Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6113-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6113-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model
Jinxiao Li
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Qing Bao
CORRESPONDING AUTHOR
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Yimin Liu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Lei Wang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Jing Yang
State Key Laboratory of Earth Surface Processes and Resource Ecology,
Faculty of Geographical Science, Beijing Normal University, Beijing 100875,
China
Southern Marine Science and Engineering Guangdong Laboratory,
Guangzhou 511458, China
Guoxiong Wu
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Xiaofei Wu
School of Atmospheric Sciences/Plateau Atmosphere and Environment Key
Laboratory of Sichuan Province, Chengdu University of Information
Technology, Chengdu 610225, China
Bian He
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Xiaocong Wang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Xiaoqi Zhang
School of Atmospheric Sciences, Nanjing University of Information
Science and Technology, Nanjing 210044, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Yaoxian Yang
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Zili Shen
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science and
Technology, Nanjing 210044, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing 100029, China
Related authors
No articles found.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Maoshan Li, Wei Fu, Na Chang, Ming Gong, Pei Xu, Yaoming Ma, Zeyong Hu, Yaoxian Yang, and Fanglin Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-257, https://doi.org/10.5194/acp-2022-257, 2022
Revised manuscript not accepted
Short summary
Short summary
Compared with the plain area, the land-atmosphere interaction on the Tibetan Plateau (TP) is intense and complex, which affects the structure of the boundary layer. The observed height of the convective boundary layer on the TP under the influence of the southern branch of the westerly wind was higher than that during the Asian monsoon season. The height of the boundary layer was positively correlated with the sensible heat flux and negatively correlated with latent heat flux.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Siyuan Zhou, Jing Yang, Wei-Chyung Wang, Chuanfeng Zhao, Daoyi Gong, and Peijun Shi
Atmos. Chem. Phys., 20, 5211–5229, https://doi.org/10.5194/acp-20-5211-2020, https://doi.org/10.5194/acp-20-5211-2020, 2020
Short summary
Short summary
Aerosol–cloud–precipitation interaction is a challenging problem in regional climate. Our study contrasted the observed diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei between clean and polluted days during the 2002–2012 summers. We found the heavy rainfall under pollution has earlier start time, earlier peak time and longer duration, and further found the absorbing aerosols and scattering aerosols play different roles in the heavy rainfall diurnal variation.
Jiahui Zhang, Dao-Yi Gong, Rui Mao, Jing Yang, Ziyin Zhang, and Yun Qian
Atmos. Chem. Phys., 18, 16775–16791, https://doi.org/10.5194/acp-18-16775-2018, https://doi.org/10.5194/acp-18-16775-2018, 2018
Short summary
Short summary
The Chinese Spring Festival (also known as the Chinese New Year or Lunar New Year) is the most important festival in China. This paper reports that during the Chinese Spring Festival, the precipitation over southern China has been significantly reduced. The precipitation reduction is due to anomalous northerly winds. We suppose that anomalous atmospheric circulation is likely related to the human activity during holidays. It is an interesting phenomenon.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Tianjun Zhou, Andrew G. Turner, James L. Kinter, Bin Wang, Yun Qian, Xiaolong Chen, Bo Wu, Bin Wang, Bo Liu, Liwei Zou, and Bian He
Geosci. Model Dev., 9, 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016, https://doi.org/10.5194/gmd-9-3589-2016, 2016
Short summary
Short summary
This paper tells why to launch the Global Monsoons Model Inter-comparison Project (GMMIP) and how to achieve its scientific goals on monsoon variability. It addresses the scientific questions to be answered, describes three tiered experiments comprehensively and proposes a basic analysis framework to guide future research. It will help the monsoon research communities to understand the objectives of the GMMIP and the modelling groups involved in the GMMIP conduct the experiments successfully.
Kai Zhang, Rong Fu, Tao Wang, and Yimin Liu
Atmos. Chem. Phys., 16, 7825–7835, https://doi.org/10.5194/acp-16-7825-2016, https://doi.org/10.5194/acp-16-7825-2016, 2016
Short summary
Short summary
Based on observations and trajectory model, we show that the geographic variation of dehydration center associated with that of convection has a significant influence on locations where air mass is dehydrated, and thus water vapor enters the lower stratosphere, in summer over the Asian monsoon region. Specifically, a westward shift of dehydration center toward the area of warmer tropopause temperatures tends to moisten the lower stratosphere.
Related subject area
Climate and Earth system modeling
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
The very-high resolution configuration of the EC-Earth global model for HighResMIP
ZEMBA v1.0: An energy and moisture balance climate model to investigate Quaternary climate
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-119, https://doi.org/10.5194/gmd-2024-119, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10-15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100-km and a 25-km grid. The three models are compared with observations to study the improvements thanks to the increased in the resolution.
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
K. Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
EGUsphere, https://doi.org/10.5194/egusphere-2024-1431, https://doi.org/10.5194/egusphere-2024-1431, 2024
Short summary
Short summary
The study aimed to improve the representation of spring wheat and rice in the CLM5. The modified CLM5 model performed significantly better than the default model in simulating crop phenology, yield, carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific parameters for accurately simulating vegetation processes and land surface processes.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Cited articles
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C.,
Lauritzen P. H., Caron, J. M., and Truesdale, J. E.: Exploratory
high-resolution climate simulations using the Community Atmosphere Model
(CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2014.
Balaguru, K., Leung, L., R., Van Roekel, L., P., Golaz, J., C., Ullrich, P.,
A., Caldwell, P., M., Hagos, S., M., Harrop, B., E., and Mametjanov, A.:
Characterizing tropical cyclones in the energy exascale earth system model
Version 1, J. Adv. Model. Earth Sy., 12, e2019MS002024, https://doi.org/10.1029/2019MS002024, 2020.
Bao, Q. and He, B.: CAS FGOALS-f3-H model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3312, 2019a.
Bao, Q. and He, B.: CAS FGOALS-f3-L model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.12009, 2019b.
Bao, Q. and Li, J.: Progress in climate modeling of precipitation over the
Tibetan Plateau, Natl. Sci. Rev., 7, 486–487, https://doi.org/10.1093/nsr/nwaa006, 2020.
Bao, Q., Wu, G., Liu, Y., Yang, J., Wang, Z., and Zhou, T.: An introduction
to the coupled model FGOALS1. 1-s and its performance in East Asia, Adv.
Atmos. Sci., 27, 1131–1142, https://doi.org/10.1007/s00376-010-9177-1, 2010.
Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y., Wu, G., He, B., He, J., Li, L.,
and Li, J.: The flexible global ocean-atmosphere-land system model, spectral
version 2: FGOALS-s2, Adv. Atmos. Sci., 30, 561–576, https://doi.org/10.1007/s00376-012-2113-9, 2013.
Bao, Q., Wu, X., Li, J., Wang, L., He, B., Wang, X., Liu, Y., and Wu, G.:
Outlook for El Niño and the Indian Ocean Dipole in autumn-winter
2018–2019, Chinese Sci. Bull., 64, 73–78, 2018.
Bell, G. and Chelliah, M.: The 1999 North Atlantic and eastern North Pacific
hurricane season [in “Climate Assessment for 1999”], B. Am. Meteorol.
Soc., 81, S19–S22, https://doi.org/10.1175/1520-0477-80.5s.S1,
2000.
Bell, R., Hodges, K., Vidale, P. L., Strachan, J., and Roberts, M.:
Simulation of the global ENSO–tropical cyclone teleconnection by a
high-resolution coupled general circulation model, J. Climate, 27,
6404–6422, https://doi.org/10.1175/JCLI-D-13-00559.1, 2014.
Benfield, A.: Global economic losses. Weather, climate & catastrophe insight: 2017 annual report, Aon Benfield UCL Hazard Research Centre Rep.,
2–5, available at: http://thoughtleadership.aonbenfield.com/Documents/20180124-abif-annual-report-weather-climate-2017.pdfTS47 (last access: 8 October 2021), 2018.
Bengtsson, L., Böttger, H., and Kanamitsu, M.: Simulation of
hurricane-type vortices in a general circulation model, Tellus, 34, 440–457,
https://doi.org/10.1111/j.2153-3490.1982.tb01833.x, 1982.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M. A., Meurdesoif, Y., and Ghattas, J.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.13810, 2019a.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M. A., Meurdesoif, Y., and Ghattas, J.: IPSL IPSL-CM6A-ATM-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5185, 2019b.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.- A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, L.E., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and
evaluation of the IPSL-CM6A-LR climate model, J. Adv. Model. Earth Sy.,
2020, 12, e2019MS002010, https://doi.org/10.1029/2019MS002010,
2020.
Camargo, S. J.: Global and regional aspects of tropical cyclone activity in
the CMIP5 models, J. Climate, 26, 9880–9902, https://doi.org/10.1175/JCLI-D-12-00549.1, 2013.
Camargo, S. J. and Sobel, A. H.: Western North Pacific tropical cyclone
intensity and ENSO, J. Climate, 18, 2996–3006,
https://doi.org/10.1175/JCLI3457.1, 2005.
Camargo, S. J. and Wing, A. A.: Tropical cyclones in climate models, Wiley Interdiscip. Rev. Clim. Change, 7, 211–237, https://doi.org/10.1002/wcc.373,
2016.
Camargo, S. J., Emanuel, K. A., and Sobel, A. H.: Use of a genesis potential
index to diagnose ENSO effects on tropical cyclone genesis, J. Climate, 20,
4819–4834, https://doi.org/10.1175/JCLI4282.1, 2007.
Camargo, S. J., Robertson, A. W., Barnston, A. G., and Ghil, M.: Clustering
of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects,
Geochem. Geophy. Geosy., 9, 1–23, https://doi.org/10.1029/2007GC001861, 2008.
Camargo, S. J., Wheeler, M. C., and Sobel, A. H.: Diagnosis of the MJO
modulation of tropical cyclogenesis using an empirical index, J. Atmos.
Sci., 66, 3061–3074, https://doi.org/10.1175/2009JAS3101.1,
2009.
Camp, J., Roberts, M. J., Comer, R. E., Wu, P., MacLachlan, C., Bett, P. E.,
Golding, N., Toumi, R., and Chan, J. C.: The western Pacific subtropical
high and tropical cyclone landfall: Seasonal forecasts using the Met Office
GloSea5 system, Q. J. Roy. Meteor. Soc., 145, 105–116, https://doi.org/10.1002/qj.3407, 2019.
Chen, J.-H. and Lin, S.-J.: Seasonal predictions of tropical cyclones using
a 25-km-resolution general circulation model, J. Climate, 26, 380–398,
https://doi.org/10.1175/JCLI-D-12-00061.1, 2013.
Chen, S., Knaff, J. A., and Marks, F. D.: Effects of vertical wind shear and
storm motion on tropical cyclone rainfall asymmetries deduced from
TRMM, Mon. Weather Rev., 13, 3190–3208, https://doi.org/10.1175/MWR3245.1, 2006.
Chutia, L., Pathak, B., Parottil, A., and Bhuyan, P. K.: Impact of
microphysics parameterizations and horizontal resolutions on simulation of
“MORA” tropical cyclone over Bay of Bengal using Numerical Weather
Prediction Model, Meteorol. Atmos. Phys., 131, 1483–1495,
https://doi.org/10.1007/s00703-018-0651-0, 2019.
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M.,
Cady-Pereira, K., Boukabara, S., and Brown, P.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. RA., 91,
233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
C., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., and Bauer, d. P.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delworth, T. L., Cooke, W. F., Adcroft, A., Bushuk, M., Chen, J. H., Dunne,
K. A., Ginoux, P., Gudgel, R., Hallberg, R. W., and Harris, L.: SPEAR: The
Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction
and Projection, J. Adv. Model. Earth Sy., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895, 2020.
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3P model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4674, 2017a.
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3P-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4675, 2017b.
Emanuel, K.: Sensitivity of tropical cyclones to surface exchange
coefficients and a revised steady-state model incorporating eye dynamics, J.
Atmos. Sci., 52, 3969–3976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2, 1995.
Emanuel, K.: Downscaling CMIP5 climate models shows increased tropical
cyclone activity over the 21st century, P. Natl. Acad. Sci. USA, 110,
12219–12224, https://doi.org/10.1073/pnas.1301293110, 2013.
Emanuel, K.: Assessing the present and future probability of Hurricane
Harvey's rainfall, P. Natl. Acad. Sci. USA, 114, 12681–12684, https://doi.org/10.1073/pnas.1716222114, 2017.
Emanuel, K. and Sobel, A.: Response of tropical sea surface temperature,
precipitation, and tropical cyclone-related variables to changes in global
and local forcing, J. Adv. Model. Earth Sy., 5, 447–458, https://doi.org/10.1002/jame.20032, 2013.
Emanuel, K., DesAutels, C., Holloway, C., and Korty, R.: Environmental
control of tropical cyclone intensity, J. Atmos. Sci., 61, 843–858,
https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2, 2004.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Gray, W. M.: Global view of the origin of tropical disturbances and storm,
Mon. Weather Rev., 96, 669–700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2, 1968.
Gray, W. M.: Atlantic seasonal hurricane frequency. Part I: El Niño and
30 mb quasi-biennial oscillation influences, Mon. Weather Rev., 112.9,
1649–1668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2, 1984.
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019.
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020.
Haarsma, R. J., Mitchell, J. F., and Senior, C.: Tropical disturbances in a
GCM, Clim. Dynam., 8, 247–257, https://doi.org/10.1007/BF00198619, 1993.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Hall, J. D., Matthews, A. J., and Karoly, D. J.: The modulation of tropical
cyclone activity in the Australian region by the Madden–Julian oscillation,
Mon. Weather Rev., 129, 2970–2982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2, 2001.
He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., Wu, G., Chen, K., He,
S., Hu, W., Li, J., Li, J., Nian, G., Wang, L., Yang, J., Zhang, M., and
Zhang, X.: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric
model Intercomparison project simulation, Adv. Atmos. Sci., 36, 771–778,
https://doi.org/10.1007/s00376-019-9027-8, 2019..
He, B., Liu, Y., Wu, G., Bao, Q., Zhou, T., Wu, X., Wang, L., Li, J., Wang,
X., and Li, J.: CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and
Tier-3 Experiments, Adv. Atmos. Sci., 37, 18–28, https://doi.org/10.1007/s00376-019-9085-y, 2020.
Hodges, K., Cobb, A., and Vidale, P. L.: How well are tropical cyclones
represented in reanalysis datasets?, J. Climate, 30, 5243–5264,
https://doi.org/10.1175/JCLI-D-16-0557.1, 2017.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The global precipitation
measurement mission, B. Am. Meteorol. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model, Documentation and Software User’s Manual, Version 4.1, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, New Mexico, available at: http://oceans11.lanl.gov/trac/CICE (last access: 8 October 2021), 2010.
Hunke, E. C., Lipscomb, W. H., Turner, A., Jeffery, N., and Elliott, S.:
CICE: the Los Alamos sea ice model documentation and software user's manual,
T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM,
87545, 2008.
Klotzbach, P. J.: The Madden–Julian oscillation's impacts on worldwide
tropical cyclone activity, J. Climate, 27, 2317–2330, https://doi.org/10.1175/JCLI-D-13-00483.1, 2014.
Kim, D., Ho, C. H., Park, D. S., Chan, J. C. L., and Jung, Y.: The Relationship
between Tropical Cyclone Rainfall Area and Environmental Conditions over the
Subtropical Oceans, J. Climate, 31, 4605–4616, https://doi.org/10.1175/JCLI-D-17-0712.1, 2018.
Kim, H., M., Webster, P. J., and Curry, J. A.: Modulation of North Pacific
tropical cyclone activity by three phases of ENSO, J. Climate, 24,
1839–1849, https://doi.org/10.1175/2010JCLI3939.1, 2011.
Kim, H. S., Vecchi, G. A., Knutson, T. R., Anderson, W. G., Delworth, T. L.,
Rosati, A., Zeng, F., and Zhao, M.: Tropical cyclone simulation and response
to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate
model, J. Climate, 27, 8034–8054, https://doi.org/10.1175/JCLI-D-13-00475.1, 2014.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The international best track archive for climate stewardship (IBTrACS)
unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376,
https://doi.org/10.1175/2009BAMS2755.1, 2010.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., and Walsh, K.: Tropical Cyclones and
Climate Change Assessment: Part I: Detection and Attribution, B. Am.
Meteorol. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1, 2019.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., and Walsh, K.: Tropical cyclones and
climate change assessment: Part II: Projected response to anthropogenic
warming, B. Am. Meteorol. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Knutson, T. R., Manabe, S., and Gu, D.: Simulated ENSO in a global coupled
ocean–atmosphere model: Multidecadal amplitude modulation and CO2
sensitivity, J. Climate, 10, 138–161, https://doi.org/10.1175/1520-0442(1997)010<0138:SEIAGC>2.0.CO;2, 1997.
Knutson, T. R., Sirutis, J. J., Garner, S. T., Held, I. M., and Tuleya, R.
E.: Simulation of the recent multidecadal increase of Atlantic hurricane
activity using an 18-km-grid regional model, B. Am. Meteorol. Soc., 88,
1549–1565, https://doi.org/10.1175/BAMS-88-10-1549, 2007.
Krishnamurthy, L., Vecchi, G. A., Msadek, R., Murakami, H., Wittenberg, A.,
and Zeng, F.: Impact of strong ENSO on regional tropical cyclone activity in
a high-resolution climate model in the North Pacific and North Atlantic
Oceans, J. Climate, 29, 2375–2394, https://doi.org/10.1175/JCLI-D-15-0468.1, 2016.
Krishnamurti, T. N. and Oosterhof, D.: Prediction of the life cycle of a
supertyphoon with a high-resolution global model, B. Am. Meteorol. Soc., 70,
1218–1230, https://doi.org/10.1175/1520-0477(1989)070<1218:POTLCO>2.0.CO;2, 1989.
Larson, S. and Kirtman, B.: The Pacific Meridional Mode as a trigger for
ENSO in a high-resolution coupled model, B. Am. Meteorol. Soc. B. Am.
Meteorol. Soc., 40, 3189–3194, https://doi.org/10.1002/grl.50571, 2013.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z. L., Levis, S., and Sakaguchi, K.:
Parameterization improvements and functional and structural advances in
version 4 of the Community Land Model, J. Adv. Model. Earth Sy., 3, 1–27, https://doi.org/10.1029/2011MS00045, 2011.
Li, H. and Sriver, R. L.: Tropical cyclone activity in the high-resolution community earth system model and the impact of ocean coupling, J. Adv. Model. Earth Sy., 10, 165–186, https://doi.org/10.1002/2017MS001199, 2018.
Li, J.: The code of FGOALS-f3 (V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4588109, 2021.
Li, J., Bao, Q., Liu, Y., and Wu, G.: Evaluation of the computational
performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL)
on a high-performance computer, Atmos. Oceanic Sci. Lett., 10, 329–336,
https://doi.org/10.1080/16742834.2017.1331111, 2017.
Li, J., Bao, Q., Liu, Y., Wu, G., Wang, L., He, B., Wang, X., and Li, J.:
Evaluation of FAMIL2 in simulating the climatology and
seasonal-to-interannual variability of tropical cyclone characteristics, J.
Adv. Model. Earth Sy., 11, 1117–1136, https://doi.org/10.1029/2018MS001506, 2019.
Liebmann, B., Hendon, H. H., and Glick, J. D.: The relationship between
tropical cyclones of the western Pacific and Indian Oceans and the
Madden-Julian oscillation, J. Meteorol. Soc. Jpn., 72, 401–412, https://doi.org/10.2151/jmsj1965.72.3_401, 1994.
Lim, Y. K., Schubert, S. D., Reale, O., Lee, M, I., Molod, A. M., and
Suarez, M. J.: Sensitivity of tropical cyclones to parameterized convection
in the NASA GEOS-5 mode, J. Climate, 28, 551–573,
https://doi.org/10.1175/JCLI-D-14-00104.1, 2015.
Lin, S.-J.: A “vertically Lagrangian” finite-volume dynamical core for
global models, Mon. Weather Rev., 132, 2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004.
Liu, H., Lin, P., Yu, Y., and Zhang, X.: The baseline evaluation of LASG/IAP
climate system ocean model (LICOM) version 2, Acta Meteorol. Sin., 26,
318–329, https://doi.org/10.1007/s13351-012-0305-y, 2012.
Ma, Y., Davidson, N. E., Xiao, Y., and Bao, J. W.: Revised parameterization
of air–sea exchanges in high winds for operational numerical prediction:
Impact on tropical cyclone track, intensity, and rapid intensification,
Weather Forecast., 32, 821–848, https://doi.org/10.1175/WAF-D-15-0109.1, 2017.
Manabe, S. and Broccoli, A.: Mountains and arid climates of middle
latitudes, Science, 247, 192–195, https://doi.org/10.1126/science.247.4939.192, 1990.
Manabe, S., Holloway Jr., J. L., and Stone, H. M.: Tropical circulation in a
time-integration of a global model of the atmosphere, J. Atmos. Sci., 27,
580–613, https://doi.org/10.1175/1520-0469(1970)027<0580:TCIATI>2.0.CO;2, 1970.
Manganello, J. V., Hodges, K. I., Kinter III, J. L., Cash, B. A., Marx, L.,
Jung, T., Achuthavarier, D., Adams, J. M., Altshuler, E. L., and Huang, B.:
Tropical cyclone climatology in a 10-km global atmospheric GCM: toward
weather-resolving climate modeling, J. Climate, 25, 3867–3893, https://doi.org/10.1175/JCLI-D-11-00346.1, 2012.
Manganello, J. V., Hodges, K. I., Cash, B. A., Kinter III, J. L., Altshuler,
E. L., Fennessy, M. J., Vitart, F., Molteni, F., and Towers, P.: Seasonal
forecasts of tropical cyclone activity in a high-atmospheric-resolution
coupled prediction system, J. Climate, 29, 1179–1200, https://doi.org/10.1175/JCLI-D-15-0531.1, 2016.
Masson, S., Terray, P., Madec, G., Luo, J.-J., Yamagata, T., and Takahashi,
K.: Impact of intra-daily SST variability on ENSO characteristics in a
coupled model, Clim. Dynam., 39, 681–707, https://doi.org/10.1007/s00382-011-1247-2, 2012.
Matsuura, T., Yumoto, M., Iizuka, S., and Kawamura, R.: Typhoon and ENSO
simulation using a high-resolution coupled GCM, Geophys. Res. Lett., 26,
1755–1758, https://doi.org/10.1029/1999GL900329, 1999.
Meehl, G. A., Shields, C., Arblaster, J. M., Annamalai, H., and Neale, R.:
Intraseasonal, seasonal, and interannual characteristics of regional monsoon
simulations in CESM2, J. Adv. Model. Earth Sy., 12, e2019MS001962,
https://doi.org/10.1029/2019MS001962, 2020.
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact
of climate change on global tropical cyclone damage, Nat. Clim. Change, 2,
205–209, https://doi.org/10.1038/nclimate1357, 2012.
Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T.,
Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S., Kusunoki, S., and Kitoh,
A.: Climate simulations using MRI-AGCM3. 2 with 20-km grid, J. Meteorol.
Soc. Jpn., 90, 233–258, https://doi.org/10.2151/jmsj.2012-A12,
2012.
Mizuta, R., Yoshimura, H., Ose, T., Hosaka, M., and Yukimoto, S.: MRI MRI-AGCM3-2-H model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.10974, 2019a.
Mizuta, R., Yoshimura, H., Ose, T., Hosaka, M., and Yukimoto, S.: MRI MRI-AGCM3-2-S model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6942, 2019b.
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Mauritsen, T., Baehr,
J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H.,
Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D.,
Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F., and Marotzke, J.: A
Higher-resolution Version of the Max Planck Institute Earth System Model
(MPI-ESM1. 2-HR), J. Adv. Model. Earth Sy., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018.
Murakami, H., Wang, Y., Yoshimura, H., Mizuta, R., Sugi, M., Shindo, E.,
Adachi, Y., Yukimoto, S., Hosaka, M., and Kusunoki, S.: Future changes in
tropical cyclone activity projected by the new high-resolution MRI-AGCM, J.
Climate, 25, 3237–3260, https://doi.org/10.1007/s00382-012-1407-z, 2012.
Murakami, H., Sugi, M., and Kitoh, A.: Future changes in tropical cyclone
activity in the North Indian Ocean projected by high-resolution MRI-AGCMs,
Clim. Dynam., 40, 1949–1968, https://doi.org/10.1007/s00382-012-1407-z, 2013.
Murakami, H., Vecchi, G. A., Villarini, G., Delworth, T. L., Gudgel, R.,
Underwood, S., Yang, X., Zhang, W., and Lin, S.-J.: Seasonal forecasts of
major hurricanes and landfalling tropical cyclones using a high-resolution
GFDL coupled climate model, J. Climate, 29, 7977–7989, https://doi.org/10.1175/JCLI-D-16-0233.1, 2016.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical Description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2010.
Oouchi, K., Yoshimura, J., Yoshimura, H., Mizuta, R., Kusunoki, S., and
Noda, A.: Tropical cyclone climatology in a global-warming climate as
simulated in a 20 km-mesh global atmospheric model: Frequency and wind
intensity analyses, J. Meteorol. Soc. Jpn., 84, 259–276, https://doi.org/10.2151/jmsj.84.259, 2006.
Palmer, T., Shutts, G., and Swinbank, R.: Alleviation of a systematic
westerly bias in general circulation and numerical weather prediction models
through an orographic gravity wave drag parametrization, Q. J. Roy. Meteor.
Soc., 112, 1001–1039, https://doi.org/10.1002/qj.49711247406,
1986.
Park, S. and Bretherton, C. S.: The University of Washington shallow
convection and moist turbulence schemes and their impact on climate
simulations with the Community Atmosphere Model, J. Climate, 22, 3449–3469,
https://doi.org/10.1175/2008JCLI2557.1, 2009.
Philander, S., Pacanowski, R., Lau, N.-C., and Nath, M.: Simulation of ENSO
with a global atmospheric GCM coupled to a high-resolution, tropical Pacific
Ocean GCM, J. Climate, 5, 308–329, https://doi.org/10.1175/1520-0442(1992)005<0308:SOEWAG>2.0.CO;2, 1992.
Putman, W. M. and Lin, S.-J.: Finite-volume transport on various
cubed-sphere grids, J. Comput. Phys., 227, 55–78, https://doi.org/10.1016/j.jcp.2007.07.022, 2007.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., and Keeley, S.: ECMWF ECMWF-IFS-LR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4976, 2017a.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., and Keeley, S.: ECMWF ECMWF-IFS-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4975, 2017b.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018.
Roberts, M.: MOHC HadGEM3-GC31-LM model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6027, 2017a.
Roberts, M.: MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6024, 2017b.
Roberts, M. J., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere,
B., Mecking, J., Haarsma, R., Bellucci, A., and Scoccimarro, E.: Impact of
Model Resolution on Tropical Cyclone Simulation Using the
HighResMIP–PRIMAVERA Multimodel Ensemble, J. Climate, 33, 2557–2583,
https://doi.org/10.1175/JCLI-D-19-0639.1, 2020.
Sakradzija, M., Seifert, A., and Dipankar, A.: A stochastic scale-aware
parameterization of shallow cumulus convection across the convective gray
zone, J. Adv. Model. Earth Sy., 8, 786–812, https://doi.org/10.1002/2016MS000634, 2016.
Schneider, E. K., Kirtman, B. P., DeWitt, D. G., Rosati, A., Ji, L., and
Tribbia, J. J.: Retrospective ENSO forecasts: sensitivity to atmospheric
model and ocean resolution, Mon. Weather Rev., 131, 3038–3060, https://doi.org/10.1175/1520-0493(2003)131<3038:REFSTA>2.0.CO;2, 2003.
Scoccimarro, E., Fogli, P. G., Reed, K. A., Gualdi, S., Masina, S., and
Navarra, A.: Tropical cyclone interaction with the ocean: The role of
high-frequency (subdaily) coupled processes, J. Climate, 30, 145–162,
https://doi.org/10.1175/JCLI-D-16-0292.1, 2017.
Simpson, R. H. and Saffir, H.: The hurricane disaster potential scale,
Weatherwise, 27, 169–186, https://doi.org/10.1080/00431672.1974.9931702, 1974.
Small, R. J., Bacmeister, J., Bailey, D. A., Baker, A., Bishop, S., Bryan, F. O., Caron, J., Dennis, J., Gent, P. R., Hsu, H.-M., Jochum, M., Lawrence, D. M., Munoz Acevedo, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y., and Vertenstein, M.: A new synoptic scale resolving global climate simulation using the
Community Earth System Model, J. Adv. Model. Earth Sy, 6, 1065–1094,
https://doi.org/10.1002/2014MS000363, 2014.
Strachan, J., Vidale, P. L., Hodges, K., Roberts, M., and Demory, M.-E.:
Investigating global tropical cyclone activity with a hierarchy of AGCMs:
The role of model resolution, J. Climate, 26, 133–152, https://doi.org/10.1175/JCLI-D-12-00012.1, 2013.
Ullrich, P. A. and Zarzycki, C. M.: TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, 2017.
Ullrich, P. A., Zarzycki, C. M., McClenny, E. E., Pinheiro, M. C., Stansfield, A. M., and Reed, K. A.: TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets, Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021, 2021.
Vitart, F. and Robertson, A. W.: The sub-seasonal to seasonal prediction
project (S2S) and the prediction of extreme events, Npj Clim. Atmos. Sci.,
1, 3, https://doi.org/10.1038/s41612-018-0013-0, 2018.
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C.,
Déqué, M., Ferranti, L., Fucile, E., and Fuentes, M.: The
subseasonal to seasonal (S2S) prediction project database, B. Am. Meteorol.
Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1,
2017.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4035, 2019a.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4036, 2019b.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.- P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Franchisteguy, L., Ethé, C., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., and Terray, L.: Evaluation of
CMIP6 deck experiments with CNRM-CM6-1, J. Adv. Model. Earth Sy., 11,
2177–2213, https://doi.org/10.1029/2019MS001683, 2019.
von Storch, J. S., Putrasahan, D., Lohmann, K., Gutjahr, O., Jungclaus, J., Bittner, M., Haak, H., Wieners, K. H., Giorgetta, M., Reick, C., Esch, M., Gayler, V., de Vrese, P., Raddatz, T., Mauritsen, T., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6584, 2017a.
von Storch, J. S., Putrasahan, D., Lohmann, K., Gutjahr, O., Jungclaus, J., Bittner, M., Haak, H., Wieners, K. H., Giorgetta, M., Reick, C., Esch, M., Gayler, V., de Vrese, P., Raddatz, T., Mauritsen, T., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-XR model output prepared for CMIP6 HighResMIP highresSST-present, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.10305, 2017b.
Voosen, P.: The weather master, Science, 356, 128–131, https://doi.org/10.1126/science.356.6334.128, 2017.
Walsh, K., Fiorino, M., Landsea, C., and McInnes, K.: Objectively determined
resolution-dependent threshold criteria for the detection of tropical
cyclones in climate models and reanalyses, J. Climate, 20, 2307–2314,
https://doi.org/10.1175/JCLI4074.1, 2007.
Walsh, K., Lavender, S., Scoccimarro, E., and Murakami, H.: Resolution
dependence of tropical cyclone formation in CMIP3 and finer resolution
models, Clim. Dynam., 40, 585–599, https://doi.org/10.1007/s00382-012-1298-z, 2013.
Walsh, K. J., Camargo, S. J., Vecchi, G. A., Daloz, A. S., Elsner, J.,
Emanuel, K., Horn, M., Lim, Y.-K., Roberts, M., and Patricola, C.:
Hurricanes and climate: the US CLIVAR working group on hurricanes, B. Am.
Meteorol. Soc., 96, 997–1017, https://doi.org/10.1175/BAMS-D-13-00242.1, 2015.
Walsh, K. J., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo,
S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T. C., and Sobel,
A.: Tropical cyclones and climate change, Wiley Interdiscip. Rev. Clim. Change, 7, 65–89,
https://doi.org/10.1002/wcc.371, 2016.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: The Met Office global
coupled model 3.0 and 3.1 (GC3. 0 and GC3. 1) configurations, J. Adv. Model.
Earth Sy., 10, 357–380, https://doi.org/10.1002/2017MS001115,
2018.
Wong, M. L. M. and Chan, J. C. L.: Tropical cyclone intensity in vertical wind
shear, J. Atmos. Sci, 61, 1859–1876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2, 2004.
Wu, G. and Lau, N.-C.: A GCM simulation of the relationship between
tropical-storm formation and ENSO, Mon. Weather Rev., 120, 958–977,
https://doi.org/10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2, 1992.
Wu, G., Liu, H., Zhao, Y., and Li, W.: A nine-layer atmospheric general
circulation model and its performance, Adv. Atmos. Sci., 13, 1–18,
https://doi.org/10.1007/BF02657024, 1996.
Xiang, B., Lin, S.-J., Zhao, M., Zhang, S., Vecchi, G., Li, T., Jiang, X.,
Harris, L., and Chen, J.-H.: Beyond weather time-scale prediction for
Hurricane Sandy and Super Typhoon Haiyan in a global climate model, Mon.
Weather Rev., 143, 524–535, https://doi.org/10.1175/MWR-D-14-00227.1, 2015.
Xu, K.-M. and Randall, D. A.: A semiempirical cloudiness parameterization
for use in climate models, J. Atmos. Sci., 53, 3084–3102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2, 1996.
Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., and Chen,
D.: An overview of the China Meteorological Administration tropical cyclone
database, J. Atmos. Ocean. Tech., 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1, 2014.
Yu, Y., Tang, S., Liu, H., Lin, P., and Li, X.: Development and evaluation
of the dynamic framework of an ocean general circulation model with
arbitrary orthogonal curvilinear coordinate, Chinese Journal of Atmospheric
Sciences, 42, 877–889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284, 2018.
Zarzycki, C. M. and Jablonowski, C.: Experimental tropical cyclone forecasts
using a variable-resolution global model, Mon. Weather Rev., 143, 4012–4037,
https://doi.org/10.1175/MWR-D-15-0159.1, 2015.
Zhang, C.: Madden–Julian oscillation: Bridging weather and climate, B. Am.
Meteorol. Soc., 94, 1849–1870, https://doi.org/10.1175/BAMS-D-12-00026.1, 2013.
Zhang, J. A., Rogers, R. F., and Tallapragada, V.: Impact of parameterized
boundary layer structure on tropical cyclone rapid intensification forecasts
in HWRF, Mon. Weather Rev., 145, 1413–1426, https://doi.org/10.1175/MWR-D-16-0129.1, 2017.
Zhang, W., Vecchi, G. A., Murakami, H., Delworth, T., Wittenberg, A. T.,
Rosati, A., Underwood, S., Anderson, W., Harris, L., and Gudgel, R.:
Improved simulation of tropical cyclone responses to ENSO in the western
North Pacific in the high-resolution GFDL HiFLOR coupled climate model, J.
Climate, 29, 1391–1415, https://doi.org/10.1175/JCLI-D-15-0475.1, 2016.
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.: Simulations of global
hurricane climatology, interannual variability, and response to global
warming using a 50-km resolution GCM, J. Climate, 22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009.
Zhao, M., Held, I. M., and Lin, S. J.: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69, 2272–2283, https://doi.org/10.1175/JAS-D-11-0238.1, 2012.
Zhou, L., Bao, Q., Liu, Y., Wu, G., Wang, W. C., Wang, X., He, B., Yu, H.,
and Li, J.: Global energy and water balance: Characteristics from
Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), J. Adv. Model.
Earth Sy., 7, 1–20, https://doi.org/10.1002/2014MS000349, 2015.
Zhou, L., Lin, S. J., Chen, J. H., Harris, L. M., Chen, X., and Rees, S. L.:
Toward Convective-Scale Prediction within the Next Generation Global
Prediction System, B. Am. Meteorol. Soc., 100, 1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019.
Zhou, T., Turner, A. G., Kinter, J. L., Wang, B., Qian, Y., Chen, X., Wu, B., Wang, B., Liu, B., Zou, L., and He, B.: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project, Geosci. Model Dev., 9, 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016, 2016.
Short summary
The configuration and simulated performance of tropical cyclones (TCs) in FGOALS-f3-L/H will be introduced firstly. The results indicate that the simulated performance of TC activities is improved globally with the increased horizontal resolution especially in TC counts, seasonal cycle, interannual variabilities and intensity aspects. It is worth establishing a high-resolution coupled dynamic prediction system based on FGOALS-f3-H (~ 25 km) to improve the prediction skill of TCs.
The configuration and simulated performance of tropical cyclones (TCs) in FGOALS-f3-L/H will be...