Articles | Volume 14, issue 11
Geosci. Model Dev., 14, 6919–6944, 2021
https://doi.org/10.5194/gmd-14-6919-2021
Geosci. Model Dev., 14, 6919–6944, 2021
https://doi.org/10.5194/gmd-14-6919-2021
Development and technical paper
16 Nov 2021
Development and technical paper | 16 Nov 2021

Topography-based local spherical Voronoi grid refinement on classical and moist shallow-water finite-volume models

Luan F. Santos and Pedro S. Peixoto

Related authors

Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-48,https://doi.org/10.5194/gmd-2022-48, 2022
Revised manuscript under review for GMD
Short summary

Related subject area

Climate and Earth system modeling
Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF
Samuel Rémy, Zak Kipling, Vincent Huijnen, Johannes Flemming, Pierre Nabat, Martine Michou, Melanie Ades, Richard Engelen, and Vincent-Henri Peuch
Geosci. Model Dev., 15, 4881–4912, https://doi.org/10.5194/gmd-15-4881-2022,https://doi.org/10.5194/gmd-15-4881-2022, 2022
Short summary
Tree migration in the dynamic, global vegetation model LPJ-GM 1.1: efficient uncertainty assessment and improved dispersal kernels of European trees
Deborah Zani, Veiko Lehsten, and Heike Lischke
Geosci. Model Dev., 15, 4913–4940, https://doi.org/10.5194/gmd-15-4913-2022,https://doi.org/10.5194/gmd-15-4913-2022, 2022
Short summary
An online ensemble coupled data assimilation capability for the Community Earth System Model: system design and evaluation
Jingzhe Sun, Yingjing Jiang, Shaoqing Zhang, Weimin Zhang, Lv Lu, Guangliang Liu, Yuhu Chen, Xiang Xing, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 15, 4805–4830, https://doi.org/10.5194/gmd-15-4805-2022,https://doi.org/10.5194/gmd-15-4805-2022, 2022
Short summary
loopUI-0.1: indicators to support needs and practices in 3D geological modelling uncertainty quantification
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022,https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022,https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary

Cited articles

Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5C8276M, 2009. a, b, c, d
Barros, S. and Garcia, C.: A Global Semi-Implicit Semi-Lagrangian Shallow-Water Model on Locally Refined Grids, Mon. Weather Rev., 132, 53–65, https://doi.org/10.1175/1520-0493(2004)132<0053:AGSSSM>2.0.CO;2, 2004. a
Behrens, J.: Adaptive Atmospheric Modeling-Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications, Lecture Notes in Computational Science and Engineering, vol. 54, Springer, Berlin, Germany, 2006. a
Brachet, M. and Croisille, J.-P.: Spherical shallow-water wave simulation by a cubed-sphere finite-difference solver, Q. J. Roy. Meteor. Soc., 147, 786–800, https://doi.org/10.1002/qj.3946, 2021. a
Chou, S. C., Dereczynski, C., Gomes, J. L., Pesquero, J. F., Avila, A. M. H. d., Resende, N. C., Alves, L. F., Ruiz-Cárdenas, R., Souza, C. R. d., and Bustamante, J. F. F.: Ten-year seasonal climate reforecasts over South America using the Eta Regional Climate Model, An. Acad. Bras. Cienc., 92, 3, https://doi.org/10.1590/0001-3765202020181242, 2020. a
Download
Short summary
The Andes act as a wall in atmospheric flows and play an important role in the weather of South America but are currently underrepresented in weather and climate models. In this work, we propose grids that better capture the mountains and, using idealized dynamical models, study the effects caused by the use of such grids. While possibly improving forecasts for short periods, the grids introduce spurious numerical (nonphysical) effects, which can demand added caution from model developers.