessellations for Surfaces, SIAM J. Sci. Comput., 24, 1488–1506,
https://doi.org/10.1137/S1064827501391576, 2003. a, b, c, d
Dubos, T., Dubey, S., Tort, M., Mittal, R., Meurdesoif, Y., and Hourdin, F.: DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 3131–3150, https://doi.org/10.5194/gmd-8-3131-2015, 2015. a, b
Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117–2140, https://doi.org/10.5194/gmd-10-2117-2017, 2017. a
Ferguson, J., Jablonowski, C., and Johansen, H.: Assessing Adaptive Mesh
Refinement (AMR) in a Forced Shallow-Water Model with Moisture, Mon. Weather
Rev., 147, 3673–3692, https://doi.org/10.1175/MWR-D-18-0392.1, 2019. a
Figueroa, S., Bonatti, J., Kubota, P., Grell, G., Morrison, H., R. M. Barros,
S., Fernandez, J., Ramirez-Gutierrez, E., Siqueira, L., Luzia, G., Silva, J.,
Silva, J., Pendharkar, J., Capistrano, V., Alvim, D., Enore, D., Diniz, F.,
Satyamurty, P., Cavalcanti, I., and Panetta, J.: The Brazilian Global
Atmospheric Model (BAM): Performance for Tropical Rainfall Forecasting and
Sensitivity to Convective Scheme and Horizontal Resolution, Weather
Forecast., 31, 1547–1572, https://doi.org/10.1175/WAF-D-16-0062.1, 2016. a
Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Silva Dias, P. L., Silva Dias, M. A. F., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda, A. L., Santos e Silva, C. M., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., Silva, F. B., Santos, F. C., Pereira, G., Camponogara, G., Ferrada, G. A., Campos Velho, H. F., Menezes, I., Freire, J. L., Alonso, M. F., Gácita, M. S., Zarzur, M., Fonseca, R. M., Lima, R. S., Siqueira, R. A., Braz, R., Tomita, S., Oliveira, V., and Martins, L. D.: The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas, Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, 2017. a
Galewsky, J., Scott, R., and Polvani, L.: An initial-value problem for testing numerical models of the global shallow-water equations, Tellus A, 56,
429–440, https://doi.org/10.3402/tellusa.v56i5.14436, 2004. a, b, c, d
Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22, 3–11, https://doi.org/10.5194/adgeo-22-3-2009, 2009. a
Harris, L., Lin, S.-J., and Tu, C.: High-Resolution Climate Simulations Using
GFDL HiRAM with a Stretched Global Grid, J. Climate, 29, 4293–4314,
https://doi.org/10.1175/JCLI-D-15-0389.1, 2016. a
Hoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa,
K. L., and Wolfram, P. J.: MPAS-Ocean Simulation Quality for
Variable-Resolution North American Coastal Meshes, J. Adv. Model Earth Sy.,
12, e2019MS001848, https://doi.org/10.1029/2019MS001848, 2020. a
Insel, N., Poulsen, C., and Ehlers, T.: Influence of the Andes Mountains on
South American moisture transport, convection, and precipitation, Clim.
Dynam., 35, 1477–1492, https://doi.org/10.1007/s00382-009-0637-1, 2010. a
Jablonowski, C. and Williamson, D.: The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models, in: Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, edited by: Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R., Springer, Berlin, Heidelberg, vol. 80, 381–493,
https://doi.org/10.1007/978-3-642-11640-7_13, 2011. a, b, c
Ju, L., Ringler, T., and Gunzburger, M.: Voronoi Tessellations and Their
Application to Climate and Global Modeling, in: Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, edited by: Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R., Springer, Berlin, Heidelberg, vol. 80, 313–342, https://doi.org/10.1007/978-3-642-11640-7_10, 2011. a, b, c, d, e
Junquas, C., Li, L., Vera, C., Treut, H., and Takahashi, K.: Influence of South America orography on summertime precipitation in Southeastern South America, Clim. Dynam., 46, 3941–3963, https://doi.org/10.1007/s00382-015-2814-8, 2015. a
Kevlahan, N. K.-R. and Dubos, T.: WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core, Geosci. Model Dev., 12, 4901–4921, https://doi.org/10.5194/gmd-12-4901-2019, 2019. a
Klemp, J. B.: Damping Characteristics of Horizontal Laplacian Diffusion
Filters, Mon. Weather Rev., 145, 4365–4379,
https://doi.org/10.1175/MWR-D-17-0015.1, 2017. a, b, c
Kramer, M., Heinzeller, D., Hartmann, H., Berg, W., and Steeneveld, G.-J.:
Assessment of MPAS variable resolution simulations in the grey-zone of
convection against WRF model results and observations, Clim. Dynam., 55,
253–276, https://doi.org/10.1007/s00382-018-4562-z, 2018. a
Lean, H., Clark, P., Dixon, M., Roberts, N., Fitch, A., Forbes, R., and
Halliwell, C.: Characteristics of High-Resolution Versions of the Met Office
Unified Model for Forecasting Convection over the United Kingdom, Mon.
Weather Rev., 136, 3408–3424, https://doi.org/10.1175/2008MWR2332.1, 2008. a
Liu, Y. and Yang, T.: Impact of Local Grid Refinements of Spherical Centroidal Voronoi Tessellations for Global Atmospheric Models, Commun. Comput. Phys., 21, 1310–1324, https://doi.org/10.4208/cicp.050815.020916a,
2017. a
Miura, H. and Kimoto, M.: A Comparison of Grid Quality of Optimized Spherical
Hexagonal Pentagonal Geodesic Grids, Mon. Weather Rev., 133,
2817–2833, https://doi.org/10.1175/MWR2991.1, 2005. a
Okabe, A., Boots, B., Sugihara, K., and Chiu, S.: Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, vol. 43,
2nd edn., John Wiley and Sons, https://doi.org/10.2307/2687299, 2000. a
Park, S.-H., Klemp, J., and Skamarock, W.: A Comparison of Mesh Refinement in
the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic
Wave Simulation, Mon. Weather Rev., 142, 3614–3634,
https://doi.org/10.1175/MWR-D-14-00004.1, 2014. a
Peixoto, P.: Accuracy analysis of mimetic finite volume operators on geodesic
grids and a consistent alternative, J. Comput. Phys., 310, 127–160,
https://doi.org/10.1016/j.jcp.2015.12.058, 2016. a, b, c, d
Peixoto, P. S. and Barros, S. R.: On vector field reconstructions for
semi-Lagrangian transport methods on geodesic staggered grids, J.
Comput. Phys., 273, 185–211, 2014. a
Peixoto, P. S., Thuburn, J., and Bell, M. J.: Numerical instabilities of
spherical shallow-water models considering small equivalent depths, Q. J. Roy. Meteor. Soc., 144, 156–171, 2018. a
Peixoto, P. S., Santos, L. F., and Granjeiro, J. B.: pedrospeixoto/iModel: iModel v1.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.5667336, 2021. a, b
Rauscher, S. and Ringler, T.: Impact of Variable-Resolution Meshes on
Midlatitude Baroclinic Eddies Using CAM-MPAS-A, Mon. Weather Rev., 142,
4256–4268, https://doi.org/10.1175/MWR-D-13-00366.1, 2014. a
Ringler, T., Jacobsen, D., Gunzburger, M., Ju, L., Duda, M., and Skamarock, W.: Exploring a Multiresolution Modeling Approach within the Shallow-Water
Equations, Mon. Weather Rev., 139, 3348–3368,
https://doi.org/10.1175/MWR-D-10-05049.1, 2011. a
Silva, V., Kousky, V., and Higgins, W.: Daily Precipitation Statistics for
South America: An Intercomparison Between NCEP Reanalyses and Observations,
J. Hydrometeorol., 12, 101–117, https://doi.org/10.1175/2010JHM1303.1, 2011. a
Skamarock, W., Klemp, J., Duda, M., Fowler, L., Park, S.-H., and Ringler, T.: A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi
Tesselations and C-Grid Staggering, Mon. Weather Rev., 140,
3090–3105, https://doi.org/10.1175/MWR-D-11-00215.1, 2012. a, b, c, d
Skamarock, W. C. and Gassmann, A.: Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration, Mon. Weather Rev., 139, 2962–2975, https://doi.org/10.1175/MWR-D-10-05056.1, 2011. a
Staniforth, A. and Thuburn, J.: Horizontal grids for global weather and climate prediction models: A review, Q. J. Roy. Meteor. Soc., 138, 1–26,
https://doi.org/10.1002/qj.958, 2012. a
Thuburn, J., Ringler, T., Skamarock, W., and Klemp, J.: Numerical
representation of geostrophic modes on arbitrarily structured C-grids, J.
Comput. Phys., 228, 8321–8335, https://doi.org/10.1016/j.jcp.2009.08.006, 2009. a, b
Thuburn, J., Zerroukat, M., Wood, N., and Staniforth, A.: Coupling a mass
conserving semi Lagrangian scheme (SLICE) to a semi implicit discretization
of the shallow water equations: Minimizing the dependence on a reference
atmosphere, Q. J. Roy. Meteor. Soc., 136, 146–154, https://doi.org/10.1002/qj.517,
2010. a
Tian, X.: Evolutions of Errors in the Global Multiresolution Model for
Prediction Across Scales – Shallow Water (MPAS-SW), Q. J. Roy. Meteor. Soc.,
147, 382–391, https://doi.org/10.1002/qj.3923, 2020. a
Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K.: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, 2017. a
Weller, H.: Controlling the Computational Modes of the Arbitrarily Structured C Grid,, Mon. Weather Rev., 140, 3220–3234,
https://doi.org/10.1175/MWR-D-11-00221.1, 2012. a, b
Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon. Weather Rev., 142, 1221–1239, https://doi.org/10.1175/MWR-D-13-00179.1, 2014. a
Zhou, Y., Zhang, Y., Li, J., Yu, R., and Liu, Z.: Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach, Geosci. Model Dev., 13, 6325–6348, https://doi.org/10.5194/gmd-13-6325-2020, 2020. a, b, c
Short summary
The Andes act as a wall in atmospheric flows and play an important role in the weather of South America but are currently underrepresented in weather and climate models. In this work, we propose grids that better capture the mountains and, using idealized dynamical models, study the effects caused by the use of such grids. While possibly improving forecasts for short periods, the grids introduce spurious numerical (nonphysical) effects, which can demand added caution from model developers.
The Andes act as a wall in atmospheric flows and play an important role in the weather of South...