Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6113-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6113-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model
Jinxiao Li
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Qing Bao
CORRESPONDING AUTHOR
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Yimin Liu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Lei Wang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Jing Yang
State Key Laboratory of Earth Surface Processes and Resource Ecology,
Faculty of Geographical Science, Beijing Normal University, Beijing 100875,
China
Southern Marine Science and Engineering Guangdong Laboratory,
Guangzhou 511458, China
Guoxiong Wu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Xiaofei Wu
School of Atmospheric Sciences/Plateau Atmosphere and Environment Key
Laboratory of Sichuan Province, Chengdu University of Information
Technology, Chengdu 610225, China
Bian He
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Xiaocong Wang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Xiaoqi Zhang
School of Atmospheric Sciences, Nanjing University of Information
Science and Technology, Nanjing 210044, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Yaoxian Yang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Zili Shen
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science and
Technology, Nanjing 210044, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Related authors
No articles found.
Weihao Sun, Massimo Bollasina, Ioana Colfescu, Guoxiong Wu, and Yimin Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3389, https://doi.org/10.5194/egusphere-2025-3389, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Observational records show that the Asian monsoon underwent substantial changes during the early 20th century, including a wetting trend over South Asia and a southward shift in rainfall over East Asia. We show that increasing European sulphate aerosol emissions played a crucial role in shaping the monsoon rainfall trends. This has important implications for reducing uncertainties in monsoon projections, particularly in light of the diverse future aerosol emission scenarios for the region.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Maoshan Li, Wei Fu, Na Chang, Ming Gong, Pei Xu, Yaoming Ma, Zeyong Hu, Yaoxian Yang, and Fanglin Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-257, https://doi.org/10.5194/acp-2022-257, 2022
Revised manuscript not accepted
Short summary
Short summary
Compared with the plain area, the land-atmosphere interaction on the Tibetan Plateau (TP) is intense and complex, which affects the structure of the boundary layer. The observed height of the convective boundary layer on the TP under the influence of the southern branch of the westerly wind was higher than that during the Asian monsoon season. The height of the boundary layer was positively correlated with the sensible heat flux and negatively correlated with latent heat flux.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Cited articles
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C.,
Lauritzen P. H., Caron, J. M., and Truesdale, J. E.: Exploratory
high-resolution climate simulations using the Community Atmosphere Model
(CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014.
Balaguru, K., Leung, L., R., Van Roekel, L., P., Golaz, J., C., Ullrich, P.,
A., Caldwell, P., M., Hagos, S., M., Harrop, B., E., and Mametjanov, A.:
Characterizing tropical cyclones in the energy exascale earth system model
Version 1, J. Adv. Model. Earth Sy., 12, e2019MS002024, https://doi.org/10.1029/2019MS002024, 2020.
Bao, Q. and He, B.: CAS FGOALS-f3-H model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3312, 2019a.
Bao, Q. and He, B.: CAS FGOALS-f3-L model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.12009, 2019b.
Bao, Q. and Li, J.: Progress in climate modeling of precipitation over the
Tibetan Plateau, Natl. Sci. Rev., 7, 486–487, https://doi.org/10.1093/nsr/nwaa006, 2020.
Bao, Q., Wu, G., Liu, Y., Yang, J., Wang, Z., and Zhou, T.: An introduction
to the coupled model FGOALS1. 1-s and its performance in East Asia, Adv.
Atmos. Sci., 27, 1131–1142, https://doi.org/10.1007/s00376-010-9177-1, 2010.
Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., He, B., He, J., Li, L.,
and Li, J.: The flexible global ocean-atmosphere-land system model, spectral
version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576, https://doi.org/10.1007/s00376-012-2113-9, 2013.
Bao, Q., Wu, X., Li, J., Wang, L., He, B., Wang, X., Liu, Y., and Wu, G.:
Outlook for El Niño and the Indian Ocean Dipole in autumn-winter
2018–2019, Chinese Sci. Bull., 64, 73–78, 2018.
Bell, G. and Chelliah, M.: The 1999 North Atlantic and eastern North Pacific
hurricane season [in “Climate Assessment for 1999”], B. Am. Meteorol.
Soc., 81, S19–S22, https://doi.org/10.1175/1520-0477-80.5s.S1,
2000.
Bell, R., Hodges, K., Vidale, P. L., Strachan, J., and Roberts, M.:
Simulation of the global ENSO–tropical cyclone teleconnection by a
high-resolution coupled general circulation model, J. Climate, 27,
6404–6422, https://doi.org/10.1175/JCLI-D-13-00559.1, 2014.
Benfield, A.: Global economic losses. Weather, climate & catastrophe insight: 2017 annual report, Aon Benfield UCL Hazard Research Centre Rep.,
2–5, available at: http://thoughtleadership.aonbenfield.com/Documents/20180124-abif-annual-report-weather-climate-2017.pdfTS47 (last access: 8 October 2021), 2018.
Bengtsson, L., Böttger, H., and Kanamitsu, M.: Simulation of
hurricane-type vortices in a general circulation model, Tellus, 34, 440–457,
https://doi.org/10.1111/j.2153-3490.1982.tb01833.x, 1982.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M. A., Meurdesoif, Y., and Ghattas, J.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.13810, 2019a.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M. A., Meurdesoif, Y., and Ghattas, J.: IPSL IPSL-CM6A-ATM-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5185, 2019b.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.- A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, L.E., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and
evaluation of the IPSL-CM6A-LR climate model, J. Adv. Model. Earth Sy.,
2020, 12, e2019MS002010, https://doi.org/10.1029/2019MS002010,
2020.
Camargo, S. J.: Global and regional aspects of tropical cyclone activity in
the CMIP5 models, J. Climate, 26, 9880–9902, https://doi.org/10.1175/JCLI-D-12-00549.1, 2013.
Camargo, S. J. and Sobel, A. H.: Western North Pacific tropical cyclone
intensity and ENSO, J. Climate, 18, 2996–3006,
https://doi.org/10.1175/JCLI3457.1, 2005.
Camargo, S. J. and Wing, A. A.: Tropical cyclones in climate models, Wiley Interdiscip. Rev. Clim. Change, 7, 211–237, https://doi.org/10.1002/wcc.373,
2016.
Camargo, S. J., Emanuel, K. A., and Sobel, A. H.: Use of a genesis potential
index to diagnose ENSO effects on tropical cyclone genesis, J. Climate, 20,
4819–4834, https://doi.org/10.1175/JCLI4282.1, 2007.
Camargo, S. J., Robertson, A. W., Barnston, A. G., and Ghil, M.: Clustering
of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects,
Geochem. Geophy. Geosy., 9, 1–23, https://doi.org/10.1029/2007GC001861, 2008.
Camargo, S. J., Wheeler, M. C., and Sobel, A. H.: Diagnosis of the MJO
modulation of tropical cyclogenesis using an empirical index, J. Atmos.
Sci., 66, 3061–3074, https://doi.org/10.1175/2009JAS3101.1,
2009.
Camp, J., Roberts, M. J., Comer, R. E., Wu, P., MacLachlan, C., Bett, P. E.,
Golding, N., Toumi, R., and Chan, J. C.: The western Pacific subtropical
high and tropical cyclone landfall: Seasonal forecasts using the Met Office
GloSea5 system, Q. J. Roy. Meteor. Soc., 145, 105–116, https://doi.org/10.1002/qj.3407, 2019.
Chen, J.-H. and Lin, S.-J.: Seasonal predictions of tropical cyclones using
a 25-km-resolution general circulation model, J. Climate, 26, 380–398,
https://doi.org/10.1175/JCLI-D-12-00061.1, 2013.
Chen, S., Knaff, J. A., and Marks, F. D.: Effects of vertical wind shear and
storm motion on tropical cyclone rainfall asymmetries deduced from
TRMM, Mon. Weather Rev., 13, 3190–3208, https://doi.org/10.1175/MWR3245.1, 2006.
Chutia, L., Pathak, B., Parottil, A., and Bhuyan, P. K.: Impact of
microphysics parameterizations and horizontal resolutions on simulation of
“MORA” tropical cyclone over Bay of Bengal using Numerical Weather
Prediction Model, Meteorol. Atmos. Phys., 131, 1483–1495,
https://doi.org/10.1007/s00703-018-0651-0, 2019.
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M.,
Cady-Pereira, K., Boukabara, S., and Brown, P.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. RA., 91,
233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
C., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., and Bauer, d. P.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delworth, T. L., Cooke, W. F., Adcroft, A., Bushuk, M., Chen, J. H., Dunne,
K. A., Ginoux, P., Gudgel, R., Hallberg, R. W., and Harris, L.: SPEAR: The
Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction
and Projection, J. Adv. Model. Earth Sy., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895, 2020.
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3P model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4674, 2017a.
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3P-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4675, 2017b.
Emanuel, K.: Sensitivity of tropical cyclones to surface exchange
coefficients and a revised steady-state model incorporating eye dynamics, J.
Atmos. Sci., 52, 3969–3976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2, 1995.
Emanuel, K.: Downscaling CMIP5 climate models shows increased tropical
cyclone activity over the 21st century, P. Natl. Acad. Sci. USA, 110,
12219–12224, https://doi.org/10.1073/pnas.1301293110, 2013.
Emanuel, K.: Assessing the present and future probability of Hurricane
Harvey's rainfall, P. Natl. Acad. Sci. USA, 114, 12681–12684, https://doi.org/10.1073/pnas.1716222114, 2017.
Emanuel, K. and Sobel, A.: Response of tropical sea surface temperature,
precipitation, and tropical cyclone-related variables to changes in global
and local forcing, J. Adv. Model. Earth Sy., 5, 447–458, https://doi.org/10.1002/jame.20032, 2013.
Emanuel, K., DesAutels, C., Holloway, C., and Korty, R.: Environmental
control of tropical cyclone intensity, J. Atmos. Sci., 61, 843–858,
https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2, 2004.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Gray, W. M.: Global view of the origin of tropical disturbances and storm,
Mon. Weather Rev., 96, 669–700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2, 1968.
Gray, W. M.: Atlantic seasonal hurricane frequency. Part I: El Niño and
30 mb quasi-biennial oscillation influences, Mon. Weather Rev., 112.9,
1649–1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2, 1984.
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019.
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020.
Haarsma, R. J., Mitchell, J. F., and Senior, C.: Tropical disturbances in a
GCM, Clim. Dynam., 8, 247–257, https://doi.org/10.1007/BF00198619, 1993.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Hall, J. D., Matthews, A. J., and Karoly, D. J.: The modulation of tropical
cyclone activity in the Australian region by the Madden–Julian oscillation,
Mon. Weather Rev., 129, 2970–2982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2, 2001.
He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., Wu, G., Chen, K., He,
S., Hu, W., Li, J., Li, J., Nian, G., Wang, L., Yang, J., Zhang, M., and
Zhang, X.: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric
model Intercomparison project simulation, Adv. Atmos. Sci., 36, 771–778,
https://doi.org/10.1007/s00376-019-9027-8, 2019..
He, B., Liu, Y., Wu, G., Bao, Q., Zhou, T., Wu, X., Wang, L., Li, J., Wang,
X., and Li, J.: CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and
Tier-3 Experiments, Adv. Atmos. Sci., 37, 18–28, https://doi.org/10.1007/s00376-019-9085-y, 2020.
Hodges, K., Cobb, A., and Vidale, P. L.: How well are tropical cyclones
represented in reanalysis datasets?, J. Climate, 30, 5243–5264,
https://doi.org/10.1175/JCLI-D-16-0557.1, 2017.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation
measurement mission, B. Am. Meteorol. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model, Documentation and Software User’s Manual, Version 4.1, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, New Mexico, available at: http://oceans11.lanl.gov/trac/CICE (last access: 8 October 2021), 2010.
Hunke, E. C., Lipscomb, W. H., Turner, A., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos sea ice model documentation and software user's manual,
T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM,
87545, 2008.
Klotzbach, P. J.: The Madden–Julian oscillation's impacts on worldwide
tropical cyclone activity, J. Climate, 27, 2317–2330, https://doi.org/10.1175/JCLI-D-13-00483.1, 2014.
Kim, D., Ho, C. H., Park, D. S., Chan, J. C. L., and Jung, Y.: The Relationship
between Tropical Cyclone Rainfall Area and Environmental Conditions over the
Subtropical Oceans, J. Climate, 31, 4605–4616, https://doi.org/10.1175/JCLI-D-17-0712.1, 2018.
Kim, H., M., Webster, P. J., and Curry, J. A.: Modulation of North Pacific
tropical cyclone activity by three phases of ENSO, J. Climate, 24,
1839–1849, https://doi.org/10.1175/2010JCLI3939.1, 2011.
Kim, H. S., Vecchi, G. A., Knutson, T. R., Anderson, W. G., Delworth, T. L.,
Rosati, A., Zeng, F., and Zhao, M.: Tropical cyclone simulation and response
to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate
model, J. Climate, 27, 8034–8054, https://doi.org/10.1175/JCLI-D-13-00475.1, 2014.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The international best track archive for climate stewardship (IBTrACS)
unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376,
https://doi.org/10.1175/2009BAMS2755.1, 2010.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., and Walsh, K.: Tropical Cyclones and
Climate Change Assessment: Part I: Detection and Attribution, B. Am.
Meteorol. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., and Walsh, K.: Tropical cyclones and
climate change assessment: Part II: Projected response to anthropogenic
warming, B. Am. Meteorol. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Knutson, T. R., Manabe, S., and Gu, D.: Simulated ENSO in a global coupled
ocean–atmosphere model: Multidecadal amplitude modulation and CO2
sensitivity, J. Climate, 10, 138–161, https://doi.org/10.1175/1520-0442(1997)010<0138:SEIAGC>2.0.CO;2, 1997.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Held, I. M., and Tuleya, R.
E.: Simulation of the recent multidecadal increase of Atlantic hurricane
activity using an 18-km-grid regional model, B. Am. Meteorol. Soc., 88,
1549–1565, https://doi.org/10.1175/BAMS-88-10-1549, 2007.
Krishnamurthy, L., Vecchi, G. A., Msadek, R., Murakami, H., Wittenberg, A.,
and Zeng, F.: Impact of strong ENSO on regional tropical cyclone activity in
a high-resolution climate model in the North Pacific and North Atlantic
Oceans, J. Climate, 29, 2375–2394, https://doi.org/10.1175/JCLI-D-15-0468.1, 2016.
Krishnamurti, T. N. and Oosterhof, D.: Prediction of the life cycle of a
supertyphoon with a high-resolution global model, B. Am. Meteorol. Soc., 70,
1218–1230, https://doi.org/10.1175/1520-0477(1989)070<1218:POTLCO>2.0.CO;2, 1989.
Larson, S. and Kirtman, B.: The Pacific Meridional Mode as a trigger for
ENSO in a high-resolution coupled model, B. Am. Meteorol. Soc. B. Am.
Meteorol. Soc., 40, 3189–3194, https://doi.org/10.1002/grl.50571, 2013.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z. L., Levis, S., and Sakaguchi, K.:
Parameterization improvements and functional and structural advances in
version 4 of the Community Land Model, J. Adv. Model. Earth Sy., 3, 1–27, https://doi.org/10.1029/2011MS00045, 2011.
Li, H. and Sriver, R. L.: Tropical cyclone activity in the high-resolution community earth system model and the impact of ocean coupling, J. Adv. Model. Earth Sy., 10, 165–186, https://doi.org/10.1002/2017MS001199, 2018.
Li, J.: The code of FGOALS-f3 (V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4588109, 2021.
Li, J., Bao, Q., Liu, Y., and Wu, G.: Evaluation of the computational
performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL)
on a high-performance computer, Atmos. Oceanic Sci. Lett., 10, 329–336,
https://doi.org/10.1080/16742834.2017.1331111, 2017.
Li, J., Bao, Q., Liu, Y., Wu, G., Wang, L., He, B., Wang, X., and Li, J.:
Evaluation of FAMIL2 in simulating the climatology and
seasonal-to-interannual variability of tropical cyclone characteristics, J.
Adv. Model. Earth Sy., 11, 1117–1136, https://doi.org/10.1029/2018MS001506, 2019.
Liebmann, B., Hendon, H. H., and Glick, J. D.: The relationship between
tropical cyclones of the western Pacific and Indian Oceans and the
Madden-Julian oscillation, J. Meteorol. Soc. Jpn., 72, 401–412, https://doi.org/10.2151/jmsj1965.72.3_401, 1994.
Lim, Y. K., Schubert, S. D., Reale, O., Lee, M, I., Molod, A. M., and
Suarez, M. J.: Sensitivity of tropical cyclones to parameterized convection
in the NASA GEOS-5 mode, J. Climate, 28, 551–573,
https://doi.org/10.1175/JCLI-D-14-00104.1, 2015.
Lin, S.-J.: A “vertically Lagrangian” finite-volume dynamical core for
global models, Mon. Weather Rev., 132, 2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004.
Liu, H., Lin, P., Yu, Y., and Zhang, X.: The baseline evaluation of LASG/IAP
climate system ocean model (LICOM) version 2, Acta Meteorol. Sin., 26,
318–329, https://doi.org/10.1007/s13351-012-0305-y, 2012.
Ma, Y., Davidson, N. E., Xiao, Y., and Bao, J. W.: Revised parameterization
of air–sea exchanges in high winds for operational numerical prediction:
Impact on tropical cyclone track, intensity, and rapid intensification,
Weather Forecast., 32, 821–848, https://doi.org/10.1175/WAF-D-15-0109.1, 2017.
Manabe, S. and Broccoli, A.: Mountains and arid climates of middle
latitudes, Science, 247, 192–195, https://doi.org/10.1126/science.247.4939.192, 1990.
Manabe, S., Holloway Jr., J. L., and Stone, H. M.: Tropical circulation in a
time-integration of a global model of the atmosphere, J. Atmos. Sci., 27,
580–613, https://doi.org/10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2, 1970.
Manganello, J. V., Hodges, K. I., Kinter III, J. L., Cash, B. A., Marx, L.,
Jung, T., Achuthavarier, D., Adams, J. M., Altshuler, E. L., and Huang, B.:
Tropical cyclone climatology in a 10-km global atmospheric GCM: toward
weather-resolving climate modeling, J. Climate, 25, 3867–3893, https://doi.org/10.1175/JCLI-D-11-00346.1, 2012.
Manganello, J. V., Hodges, K. I., Cash, B. A., Kinter III, J. L., Altshuler,
E. L., Fennessy, M. J., Vitart, F., Molteni, F., and Towers, P.: Seasonal
forecasts of tropical cyclone activity in a high-atmospheric-resolution
coupled prediction system, J. Climate, 29, 1179–1200, https://doi.org/10.1175/JCLI-D-15-0531.1, 2016.
Masson, S., Terray, P., Madec, G., Luo, J.-J., Yamagata, T., and Takahashi,
K.: Impact of intra-daily SST variability on ENSO characteristics in a
coupled model, Clim. Dynam., 39, 681–707, https://doi.org/10.1007/s00382-011-1247-2, 2012.
Matsuura, T., Yumoto, M., Iizuka, S., and Kawamura, R.: Typhoon and ENSO
simulation using a high-resolution coupled GCM, Geophys. Res. Lett., 26,
1755–1758, https://doi.org/10.1029/1999GL900329, 1999.
Meehl, G. A., Shields, C., Arblaster, J. M., Annamalai, H., and Neale, R.:
Intraseasonal, seasonal, and interannual characteristics of regional monsoon
simulations in CESM2, J. Adv. Model. Earth Sy., 12, e2019MS001962,
https://doi.org/10.1029/2019MS001962, 2020.
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact
of climate change on global tropical cyclone damage, Nat. Clim. Change, 2,
205–209, https://doi.org/10.1038/nclimate1357, 2012.
Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T.,
Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., and Kitoh,
A.: Climate simulations using MRI-AGCM3. 2 with 20-km grid, J. Meteorol.
Soc. Jpn., 90, 233–258, https://doi.org/10.2151/jmsj.2012-A12,
2012.
Mizuta, R., Yoshimura, H., Ose, T., Hosaka, M., and Yukimoto, S.: MRI MRI-AGCM3-2-H model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.10974, 2019a.
Mizuta, R., Yoshimura, H., Ose, T., Hosaka, M., and Yukimoto, S.: MRI MRI-AGCM3-2-S model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6942, 2019b.
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Mauritsen, T., Baehr,
J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H.,
Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D.,
Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F., and Marotzke, J.: A
Higher-resolution Version of the Max Planck Institute Earth System Model
(MPI-ESM1. 2-HR), J. Adv. Model. Earth Sy., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018.
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E.,
Adachi, Y., Yukimoto, S., Hosaka, M., and Kusunoki, S.: Future changes in
tropical cyclone activity projected by the new high-resolution MRI-AGCM, J.
Climate, 25, 3237–3260, https://doi.org/10.1007/s00382-012-1407-z, 2012.
Murakami, H., Sugi, M., and Kitoh, A.: Future changes in tropical cyclone
activity in the North Indian Ocean projected by high-resolution MRI-AGCMs,
Clim. Dynam., 40, 1949–1968, https://doi.org/10.1007/s00382-012-1407-z, 2013.
Murakami, H., Vecchi, G. A., Villarini, G., Delworth, T. L., Gudgel, R.,
Underwood, S., Yang, X., Zhang, W., and Lin, S.-J.: Seasonal forecasts of
major hurricanes and landfalling tropical cyclones using a high-resolution
GFDL coupled climate model, J. Climate, 29, 7977–7989, https://doi.org/10.1175/JCLI-D-16-0233.1, 2016.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical Description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2010.
Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and
Noda, A.: Tropical cyclone climatology in a global-warming climate as
simulated in a 20 km-mesh global atmospheric model: Frequency and wind
intensity analyses, J. Meteorol. Soc. Jpn., 84, 259–276, https://doi.org/10.2151/jmsj.84.259, 2006.
Palmer, T., Shutts, G., and Swinbank, R.: Alleviation of a systematic
westerly bias in general circulation and numerical weather prediction models
through an orographic gravity wave drag parametrization, Q. J. Roy. Meteor.
Soc., 112, 1001–1039, https://doi.org/10.1002/qj.49711247406,
1986.
Park, S. and Bretherton, C. S.: The University of Washington shallow
convection and moist turbulence schemes and their impact on climate
simulations with the Community Atmosphere Model, J. Climate, 22, 3449–3469,
https://doi.org/10.1175/2008JCLI2557.1, 2009.
Philander, S., Pacanowski, R., Lau, N.-C., and Nath, M.: Simulation of ENSO
with a global atmospheric GCM coupled to a high-resolution, tropical Pacific
Ocean GCM, J. Climate, 5, 308–329, https://doi.org/10.1175/1520-0442(1992)005<0308:SOEWAG>2.0.CO;2, 1992.
Putman, W. M. and Lin, S.-J.: Finite-volume transport on various
cubed-sphere grids, J. Comput. Phys., 227, 55–78, https://doi.org/10.1016/j.jcp.2007.07.022, 2007.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., and Keeley, S.: ECMWF ECMWF-IFS-LR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4976, 2017a.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., and Keeley, S.: ECMWF ECMWF-IFS-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4975, 2017b.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018.
Roberts, M.: MOHC HadGEM3-GC31-LM model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6027, 2017a.
Roberts, M.: MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6024, 2017b.
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere,
B., Mecking, J., Haarsma, R., Bellucci, A., and Scoccimarro, E.: Impact of
Model Resolution on Tropical Cyclone Simulation Using the
HighResMIP–PRIMAVERA Multimodel Ensemble, J. Climate, 33, 2557–2583,
https://doi.org/10.1175/JCLI-D-19-0639.1, 2020.
Sakradzija, M., Seifert, A., and Dipankar, A.: A stochastic scale-aware
parameterization of shallow cumulus convection across the convective gray
zone, J. Adv. Model. Earth Sy., 8, 786–812, https://doi.org/10.1002/2016MS000634, 2016.
Schneider, E. K., Kirtman, B. P., DeWitt, D. G., Rosati, A., Ji, L., and
Tribbia, J. J.: Retrospective ENSO forecasts: sensitivity to atmospheric
model and ocean resolution, Mon. Weather Rev., 131, 3038–3060, https://doi.org/10.1175/1520-0493(2003)131<3038:REFSTA>2.0.CO;2, 2003.
Scoccimarro, E., Fogli, P. G., Reed, K. A., Gualdi, S., Masina, S., and
Navarra, A.: Tropical cyclone interaction with the ocean: The role of
high-frequency (subdaily) coupled processes, J. Climate, 30, 145–162,
https://doi.org/10.1175/JCLI-D-16-0292.1, 2017.
Simpson, R. H. and Saffir, H.: The hurricane disaster potential scale,
Weatherwise, 27, 169–186, https://doi.org/10.1080/00431672.1974.9931702, 1974.
Small, R. J., Bacmeister, J., Bailey, D. A., Baker, A., Bishop, S., Bryan, F. O., Caron, J., Dennis, J., Gent, P. R., Hsu, H.-M., Jochum, M., Lawrence, D. M., Munoz Acevedo, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y., and Vertenstein, M.: A new synoptic scale resolving global climate simulation using the
Community Earth System Model, J. Adv. Model. Earth Sy, 6, 1065–1094,
https://doi.org/10.1002/2014MS000363, 2014.
Strachan, J., Vidale, P. L., Hodges, K., Roberts, M., and Demory, M.-E.:
Investigating global tropical cyclone activity with a hierarchy of AGCMs:
The role of model resolution, J. Climate, 26, 133–152, https://doi.org/10.1175/JCLI-D-12-00012.1, 2013.
Ullrich, P. A. and Zarzycki, C. M.: TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, 2017.
Ullrich, P. A., Zarzycki, C. M., McClenny, E. E., Pinheiro, M. C., Stansfield, A. M., and Reed, K. A.: TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets, Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021, 2021.
Vitart, F. and Robertson, A. W.: The sub-seasonal to seasonal prediction
project (S2S) and the prediction of extreme events, Npj Clim. Atmos. Sci.,
1, 3, https://doi.org/10.1038/s41612-018-0013-0, 2018.
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C.,
Déqué, M., Ferranti, L., Fucile, E., and Fuentes, M.: The
subseasonal to seasonal (S2S) prediction project database, B. Am. Meteorol.
Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1,
2017.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4035, 2019a.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4036, 2019b.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.- P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Franchisteguy, L., Ethé, C., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., and Terray, L.: Evaluation of
CMIP6 deck experiments with CNRM-CM6-1, J. Adv. Model. Earth Sy., 11,
2177–2213, https://doi.org/10.1029/2019MS001683, 2019.
von Storch, J. S., Putrasahan, D., Lohmann, K., Gutjahr, O., Jungclaus, J., Bittner, M., Haak, H., Wieners, K. H., Giorgetta, M., Reick, C., Esch, M., Gayler, V., de Vrese, P., Raddatz, T., Mauritsen, T., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6584, 2017a.
von Storch, J. S., Putrasahan, D., Lohmann, K., Gutjahr, O., Jungclaus, J., Bittner, M., Haak, H., Wieners, K. H., Giorgetta, M., Reick, C., Esch, M., Gayler, V., de Vrese, P., Raddatz, T., Mauritsen, T., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-XR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.10305, 2017b.
Voosen, P.: The weather master, Science, 356, 128–131, https://doi.org/10.1126/science.356.6334.128, 2017.
Walsh, K., Fiorino, M., Landsea, C., and McInnes, K.: Objectively determined
resolution-dependent threshold criteria for the detection of tropical
cyclones in climate models and reanalyses, J. Climate, 20, 2307–2314,
https://doi.org/10.1175/JCLI4074.1, 2007.
Walsh, K., Lavender, S., Scoccimarro, E., and Murakami, H.: Resolution
dependence of tropical cyclone formation in CMIP3 and finer resolution
models, Clim. Dynam., 40, 585–599, https://doi.org/10.1007/s00382-012-1298-z, 2013.
Walsh, K. J., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner, J.,
Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., and Patricola, C.:
Hurricanes and climate: the US CLIVAR working group on hurricanes, B. Am.
Meteorol. Soc., 96, 997–1017, https://doi.org/10.1175/BAMS-D-13-00242.1, 2015.
Walsh, K. J., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo,
S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T. C., and Sobel,
A.: Tropical cyclones and climate change, Wiley Interdiscip. Rev. Clim. Change, 7, 65–89,
https://doi.org/10.1002/wcc.371, 2016.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: The Met Office global
coupled model 3.0 and 3.1 (GC3. 0 and GC3. 1) configurations, J. Adv. Model.
Earth Sy., 10, 357–380, https://doi.org/10.1002/2017MS001115,
2018.
Wong, M. L. M. and Chan, J. C. L.: Tropical cyclone intensity in vertical wind
shear, J. Atmos. Sci, 61, 1859–1876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2, 2004.
Wu, G. and Lau, N.-C.: A GCM simulation of the relationship between
tropical-storm formation and ENSO, Mon. Weather Rev., 120, 958–977,
https://doi.org/10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2, 1992.
Wu, G., Liu, H., Zhao, Y., and Li, W.: A nine-layer atmospheric general
circulation model and its performance, Adv. Atmos. Sci., 13, 1–18,
https://doi.org/10.1007/BF02657024, 1996.
Xiang, B., Lin, S.-J., Zhao, M., Zhang, S., Vecchi, G., Li, T., Jiang, X.,
Harris, L., and Chen, J.-H.: Beyond weather time-scale prediction for
Hurricane Sandy and Super Typhoon Haiyan in a global climate model, Mon.
Weather Rev., 143, 524–535, https://doi.org/10.1175/MWR-D-14-00227.1, 2015.
Xu, K.-M. and Randall, D. A.: A semiempirical cloudiness parameterization
for use in climate models, J. Atmos. Sci., 53, 3084–3102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996.
Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., and Chen,
D.: An overview of the China Meteorological Administration tropical cyclone
database, J. Atmos. Ocean. Tech., 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1, 2014.
Yu, Y., Tang, S., Liu, H., Lin, P., and Li, X.: Development and evaluation
of the dynamic framework of an ocean general circulation model with
arbitrary orthogonal curvilinear coordinate, Chinese Journal of Atmospheric
Sciences, 42, 877–889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284, 2018.
Zarzycki, C. M. and Jablonowski, C.: Experimental tropical cyclone forecasts
using a variable-resolution global model, Mon. Weather Rev., 143, 4012–4037,
https://doi.org/10.1175/MWR-D-15-0159.1, 2015.
Zhang, C.: Madden–Julian oscillation: Bridging weather and climate, B. Am.
Meteorol. Soc., 94, 1849–1870, https://doi.org/10.1175/BAMS-D-12-00026.1, 2013.
Zhang, J. A., Rogers, R. F., and Tallapragada, V.: Impact of parameterized
boundary layer structure on tropical cyclone rapid intensification forecasts
in HWRF, Mon. Weather Rev., 145, 1413–1426, https://doi.org/10.1175/MWR-D-16-0129.1, 2017.
Zhang, W., Vecchi, G. A., Murakami, H., Delworth, T., Wittenberg, A. T.,
Rosati, A., Underwood, S., Anderson, W., Harris, L., and Gudgel, R.:
Improved simulation of tropical cyclone responses to ENSO in the western
North Pacific in the high-resolution GFDL HiFLOR coupled climate model, J.
Climate, 29, 1391–1415, https://doi.org/10.1175/JCLI-D-15-0475.1, 2016.
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations of global
hurricane climatology, interannual variability, and response to global
warming using a 50-km resolution GCM, J. Climate, 22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009.
Zhao, M., Held, I. M., and Lin, S. J.: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69, 2272–2283, https://doi.org/10.1175/JAS-D-11-0238.1, 2012.
Zhou, L., Bao, Q., Liu, Y., Wu, G., Wang, W. C., Wang, X., He, B., Yu, H.,
and Li, J.: Global energy and water balance: Characteristics from
Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), J. Adv. Model.
Earth Sy., 7, 1–20, https://doi.org/10.1002/2014MS000349, 2015.
Zhou, L., Lin, S. J., Chen, J. H., Harris, L. M., Chen, X., and Rees, S. L.:
Toward Convective-Scale Prediction within the Next Generation Global
Prediction System, B. Am. Meteorol. Soc., 100, 1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019.
Zhou, T., Turner, A. G., Kinter, J. L., Wang, B., Qian, Y., Chen, X., Wu, B., Wang, B., Liu, B., Zou, L., and He, B.: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project, Geosci. Model Dev., 9, 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016, 2016.
Short summary
The configuration and simulated performance of tropical cyclones (TCs) in FGOALS-f3-L/H will be introduced firstly. The results indicate that the simulated performance of TC activities is improved globally with the increased horizontal resolution especially in TC counts, seasonal cycle, interannual variabilities and intensity aspects. It is worth establishing a high-resolution coupled dynamic prediction system based on FGOALS-f3-H (~ 25 km) to improve the prediction skill of TCs.
The configuration and simulated performance of tropical cyclones (TCs) in FGOALS-f3-L/H will be...