Behrens, J.: Adaptive Atmospheric Modeling-Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications, Lecture Notes in Computational Science and Engineering, vol. 54, Springer, Berlin, Germany, 2006. a
Du, Q., Faber, V., and Gunzburger, M.: Centroidal Voronoi Tessellations:
Applications and Algorithms, SIAM Rev., 41, 637–676,
https://doi.org/10.1137/S0036144599352836, 1999.
a,
b
Du, Q., Gunzburger, M., and Ju, L.: Constrained Centroidal Voronoi
Tessellations for Surfaces, SIAM J. Sci. Comput., 24, 1488–1506,
https://doi.org/10.1137/S1064827501391576, 2003.
a,
b,
c,
d
Dubos, T., Dubey, S., Tort, M., Mittal, R., Meurdesoif, Y., and Hourdin, F.: DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 3131–3150,
https://doi.org/10.5194/gmd-8-3131-2015, 2015.
a,
b
Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117–2140,
https://doi.org/10.5194/gmd-10-2117-2017, 2017.
a
Ferguson, J., Jablonowski, C., and Johansen, H.: Assessing Adaptive Mesh
Refinement (AMR) in a Forced Shallow-Water Model with Moisture, Mon. Weather
Rev., 147, 3673–3692,
https://doi.org/10.1175/MWR-D-18-0392.1, 2019.
a
Figueroa, S., Bonatti, J., Kubota, P., Grell, G., Morrison, H., R. M. Barros,
S., Fernandez, J., Ramirez-Gutierrez, E., Siqueira, L., Luzia, G., Silva, J.,
Silva, J., Pendharkar, J., Capistrano, V., Alvim, D., Enore, D., Diniz, F.,
Satyamurty, P., Cavalcanti, I., and Panetta, J.: The Brazilian Global
Atmospheric Model (BAM): Performance for Tropical Rainfall Forecasting and
Sensitivity to Convective Scheme and Horizontal Resolution, Weather
Forecast., 31, 1547–1572,
https://doi.org/10.1175/WAF-D-16-0062.1, 2016.
a
Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Silva Dias, P. L., Silva Dias, M. A. F., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda, A. L., Santos e Silva, C. M., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., Silva, F. B., Santos, F. C., Pereira, G., Camponogara, G., Ferrada, G. A., Campos Velho, H. F., Menezes, I., Freire, J. L., Alonso, M. F., Gácita, M. S., Zarzur, M., Fonseca, R. M., Lima, R. S., Siqueira, R. A., Braz, R., Tomita, S., Oliveira, V., and Martins, L. D.: The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas, Geosci. Model Dev., 10, 189–222,
https://doi.org/10.5194/gmd-10-189-2017, 2017.
a
Galewsky, J., Scott, R., and Polvani, L.: An initial-value problem for testing numerical models of the global shallow-water equations, Tellus A, 56,
429–440,
https://doi.org/10.3402/tellusa.v56i5.14436, 2004.
a,
b,
c,
d
Harris, L., Lin, S.-J., and Tu, C.: High-Resolution Climate Simulations Using
GFDL HiRAM with a Stretched Global Grid, J. Climate, 29, 4293–4314,
https://doi.org/10.1175/JCLI-D-15-0389.1, 2016.
a
Hoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa,
K. L., and Wolfram, P. J.: MPAS-Ocean Simulation Quality for
Variable-Resolution North American Coastal Meshes, J. Adv. Model Earth Sy.,
12, e2019MS001848,
https://doi.org/10.1029/2019MS001848, 2020.
a
Insel, N., Poulsen, C., and Ehlers, T.: Influence of the Andes Mountains on
South American moisture transport, convection, and precipitation, Clim.
Dynam., 35, 1477–1492,
https://doi.org/10.1007/s00382-009-0637-1, 2010.
a
Jablonowski, C. and Williamson, D.: The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models, in: Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, edited by: Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R., Springer, Berlin, Heidelberg, vol. 80, 381–493,
https://doi.org/10.1007/978-3-642-11640-7_13, 2011.
a,
b,
c
Ju, L., Ringler, T., and Gunzburger, M.: Voronoi Tessellations and Their
Application to Climate and Global Modeling, in: Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, edited by: Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R., Springer, Berlin, Heidelberg, vol. 80, 313–342,
https://doi.org/10.1007/978-3-642-11640-7_10, 2011.
a,
b,
c,
d,
e
Junquas, C., Li, L., Vera, C., Treut, H., and Takahashi, K.: Influence of South America orography on summertime precipitation in Southeastern South America, Clim. Dynam., 46, 3941–3963,
https://doi.org/10.1007/s00382-015-2814-8, 2015.
a
Kramer, M., Heinzeller, D., Hartmann, H., Berg, W., and Steeneveld, G.-J.:
Assessment of MPAS variable resolution simulations in the grey-zone of
convection against WRF model results and observations, Clim. Dynam., 55,
253–276,
https://doi.org/10.1007/s00382-018-4562-z, 2018.
a
Lean, H., Clark, P., Dixon, M., Roberts, N., Fitch, A., Forbes, R., and
Halliwell, C.: Characteristics of High-Resolution Versions of the Met Office
Unified Model for Forecasting Convection over the United Kingdom, Mon.
Weather Rev., 136, 3408–3424,
https://doi.org/10.1175/2008MWR2332.1, 2008.
a
Liu, Y. and Yang, T.: Impact of Local Grid Refinements of Spherical Centroidal Voronoi Tessellations for Global Atmospheric Models, Commun. Comput. Phys., 21, 1310–1324,
https://doi.org/10.4208/cicp.050815.020916a,
2017.
a
Miura, H. and Kimoto, M.: A Comparison of Grid Quality of Optimized Spherical
Hexagonal Pentagonal Geodesic Grids, Mon. Weather Rev., 133,
2817–2833,
https://doi.org/10.1175/MWR2991.1, 2005.
a
Okabe, A., Boots, B., Sugihara, K., and Chiu, S.: Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, vol. 43,
2nd edn., John Wiley and Sons,
https://doi.org/10.2307/2687299, 2000.
a
Park, S.-H., Klemp, J., and Skamarock, W.: A Comparison of Mesh Refinement in
the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic
Wave Simulation, Mon. Weather Rev., 142, 3614–3634,
https://doi.org/10.1175/MWR-D-14-00004.1, 2014.
a
Peixoto, P. and Barros, S. R. M.: Analysis of grid imprinting on geodesic
spherical icosahedral grids, J. Comput. Phys., 237, 61–78,
https://doi.org/10.1016/j.jcp.2012.11.041, 2013.
a,
b,
c,
d,
e,
f
Peixoto, P. S. and Barros, S. R.: On vector field reconstructions for
semi-Lagrangian transport methods on geodesic staggered grids, J.
Comput. Phys., 273, 185–211, 2014. a
Ringler, T., Thuburn, J., Klemp, J., and Skamarock, W.: A unified approach to
energy conservation and potential vorticity dynamics on arbitrarily
structured C-grids, J. Comput. Phys., 229, 3065–3090,
https://doi.org/10.1016/j.jcp.2009.12.007, 2010.
a,
b,
c,
d,
e,
f
Ringler, T., Jacobsen, D., Gunzburger, M., Ju, L., Duda, M., and Skamarock, W.: Exploring a Multiresolution Modeling Approach within the Shallow-Water
Equations, Mon. Weather Rev., 139, 3348–3368,
https://doi.org/10.1175/MWR-D-10-05049.1, 2011.
a
Shamir, O., Yacoby, I., Ziskin Ziv, S., and Paldor, N.: The Matsuno baroclinic wave test case, Geosci. Model Dev., 12, 2181–2193,
https://doi.org/10.5194/gmd-12-2181-2019, 2019.
a,
b,
c,
d,
e,
f
Silva, V., Kousky, V., and Higgins, W.: Daily Precipitation Statistics for
South America: An Intercomparison Between NCEP Reanalyses and Observations,
J. Hydrometeorol., 12, 101–117,
https://doi.org/10.1175/2010JHM1303.1, 2011.
a
Skamarock, W., Klemp, J., Duda, M., Fowler, L., Park, S.-H., and Ringler, T.: A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi
Tesselations and C-Grid Staggering, Mon. Weather Rev., 140,
3090–3105,
https://doi.org/10.1175/MWR-D-11-00215.1, 2012.
a,
b,
c,
d
Skamarock, W. C. and Gassmann, A.: Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration, Mon. Weather Rev., 139, 2962–2975,
https://doi.org/10.1175/MWR-D-10-05056.1, 2011.
a
Staniforth, A. and Thuburn, J.: Horizontal grids for global weather and climate prediction models: A review, Q. J. Roy. Meteor. Soc., 138, 1–26,
https://doi.org/10.1002/qj.958, 2012.
a
Thuburn, J., Ringler, T., Skamarock, W., and Klemp, J.: Numerical
representation of geostrophic modes on arbitrarily structured C-grids, J.
Comput. Phys., 228, 8321–8335,
https://doi.org/10.1016/j.jcp.2009.08.006, 2009.
a,
b
Thuburn, J., Zerroukat, M., Wood, N., and Staniforth, A.: Coupling a mass
conserving semi Lagrangian scheme (SLICE) to a semi implicit discretization
of the shallow water equations: Minimizing the dependence on a reference
atmosphere, Q. J. Roy. Meteor. Soc., 136, 146–154,
https://doi.org/10.1002/qj.517,
2010.
a
Tian, X.: Evolutions of Errors in the Global Multiresolution Model for
Prediction Across Scales – Shallow Water (MPAS-SW), Q. J. Roy. Meteor. Soc.,
147, 382–391,
https://doi.org/10.1002/qj.3923, 2020.
a
Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K.: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Geosci. Model Dev., 10, 4477–4509,
https://doi.org/10.5194/gmd-10-4477-2017, 2017.
a
Williamson, D., Drake, J., Hack, J., Jakob, R., and Swarztrauber, P.: A
Standard Test Set for Numerical Approximations to the Shallow Water Equations
in Spherical Geometry, J. Comput. Phys., 102, 211–224,
https://doi.org/10.1016/S0021-9991(05)80016-6, 1992.
a,
b,
c,
d,
e,
f,
g,
h
Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon. Weather Rev., 142, 1221–1239,
https://doi.org/10.1175/MWR-D-13-00179.1, 2014.
a
Zerroukat, M. and Allen, T.: A moist Boussinesq shallow water equations set
for testing atmospheric models, J. Comput. Phys., 290, 55–72,
https://doi.org/10.1016/j.jcp.2015.02.011, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Zhou, Y., Zhang, Y., Li, J., Yu, R., and Liu, Z.: Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach, Geosci. Model Dev., 13, 6325–6348,
https://doi.org/10.5194/gmd-13-6325-2020, 2020.
a,
b,
c