Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4535-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A discrete interaction numerical model for coagulation and fragmentation of marine detritic particulate matter (Coagfrag v.1)
Gwenaëlle Gremion
CORRESPONDING AUTHOR
Institut des sciences de la mer de Rimouski, UQAR, Québec-Océan, Rimouski, Canada
Louis-Philippe Nadeau
CORRESPONDING AUTHOR
Institut des sciences de la mer de Rimouski, UQAR, Québec-Océan, Rimouski, Canada
Christiane Dufresne
Institut des sciences de la mer de Rimouski, UQAR, Québec-Océan, Rimouski, Canada
Irene R. Schloss
Instituto Antártico Argentino, Buenos Aires, Argentina
Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
Instituto de Ciencias Polares y Ambientales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
Philippe Archambault
ArcticNet, Québec-Océan, Université Laval, Quebec, Canada
Dany Dumont
Institut des sciences de la mer de Rimouski, UQAR, Québec-Océan, Rimouski, Canada
Related authors
No articles found.
Sebastien Kuchly, Baptiste Auvity, Nicolas Mokus, Matilde Bureau, Paul Nicot, Amaury Fourgeaud, Véronique Dansereau, Antonin Eddi, Stéphane Perrard, Dany Dumont, and Ludovic Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-3304, https://doi.org/10.5194/egusphere-2025-3304, 2025
Short summary
Short summary
During February and March 2024, we realized a multi-instrument field campaign in the St. Lawrence Estuary, to capture swell-driven sea ice fragmentation. The dataset combines geophones, wave buoys, smartphones, and video recordings with drones, to study wave-ice interactions under natural conditions. It enables analysis of ice thickness, wave properties, and ice motion. Preliminary results show strong consistency across instruments, offering a valuable resource to improve sea ice models.
Jeremy Baudry, Dany Dumont, David Didier, Pascal Bernatchez, and Sebastien Dugas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2168, https://doi.org/10.5194/egusphere-2025-2168, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This two-part study explores the development of a short-term (up to 48 hours) coastal flood forecasting system along the Quebec coastline. The first part of the study focuses on wave prediction, a main contributor to coastal hazards. The key results of the study show that wave conditions can be accurately predicted during summer, however, the performances of the model in winter are considerably reduced, primarily because predicting sea ice conditions at fine spatial scales remains challenging.
Elie Dumas-Lefebvre and Dany Dumont
The Cryosphere, 17, 827–842, https://doi.org/10.5194/tc-17-827-2023, https://doi.org/10.5194/tc-17-827-2023, 2023
Short summary
Short summary
By changing the shape of ice floes, wave-induced sea ice breakup dramatically affects the large-scale dynamics of sea ice. As this process is also the trigger of multiple others, it was deemed relevant to study how breakup itself affects the ice floe size distribution. To do so, a ship sailed close to ice floes, and the breakup that it generated was recorded with a drone. The obtained data shed light on the underlying physics of wave-induced sea ice breakup.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Frédéric Dupont, Dany Dumont, Jean-François Lemieux, Elie Dumas-Lefebvre, and Alain Caya
The Cryosphere, 16, 1963–1977, https://doi.org/10.5194/tc-16-1963-2022, https://doi.org/10.5194/tc-16-1963-2022, 2022
Short summary
Short summary
In some shallow seas, grounded ice ridges contribute to stabilizing and maintaining a landfast ice cover. A scheme has already proposed where the keel thickness varies linearly with the mean thickness. Here, we extend the approach by taking into account the ice thickness and bathymetry distributions. The probabilistic approach shows a reasonably good agreement with observations and previous grounding scheme while potentially offering more physical insights into the formation of landfast ice.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Ackleh, A. S.:
Parameter estimation in a structured algal coagulation-fragmentation model,
Nonlinear Anal.-Theor.,
28, 837–854, https://doi.org/10.1016/0362-546X(95)00195-2, 1997. a
Alldredge, A.:
The carbon, nitrogen and mass content of marine snow as a function of aggregate size,
Deep-Sea Res. Pt. I,
45, 529–541, https://doi.org/10.1016/S0967-0637(97)00048-4, 1998. a, b
Alldredge, A. L., Granata, T. C., Gotschalk, C. C., and Dickey, T. D.:
The physical strength of marine snow and its implications for particle disaggregation in the ocean,
Limnol. Oceanogr.,
35, 1415–1428, https://doi.org/10.4319/lo.1990.35.7.1415, 1990. a, b, c
Anderson, T. and Gentleman, W.:
The legacy of Gordon Arthur Riley (1911–1985) and the development of mathematical models in biological oceanography,
J. Mar. Res.,
70, 1–30, https://doi.org/10.1357/002224012800502390, 2012. a
Anderson, T. R.:
Plankton functional type modelling: running before we can walk?,
J. Plankton Res.,
27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005. a
Anderson, T. R., Gentleman, W., and Sinha, B.:
Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model,
Prog. Oceanogr.,
87, 201–213, https://doi.org/10.1016/j.pocean.2010.06.003, 2010. a
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.:
An ecosystem model of the global ocean including Fe, Si, P colimitations,
Global Biogeochem. Cy.,
17, 1060, https://doi.org/10.1029/2001GB001745, 2003. a, b
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Banse, K.:
New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea,
Deep-Sea Res.,
37, 1177–1195, https://doi.org/10.1016/0198-0149(90)90058-4, 1990. a
Blackford, J. and Radford, P.:
A structure and methodology for marine ecosystem modelling,
Neth. J. Sea Res.,
33, 247–260, https://doi.org/10.1016/0077-7579(95)90048-9, 1995. a
Boyd, P., Claustre, H., Levy, M., Siegel, D., and Weber, T.:
Multi-facted particle pumps drive carbon sequestration in the ocean,
Nature,
568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019. a
Burd, A. B.:
Modeling particle aggregation using size class and size spectrum approaches,
J. Geophys. Res.,
118, 3431–3443, https://doi.org/10.1002/jgrc.20255, 2013. a
Burd, A. B., Chanton, J. P., Daly, K. L., Gilbert, S., Passow, U., and Quigg, A.:
The science behind marine-oil snow and MOSSFA: past, present, and future,
Prog. Oceanogr.,
187, https://doi.org/10.1016/j.pocean.2020.102398, 2020. a
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016. a
De La Rocha, C. L. and Passow, U.:
Factors influencing the sinking of POC and the efficiency of the biological carbon pump,
Deep-Sea Res. Pt. II,
54, 639–658, https://doi.org/10.1016/j.dsr2.2007.01.004, 2007. a, b
Denman, K.:
Modelling planktonic ecosystems: parameterizing complexity,
Prog. Oceanogr.,
57, 429–452, https://doi.org/10.1016/S0079-6611(03)00109-5, 2003. a
Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P., Wofsy, S., and Zhang, X.:
2007: Couplings Between Changes in the Climate System and Biogeochemistry,
in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H.,
Cambridge University Press, Cambridge, UK and New York, NY, USA,
availabale at: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter7-1.pdf (last access: 28 June 2021), 2007. a
Dilling, L. and Alldredge, A. L.:
Fragmentation of marine snow by swimming macrozooplankton: A new process impacting carbon cycling in the sea,
Deep-Sea Res. Pt. I,
47, 1227–1245, https://doi.org/10.1016/S0967-0637(99)00105-3, 2000. a, b
Dissanayake, A. L., Burd, A. B., Daly, K. L., Francis, S., and Passow, U.:
Numerical modeling of the interactions of oil, marine snow, and riverine sediments in the ocean,
J. Geophys. Res.-Oceans,
123, 5388–5405, https://doi.org/10.1029/2018JC013790, 2018. a
Doney, S., Kleypas, J., Sarmiento, J., and Falkowski, P.:
The US JGOFS Synthesis and Modeling Project – An introduction,
Deep-Sea Res. Pt. II,
49, 1–20, https://doi.org/10.1016/S0967-0645(01)00092-3, 2002. a
Doney, S. C., Glover, D. M., and Najjar, R. G.:
A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site,
Deep-Sea Res. Pt. II,
43, 591–624, https://doi.org/10.1016/0967-0645(95)00104-2, 1996. a, b
Doney, S. C., Lindsay, K., and Moore, J. K.:
Global Ocean Carbon Cycle Modeling, vol. 4,
in: Ocean Biogeochemistry,
edited by: Fasham, M.,
Springer, Verlag Berlin Heidelberg, 217–238, https://doi.org/10.1007/978-3-642-55844-3_10, 2003. a, b
Dutkiewicz, S., Follows, M. J., and Parekh, P.:
Interactions of the iron and phosphorus cycles: A three-dimensional model study,
Global Biogeochem. Cy.,
19, GB1021, https://doi.org/10.1029/2004GB002342, 2005. a, b
Engel, A.:
The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness during the decline of a diatom bloom,
J. Plankton Res.,
22, 485–497, https://doi.org/10.1093/plankt/22.3.485, 2000. a
Fasham, M., Ducklow, H. W., and McKelvie, M.:
A nitrogen-based model of plankton dynamics in the oceanic mixed layer,
J. Mar. Res.,
48, 591–639, https://doi.org/10.1357/002224090784984678, 1990. a
Flynn, K. J.:
Castles built on sand: dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers,
J. Plankton Res.,
27, 1205–1210, https://doi.org/10.1093/plankt/fbi099, 2005. a
Gelbard, F., Tambour, Y., and Seinfeld, J. H.:
Sectional representations for simulating aerosol dynamics,
J. Colloid Interf. Sci.,
76, 541–556, https://doi.org/10.1016/0021-9797(80)90394-X, 1980. a, b
Gloege, L., Mc Kinley, G. A., Mouw, C., and Ciochetto, A. B.:
Global evaluation of particulate organic carbon flux parametrizations and implications for atmospheric pCO2,
Global Biogeochem. Cy.,
31, 1192–1215, https://doi.org/10.1002/2016GB005535, 2017. a
Goldthwait, S., Yen, J., Brown, J., and Alldredge, A.:
Quantification of marine snow fragmentation by swimming euphausiids,
Limnol. Oceanogr.,
49, 940–952, https://doi.org/10.4319/lo.2004.49.4.0940, 2004. a, b
Green, E. P. and Dagg, M. J.:
Mesozooplankton associations with medium to large marine snow aggregates in the northern Gulf of Mexico,
J. Plankton Res.,
19, 435–447, https://doi.org/10.1093/plankt/19.4.435, 1997. a
Gregory, J.:
The density of particle aggregates,
Water Sci. Technol.,
36-4, 1–13, https://doi.org/10.1016/S0273-1223(97)00452-6, 1997. a
Gremion, G. and Nadeau, L.-P.:
Source code and user manual of the Coagfrag Model (Version 1),
Zenodo,
2021-01-11, https://doi.org/10.5281/zenodo.4432896, 2021. a, b
Hansen, K.:
Abundance Distributions; Large Scale Features,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-90062-9_8, pp. 205–251, 2018. a
Hill, P. S.:
Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms,
J. Geophys. Res.-Oceans,
97, 2295–2308, https://doi.org/10.1029/91JC02808, 1992. a
Hill, P. S.:
Sectional and discrete representations of floc breakage in agitated suspensions,
Deep-Sea Res. Pt. I,
43, 679–702, https://doi.org/10.1016/0967-0637(96)00030-1, 1996. a
Hood, R. R., Laws, E. A., Armstrong, R. A., Bates, N. R., Brown, C. W., Carlson, C. A., Chaig, F., Doneyh, S. C., Falkowskii, P. G., Feelyj, R. A., Friedrichsk, M., Landryl, M. R., Moorem, J. K., Nelsonn, D. M., Richardson, T. L., Salihoglup, B., Schartauq, M., Tooleh, D. A., and D., W. J.:
Pelagic functional group modeling: Progress, challenges and prospects,
Deep-Sea Res. Pt. II,
53, 459–512, https://doi.org/10.1016/j.dsr2.2006.01.025, 2006. a
Jackson, G. A.:
A model of the formation of marine algal flocs by physical coagulation processes,
Deep-Sea Res.,
37, 1197–1211, https://doi.org/10.1016/0198-0149(90)90038-W, 1990. a
Jackson, G. A.:
Effect of coagulation on a model planktonic food web,
Deep-Sea Res. Pt. I,
48, 95–123, https://doi.org/10.1016/S0967-0637(00)00040-6, 2001. a, b, c
Jackson, G. A. and Burd, A. B.:
Aggregation in the Marine Environment, Environ. Sci. Technol., 32, 2805–2814, https://doi.org/10.1021/es980251w, 1998. a
Jackson, G. A. and Burd, A. B.:
Simulating aggregate dynamics in ocean biogeochemical models,
Prog. Oceanogr.,
133, 55–65, https://doi.org/10.1016/j.pocean.2014.08.014, 2015. a, b
Jackson, G. A., Logan, B. E., Alldredge, A. L., and Dam, H. G.:
Combining particle size spectra from a mesocosm experiment measured using photographic and aperture impedance (Coulter and Elzone) techniques,
Deep-Sea Res. Pt. II,
42, 139–157, https://doi.org/10.1016/0967-0645(95)00009-F, 1995. a, b
Jackson, G. A., Maffione, R., Costello, D. K., Alldredge, A. L., Logan, B. E., and Dam, H. G.:
Particle size spectra between 1 µm and 1 cm at Monterey Bay determined using multiple instruments,
Deep-Sea Res. Pt. I,
44, 1739–1767, https://doi.org/10.1016/S0967-0637(97)00029-0, 1997. a, b, c
Jokulsdottir, T. and Archer, D.: A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity, Geosci. Model Dev., 9, 1455–1476, https://doi.org/10.5194/gmd-9-1455-2016, 2016. a
Kang, I.-S., Ahn, M.-S., Miura, H., and Subramanian, A.:
Chapter 14 – GCMs With Full Representation of Cloud Microphysics and Their MJO Simulations,
in: Sub-Seasonal to Seasonal Prediction,
edited by: Robertson, A. W. and Vitart, F.,
Elsevier, the Netherlands, UK, USA, https://doi.org/10.1016/B978-0-12-811714-9.00014-0, pp. 305–319, 2019. a
Karakaş, G., Nowald, N., Schäfer-Neth, C., Iversen, M., Barkmann, W., Fischer, G., Marchesiello, P., and Schlitzer, R.:
Impact of particle aggregation on vertical fluxes of organic matter,
Prog. Oceanogr.,
83, 331–341, https://doi.org/10.1016/j.pocean.2009.07.047, 2009. a
Kearney, K., Hermann, A., Cheng, W., Ortiz, I., and Aydin, K.: A coupled pelagic–benthic–sympagic biogeochemical model for the Bering Sea: documentation and validation of the BESTNPZ model (v2019.08.23) within a high-resolution regional ocean model, Geosci. Model Dev., 13, 597–650, https://doi.org/10.5194/gmd-13-597-2020, 2020. a
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S. C., and Yano, J.-I.:
Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization,
Rev. Geophys.,
53, 247–322, https://doi.org/10.1002/2014RG000468, 2015. a
Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L., Werner, F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., Hashimoto, S., Huang, D., Iizumi, H., Ishida, Y., Kang, S., Kantakov, G. A., Kim, H.-C., Komatsu, K., Navrotsky, V. V., Smith, S. L., Tadokoro, K., Tsuda, A., Yamamura, O., Yamanaka, Y., Yokouchi, K. Yoshie, N., Zhang, J., Zuenko, Y. I., and Zvalinsky, V. I.:
NEMURO–a lower trophic level model for the North Pacific marine ecosystem,
Ecol. Model.,
202, 12–25, https://doi.org/10.1016/j.ecolmodel.2006.08.021, 2007. a
Kiørboe, T.:
Colonization of marine snow aggregates by invertebrate zooplankton: Abundance, scaling, and possible role,
Limnol. Oceanogr.,
45, 479–484, https://doi.org/10.4319/lo.2000.45.2.0479, 2000. a
Kiørboe, T. and Thygesen, U. H.:
Fluid motion and solute distribution around sinking aggregates. II. Implications for remote detection by colonizing zooplankters,
Mar. Ecol.-Prog. Ser.,
211, 15–25, https://doi.org/10.3354/meps211015, 2001. a
Kiørboe, T., Andersen, K. P., and Dam, H. G.:
Coagulation efficiency and aggregate formation in marine phytoplankton,
Mar. Biol.,
107, 235–245, https://doi.org/10.1007/BF01319822, 1990. a
Kobayashi, M., Adachi, Y., and Ooi, S.:
Breakup of Fractal Flocs in a Turbulent Flow,
Langmuir,
15, 4351–4356, https://doi.org/10.1021/la980763o, 1999. a
Kriest, I.:
Different parameterizations of marine snow in a 1D-model and their influence on representation of marine snow, nitrogen budget and sedimentation,
Deep-Sea Res. Pt. I,
49, 2133–2162, https://doi.org/10.1016/S0967-0637(02)00127-9, 2002. a, b
Kriest, I. and Evans, G. T.:
Representing phytoplankton aggregates in biogeochemical models,
Deep-Sea Res. Pt. I,
46, 1841–1859, https://doi.org/10.1016/S0967-0637(99)00032-1, 1999. a
Lee, J. K., Samanta, D., Nam, H. G., and Zare, R. N.:
Spontaneous formation of gold nanostructures in aqueous microdroplets,
Nat. Commun.,
9, 1–9, 2018. a
Leles, S. G., Valentin, J. L., and Figueiredo, G. M.:
Evaluation of the complexity and performance of marine planktonic trophic models,
An. Acad. Bras. Cienc.,
88, 1971–1991, https://doi.org/10.1590/0001-3765201620150588, 2016. a
Le Moigne, F.:
Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump,
Front. Mar. Sci.,
6, 634, https://doi.org/10.3389/fmars.2019.00634, 2019. a
Le Quéré, C.:
Reply to Horizons Article 'Plankton functional type modelling: running before we can walk' Anderson (2005): I. Abrupt changes in marine ecosystems?,
J. Plankton Res.,
28, 871–872, https://doi.org/10.1093/plankt/fbl014, 2006. a
Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.:
Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models,
Glob. Change Biol.,
11, 2016–2040, https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005. a
Li, X., Passow, U., and Logan, B. E.:
Fractal dimensions of small (15–200 µm) particles in Eastern Pacific coastal waters,
Deep-Sea Res. Pt. I,
45, 115–131, https://doi.org/10.1016/S0967-0637(97)00058-7, 1998. a
Li, X. Y., Zhang, J. J., and Lee, J. H.:
Modelling particle size distribution dynamics in marine waters,
Water Res.,
38, 1305–1317, https://doi.org/10.1016/j.watres.2003.11.010, 2004. a, b
Lima, I. D., Olson, D. B., and Doney, S. C.:
Intrinsic dynamics and stability properties of size-structured pelagic ecosystem models,
J. Plankton Res.,
24, 533–556, https://doi.org/10.1093/plankt/24.6.533, 2002. a
McCave, I.:
Size spectra and aggregation of suspended particles in the deep ocean,
Deep-Sea Res.,
31, 329–352, https://doi.org/10.1016/0198-0149(84)90088-8, 1984. a, b, c
Monroy, P., Hernández-García, E., Rossi, V., and López, C.:
Modeling the dynamical sinking of biogenic particles in oceanic flow,
Nonlinear Proc. Geoph.,
24, 293–305, https://doi.org/10.5194/npg-24-293-2017, 2017. a
Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., and Fung, I. Y.:
An intermediate complexity marine ecosystem model for the global domain,
Deep-Sea Res. Pt. II,
49, 403–462, https://doi.org/10.1016/S0967-0645(01)00108-4, 2002. a
Neumann, T.:
Towards a 3-D ecosystem model of the Baltic Sea,
J. Marine Syst.,
25, 405–419, https://doi.org/10.1016/S0924-7963(00)00030-0, 2000. a
Oriekhova, O. and Stoll, S.:
Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter,
Environ. Sci.-Nano,
5, 792–799, https://doi.org/10.1039/C7EN01119A, 2018. a
Palmer, J. R. and Totterdell, I. J.:
Production and export in a global ocean ecosystem model,
Deep-Sea Res. Pt. I,
48, 1169–1198, https://doi.org/10.1016/S0967-0637(00)00080-7, 2001. a, b
Passow, U. and Carlson, C. A.:
The biological pump in a high CO2 world,
Mar. Ecol.-Prog. Ser.,
470, 249–271, https://doi.org/10.3354/meps09985, 2012. a
Pego, R. L.:
Lectures on dynamics in models of coarsening and coagulation,
in: Dynamics in models of coarsening, coagulation, condensation and quantization,
World Scientific, Pittsburgh, USA,
available at: https://www.math.cmu.edu/CNA/Publications/publications2006/001abs/06-CNA-001.pdf (last access: 28 June 2021), pp. 1–61, 2007. a
Ploug, H. and Grossart, H.-P.:
Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity,
Limnol. Oceanogr.,
45, 1467–1475, https://doi.org/10.4319/lo.2000.45.7.1467, 2000. a
Pruppacher, H. R. and Klett, J. D.:
Microphysics of clouds and precipitation, no. v. 18 in Atmos. Oceanogr. Sciences Library,
Springer, Dordrecht, New York, https://doi.org/10.1007/978-0-306-48100-0, 2010. a, b
Raick, C., Soetaert, K., and Grégoire, M.:
Model complexity and performance: How far can we simplify?,
Prog. Oceanogr.,
70, 27–57, https://doi.org/10.1016/j.pocean.2006.03.001, 2006. a
Riley, G. A.:
Factors controlling phytoplankton populations on Georges Bank,
J. Mar. Res.,
6, 54–73,
available at: http://images.peabody.yale.edu/publications/jmr/jmr06-01-04.pdf (last access: 28 June 2021), 1946. a
Sarmiento, J. L.and Slater, R. D., Fasham, M. J. R., Ducklow, H. W., Toggweiler, J. R., and Evans, G. T.:
A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone,
Global Biogeochem. Cy.,
7, 417–450, https://doi.org/10.1029/93GB00375, 1993. a
Stemmann, L., Picheral, M., and Gorsky, G.:
Diel variation in the vertical distribution of particulate matter (> 0.15 mm) in the NW Mediterranean Sea investigated with the Underwater Video Profiler,
Deep-Sea Res. Pt. I,
47, 505–531, https://doi.org/10.1016/S0967-0637(99)00100-4, 2000. a
Stemmann, L., Jackson, G. A., and Ianson, D.:
A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes–Part I: model formulation,
Deep-Sea Res. Pt. I,
51, 865–884, https://doi.org/10.1016/j.dsr.2004.03.001, 2004. a, b
Vichi, M., Pinardi, N., and Masina, S.:
A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory,
J. Mar. Sys.,
64, 89–109, https://doi.org/10.1016/j.jmarsys.2006.03.006, 2007. a
von Smoluchowski, M.:
Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen,
Phys. Z.,
17, 557–571, https://fbc.pionier.net.pl/id/oai:jbc.bj.uj.edu.pl:387533, 1916. a
Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J.:
A size-structured food-web model for the global ocean,
Limnol. Oceanogr.,
57, 1877–1891, https://doi.org/10.4319/lo.2012.57.6.1877, 2012. a
Wiggert, J., Murtugudde, R., and Christian, J.:
Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled bio-physical ocean general circulation model,
Deep-Sea Res. Pt. II,
53, 644–676, https://doi.org/10.1016/j.dsr2.2006.01.027, 2006. a, b
Yool, A., Popova, E. E., and Anderson, T. R.: Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain, Geosci. Model Dev., 4, 381–417, https://doi.org/10.5194/gmd-4-381-2011, 2011. a
Zahnow, J. C., Maerz, J., and Feudel, U.:
Particle-based modeling of aggregation and fragmentation processes: Fractal-like aggregates,
Physica D,
240, 882–893, https://doi.org/10.1016/j.physd.2011.01.003, 2011. a
Short summary
An accurate description of detritic organic particles is key to improving estimations of carbon export into the ocean abyss in ocean general circulation models. Yet, most parametrization are numerically impractical due to the required number of tracers needed to resolve the particle size spectrum. Here, a new parametrization that aims to minimize the tracers number while accurately describing the particles dynamics is developed and tested in a series of idealized numerical experiments.
An accurate description of detritic organic particles is key to improving estimations of carbon...