Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2843-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TransEBM v. 1.0: description, tuning, and validation of a transient model of the Earth's energy balance in two dimensions
Elisa Ziegler
CORRESPONDING AUTHOR
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Kira Rehfeld
CORRESPONDING AUTHOR
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Related authors
Thomas Jacques Aubry, Matthew Toohey, Sujan Khanal, Man Mei Chim, Magali Verkerk, Ben Johnson, Anja Schmidt, Mahesh Kovilakam, Michael Sigl, Zebedee Nicholls, Larry Thomason, Vaishali Naik, Landon Rieger, Dominik Stiller, Elisa Ziegler, and Isabel Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-4990, https://doi.org/10.5194/egusphere-2025-4990, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Climate forcings, such as solar radiation or anthropogenic greenhouse gases, are required to run global climate model simulations. Stratospheric aerosols, which mostly originate from large volcanic eruptions, are a key natural forcing. In this paper, we document the stratospheric aerosol forcing dataset that will feed the next generation (CMIP7) of climate models. Our dataset is very different from its predecessor (CMIP6), which might affect simulations of the 1850–2021 climate.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
Clim. Past, 21, 627–659, https://doi.org/10.5194/cp-21-627-2025, https://doi.org/10.5194/cp-21-627-2025, 2025
Short summary
Short summary
During the Last Deglaciation, global surface temperature rose by about 4–7 °C over several millennia. We show that changes in year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in 15 climate model simulations. The analysis demonstrates how ice sheets, meltwater, and volcanism influence simulated variability to inform future simulation protocols.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Christian Wirths, Elisa Ziegler, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2023-86, https://doi.org/10.5194/egusphere-2023-86, 2023
Preprint archived
Short summary
Short summary
We compare Holocene temperature trends from reconstructions and global climate models of different complexities. We find that models of all complexities disagree with mid-Holocene trends in reconstructions, and we show that this disagreement is largely independent of the type of reconstruction. From our results we conclude that a seasonal bias in the reconstructions is unlikely as a full explanation for the disagreement.
Thomas Jacques Aubry, Matthew Toohey, Sujan Khanal, Man Mei Chim, Magali Verkerk, Ben Johnson, Anja Schmidt, Mahesh Kovilakam, Michael Sigl, Zebedee Nicholls, Larry Thomason, Vaishali Naik, Landon Rieger, Dominik Stiller, Elisa Ziegler, and Isabel Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-4990, https://doi.org/10.5194/egusphere-2025-4990, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Climate forcings, such as solar radiation or anthropogenic greenhouse gases, are required to run global climate model simulations. Stratospheric aerosols, which mostly originate from large volcanic eruptions, are a key natural forcing. In this paper, we document the stratospheric aerosol forcing dataset that will feed the next generation (CMIP7) of climate models. Our dataset is very different from its predecessor (CMIP6), which might affect simulations of the 1850–2021 climate.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
Clim. Past, 21, 627–659, https://doi.org/10.5194/cp-21-627-2025, https://doi.org/10.5194/cp-21-627-2025, 2025
Short summary
Short summary
During the Last Deglaciation, global surface temperature rose by about 4–7 °C over several millennia. We show that changes in year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in 15 climate model simulations. The analysis demonstrates how ice sheets, meltwater, and volcanism influence simulated variability to inform future simulation protocols.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
Clim. Past, 21, 381–403, https://doi.org/10.5194/cp-21-381-2025, https://doi.org/10.5194/cp-21-381-2025, 2025
Short summary
Short summary
Earth's past temperature reconstructions are critical for understanding climate change. We test the ability of these reconstructions using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhance accuracy for long-term trends, high-quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Mathurin A. Choblet, Janica C. Bühler, Valdir F. Novello, Nathan J. Steiger, and Kira Rehfeld
Clim. Past, 20, 2117–2141, https://doi.org/10.5194/cp-20-2117-2024, https://doi.org/10.5194/cp-20-2117-2024, 2024
Short summary
Short summary
Past climate reconstructions are essential for understanding climate mechanisms and drivers. Our focus is on the South American continent over the past 2000 years. We offer a new reconstruction that particularly utilizes data from speleothems, previously absent from continent-wide reconstructions. We use paleoclimate data assimilation, a reconstruction method that combines information from climate archives and climate simulations.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Christian Wirths, Elisa Ziegler, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2023-86, https://doi.org/10.5194/egusphere-2023-86, 2023
Preprint archived
Short summary
Short summary
We compare Holocene temperature trends from reconstructions and global climate models of different complexities. We find that models of all complexities disagree with mid-Holocene trends in reconstructions, and we show that this disagreement is largely independent of the type of reconstruction. From our results we conclude that a seasonal bias in the reconstructions is unlikely as a full explanation for the disagreement.
Janica C. Bühler, Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld
Clim. Past, 18, 1625–1654, https://doi.org/10.5194/cp-18-1625-2022, https://doi.org/10.5194/cp-18-1625-2022, 2022
Short summary
Short summary
We collected and standardized the output of five isotope-enabled simulations for the last millennium and assess differences and similarities to records from a global speleothem database. Modeled isotope variations mostly arise from temperature differences. While lower-resolution speleothems do not capture extreme changes to the extent of models, they show higher variability on multi-decadal timescales. As no model excels in all comparisons, we advise a multi-model approach where possible.
Raphaël Hébert, Kira Rehfeld, and Thomas Laepple
Nonlin. Processes Geophys., 28, 311–328, https://doi.org/10.5194/npg-28-311-2021, https://doi.org/10.5194/npg-28-311-2021, 2021
Short summary
Short summary
Paleoclimate proxy data are essential for broadening our understanding of climate variability. There remain, however, challenges for traditional methods of variability analysis to be applied to such data, which are usually irregular. We perform a comparative analysis of different methods of scaling analysis, which provide variability estimates as a function of timescales, applied to irregular paleoclimate proxy data.
Janica C. Bühler, Carla Roesch, Moritz Kirschner, Louise Sime, Max D. Holloway, and Kira Rehfeld
Clim. Past, 17, 985–1004, https://doi.org/10.5194/cp-17-985-2021, https://doi.org/10.5194/cp-17-985-2021, 2021
Short summary
Short summary
We present three new isotope-enabled simulations for the last millennium (850–1850 CE) and compare them to records from a global speleothem database. Offsets between the simulated and measured oxygen isotope ratios are fairly small. While modeled oxygen isotope ratios are more variable on decadal timescales, proxy records are more variable on (multi-)centennial timescales. This could be due to a lack of long-term variability in complex model simulations, but proxy biases cannot be excluded.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cited articles
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K.,
and Blatter, H.: Insolation-driven 100,000-year glacial cycles and
hysteresis of ice-sheet volume, Nature, 500, 190–193,
https://doi.org/10.1038/nature12374, 2013. a
Andres, H. J. and Tarasov, L.: Towards understanding potential atmospheric contributions to abrupt climate changes: characterizing changes to the North Atlantic eddy-driven jet over the last deglaciation, Clim. Past, 15, 1621–1646, https://doi.org/10.5194/cp-15-1621-2019, 2019. a
Bathiany, S., Dijkstra, H., Crucifix, M., Dakos, V., Brovkin, V., Williamson,
M. S., Lenton, T. M., and Scheffer, M.: Beyond bifurcation: using complex
models to understand and predict abrupt climate change, Dynamics and
Statistics of the Climate System, https://doi.org/10.1093/climsys/dzw004, 2016. a, b
Berger, A. L.: Long-Term Variations of Daily Insolation and Quaternary
Climatic Changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2, 1978. a, b, c, d
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte,
V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate
models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424,
https://doi.org/10.1038/nclimate1456, 2012. a
Briggs, W. L., Hensen, V. E., and McCormick, S. F.: A Multigrid Tutorial,
Society for Industrial and Applied Mathematics, 2nd Edn.,
https://doi.org/10.1137/1.9780898719505, 2000. a
Budyko, M. I.: The effect of solar radiation variations on the climate of the
Earth, Tellus, 21, 611–619, https://doi.org/10.3402/tellusa.v21i5.10109, 1968. a, b, c, d
Bühler, J. C., Roesch, C., Kirschner, M., Sime, L., Holloway, M. D., and Rehfeld, K.: Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2020-121, in review, 2020. a, b, c
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W., Johns, T., Krinner, G., Shongwe,
M., Tebaldi, C., Weaver, A., and Wehner, M.: Long-term Climate Change:
Projections, Commitments and Irreversibility, book section 12,
Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1029–1136, https://doi.org/10.1017/CBO9781107415324.024, 2013. a
Crowley, T. J. and Hyde, W. T.: Transient nature of late Pleistocene climate
variability, Nature, 456, 226–230, https://doi.org/10.1038/nature07365, 2008. a
Crowley, T. J. and North, G. R.: Abrupt climate change and Extinction Events
in Earth History, Science, 240, 996–1002, 1988. a
Crowley, T. J. and North, G. R.: Modeling onset of glaciation, Ann.
Glaciol., 14, 39–42, https://doi.org/10.3189/S0260305500008223, 1990. a, b, c
Crowley, T. J., Short, D. A., Mengel, J. G., and North, G. R.: Role of
seasonality in the evolution of climate during the last 100 million years,
Science, 231, 579–584, https://doi.org/10.1126/science.231.4738.579, 1986. a, b, c
Crowley, T. J., Mengel, J. G., and Short, D. A.: Gondwanaland's seasonal
cycle, Nature, 329, 803–807, https://doi.org/10.1038/329803a0, 1987. a
Crowley, T. J., Hyde, W. T., and Short, D. A.: Seasonal cycle variations on
the supercontinent of Pangaea, Geology, 17, 457–460,
https://doi.org/10.1130/0091-7613(1989)017<0457:SCVOTS>2.3.CO;2, 1989. a, b, c, d
Dommenget, D., Nice, K., Bayr, T., Kasang, D., Stassen, C., and Rezny, M.: The Monash Simple Climate Model experiments (MSCM-DB v1.0): an interactive database of mean climate, climate change, and scenario simulations, Geosci. Model Dev., 12, 2155–2179, https://doi.org/10.5194/gmd-12-2155-2019, 2019. a
Dortmans, B., Langford, W. F., and Willms, A. R.: An energy balance model for paleoclimate transitions, Clim. Past, 15, 493–520, https://doi.org/10.5194/cp-15-493-2019, 2019. a
Fraedrich, K., Bordi, I., and Zhu, X.: Climate dynamics on global scale:
resilience, hysteresis and attribution of change, CISM International Centre
for Mechanical Sciences, Courses and Lectures, 564, 143–159,
https://doi.org/10.1007/978-3-7091-1893-1_6, 2016. a, b
Ghil, M.: A Mathematical Theory of Climate Sensitivity or, How to Deal With
Both Anthropogenic Forcing and Natural Variability?, in: Climate Change:
Multidecadal and Beyond, edited by: Chang, C.-P., Ghil, M., Latif, M., and
Wallace, J. M., chap. 2, World Scientific, 31–51,
https://doi.org/10.1142/9789814579933_0002, 2015. a, b
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010. a
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C.,
Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents
and ocean heat transports in a version of the Hadley Centre coupled model
without flux adjustments, Clim. Dynam., 16, 147–168,
https://doi.org/10.1007/s003820050010, 2000. a, b, c
Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde,
M., Ramsey, C. B., Satow, C., and Roberts, A. P.: Rapid coupling between ice
volume and polar temperature over the past 150,000 years, Nature, 491,
744–747, https://doi.org/10.1038/nature11593, 2012. a, b, c, d
Harvey, L. D. and Schneider, S. H.: Transient climate response to external
forcing on 100-104 year time scales, 2. Sensitivity experiments with a
seasonal, hemispherically averaged, coupled atmosphere, land, and ocean
energy balance model, J. Geophys. Res., 90, 2207–2222,
https://doi.org/10.1029/JD090iD01p02207, 1985. a
Hébert, R., Lovejoy, S., and Tremblay, B.: An observation-based scaling
model for climate sensitivity estimates and global projections to 2100,
Clim. Dynam., 56, 1105–1129, https://doi.org/10.1007/s00382-020-05521-x, 2020. a
Huang, J. and Bowman, K. P.: The small ice cap instability in seasonal energy
balance models, Clim. Dynam., 7, 205–215, https://doi.org/10.1007/BF00206862,
1992. a, b
Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum
temperature variability, Nature, 441, 329–332, https://doi.org/10.1038/nature04745,
2006. a
Kim, K.-Y. and North, G. R.: Surface temperature fluctuations in a stochastic
climate model, J. Geophys. Res., 96, 18573,
https://doi.org/10.1029/91JD01959, 1991. a
Kyle, H. L., Weiss, M., and Ardanuy, P.: Cloud, Surface Temperature, and
Outgoing Longwave Radiation for the Period from 1979 to 1990, J.
Climate, 8, 2644–2658,
https://doi.org/10.1175/1520-0442(1995)008<2644:CSTAOL>2.0.CO;2, 1995. a, b
Laepple, T. and Huybers, P.: Ocean surface temperature variability: Large
model–data differences at decadal and longer periods, P.
Natl. Acad. Sci. USA, 111, 16682–16687,
https://doi.org/10.1073/pnas.1412077111, 2014. a
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and
Levrard, B.: A long-term numerical solution for the insolation quantities
of the Earth, Astron. Astrophys., 428, 261–285,
https://doi.org/10.1051/0004-6361:20041335, 2004. a, b, c
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U.,
Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for bolling-allerød warming, Science,
325, 310–314, https://doi.org/10.1126/science.1171041, 2009. a
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann,
A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.: The
Holocene temperature conundrum, P. Natl. Acad.
Sci. USA, 111, E3501–E3505, https://doi.org/10.1073/pnas.1407229111, 2014. a
Max Planck Institute für Meteorologie: Climate Data Operators,
available at: https://code.mpimet.mpg.de/projects/cdo, last access: 30 April 2021. a
Meyer, P., Hoell, M., and Kantz, H.: Reproducing Long-Range Correlations in
Global Mean Temperatures in Simple Energy Balance Models, J.
Geophys. Res.-Atmos., 123, 4413–4422,
https://doi.org/10.1002/2017JD028078, 2018. a
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of
radiative forcing due to well mixed greenhouse gases, Geophys. Res.
Lett., 25, 2715–2718, https://doi.org/10.1029/98GL01908, 1998. a
National Geophysical Data Center: 5-minute Gridded Global Relief Data
(ETOPO5), National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5D798BF, 1993. a, b, c
Neukom, R., Barboza, L. A., Erb, M. P., Shi, F., Emile-Geay, J., Evans, M. N.,
Franke, J., Kaufman, D. S., Lücke, L., Rehfeld, K., Schurer, A., Zhu,
F., Brönnimann, S., Hakim, G. J., Henley, B. J., Ljungqvist, F. C.,
McKay, N., Valler, V., and von Gunten, L.: Consistent multidecadal
variability in global temperature reconstructions and simulations over the
Common Era, Nat. Geosci., 12, 643–649,
https://doi.org/10.1038/s41561-019-0400-0, 2019. a, b, c, d
North, G. R.: The small ice cap instability in diffusive climate models,
J. Atmos. Sci., 41, 3390–3395,
https://doi.org/10.1175/1520-0469(1984)041<3390:TSICII>2.0.CO;2, 1984. a, b
North, G. R. and Coakley, J. A.: Differences between seasonal and mean annual
energy balance model calculations of climate and climate sensitivity,
J. Atmos. Sci., 36, 1189–1204,
https://doi.org/10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2, 1979. a
North, G. R., Cahalan, R. F., and Coakley, J. A.: Energy-Balance Climate
Models, Rev. Geophys. Space Phys., 16, 2000–2001, 1980. a
Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., and Strand, G.: Climate variability
and change since 850 CE. An ensemble approach with the community earth system
model, B. Am. Meteorol. Soc., 97, 787–801,
https://doi.org/10.1175/BAMS-D-14-00233.1, 2016. a, b
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017. a
Pope, V. D., Gallani, M. L., Rowntree, P. R., and Stratton, R. A.: The impact
of new physical parametrizations in the Hadley Centre climate model: HadAM3,
Clim. Dynam., 16, 123–146, https://doi.org/10.1007/s003820050009, 2000. a, b, c
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I.,
Knutti, R., Lohmann, G., Marsh, R., Mysak, L. a., Wang, Z., and Weaver,
A. J.: Thermohaline circulation hysteresis: A model intercomparison,
Geophys. Res. Lett., 32, 1–5, https://doi.org/10.1029/2005GL023655, 2005. a
Rehfeld, K., Hébert, R., Lora, J. M., Lofverstrom, M., and Brierley, C. M.: Variability of surface climate in simulations of past and future, Earth Syst. Dynam., 11, 447–468, https://doi.org/10.5194/esd-11-447-2020, 2020. a
Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., Van De Wal,
R. S., Von Der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K.,
Crucifix, M., Deconto, R., Drijfhout, S. S., Fedorov, A., Foster, G. L.,
Ganopolski, A., Hansen, J., Hönisch, B., Hooghiemstra, H., Huber, M.,
Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, D.,
Masson-Demotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M.,
Pälike, H., Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos,
J. C., and Zeebe, R. E.: Making sense of palaeoclimate sensitivity, Nature,
491, 683–691, https://doi.org/10.1038/nature11574, 2012. a
Ruddiman, W. F.: Earth's Climate. Past and Future, W. H. Freeman and Company,
3rd Edn., 2014. a
Rypdal, K., Rypdal, M., and Fredriksen, H. B.: Spatiotemporal long-range
persistence in earth's temperature field: Analysis of stochastic-diffusive
energy balance models, J. Climate, 28, 8379–8395,
https://doi.org/10.1175/JCLI-D-15-0183.1, 2015. a, b
Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P., Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C., Thompson, D., Timmermann, A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to constrain future projections in CMIP5, Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, 2014. a, b, c
Sellers, W. D.: A Global Climatic Model Based on the Energy Balance of the
Earth-Atmosphere System, J. Appl. Meteorol., 8, 392–400,
https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2, 1969. a, b, c, d
Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T., and North, G. R.:
Filtering of milankovitch cycles by earth's geography, Quaternary Res.,
35, 157–173, https://doi.org/10.1016/0033-5894(91)90064-C, 1991. a, b, c
Singarayer, J. S. and Valdes, P. J.: High-latitude climate sensitivity to
ice-sheet forcing over the last 120 kyr, Quaternary Sci. Rev., 29,
43–55, https://doi.org/10.1016/j.quascirev.2009.10.011, 2010. a
Smith, R. S. and Gregory, J.: The last glacial cycle: Transient simulations
with an AOGCM, Clim. Dynam., 38, 1545–1559,
https://doi.org/10.1007/s00382-011-1283-y, 2012. a, b
Stap, L. B., van de Wal, R. S. W., de Boer, B., Bintanja, R., and Lourens, L. J.: The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet–climate model, Clim. Past, 13, 1243–1257, https://doi.org/10.5194/cp-13-1243-2017, 2017. a, b, c
Stap, L. B., van de Wal, R. S., de Boer, B., Köhler, P., Hoencamp, J. H.,
Lohmann, G., Tuenter, E., and Lourens, L. J.: Modeled Influence of Land Ice
and CO2 on Polar Amplification and Paleoclimate Sensitivity During the
Past 5 Million Years, Paleoceanogr. Paleoclim., 33, 381–394,
https://doi.org/10.1002/2017PA003313, 2018. a
Wagner, T. J. W. and Eisenman, I.: How Climate Model Complexity Influences Sea
Ice Stability, J.Climate, 28, 3998–4014,
https://doi.org/10.1175/jcli-d-14-00654.1, 2015. a
Zhuang, K., North, G. R., and Giardino, J. R.: Hysteresis of glaciations in
the Permo-Carboniferous, J. Geophys. Res.-(Atmo., 119,
6196–6206, https://doi.org/10.1002/2013JD020524, 2014. a
Ziegler, E. and Rehfeld, K.: Data and model from TransEBM v. 1.0: Description,
tuning, and validation of a transient model of the Earth's energy balance in
two dimensions, Zenodo, https://doi.org/10.5281/zenodo.3941311, 2020. a
Short summary
Past climate changes are the only record of how the climate responds to changes in conditions on Earth, but simulations with complex climate models are challenging. We extended a simple climate model such that it simulates the development of temperatures over time. In the model, changes in carbon dioxide and ice distribution affect the simulated temperatures the most. The model is very efficient and can therefore be used to examine past climate changes happening over long periods of time.
Past climate changes are the only record of how the climate responds to changes in conditions on...