Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-1841-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1841-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a
Bastian van den Bout
CORRESPONDING AUTHOR
Faculty of Geo-Information Science and Earth
Observation, University of Twente, Enschede, the Netherlands
Theo van Asch
State Key Laboratory of Geohazard
Prevention and Geo-Environment Protection, Chengdu University of Technology, Chengdu, China
Wei Hu
State Key Laboratory of Geohazard
Prevention and Geo-Environment Protection, Chengdu University of Technology, Chengdu, China
Chenxiao X. Tang
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu, China
Olga Mavrouli
Faculty of Geo-Information Science and Earth
Observation, University of Twente, Enschede, the Netherlands
Victor G. Jetten
Faculty of Geo-Information Science and Earth
Observation, University of Twente, Enschede, the Netherlands
Cees J. van Westen
Faculty of Geo-Information Science and Earth
Observation, University of Twente, Enschede, the Netherlands
Related authors
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022, https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary
Short summary
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min River, and resulted in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022, https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary
Short summary
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min River, and resulted in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Lina Hao, Rajaneesh A., Cees van Westen, Sajinkumar K. S., Tapas Ranjan Martha, Pankaj Jaiswal, and Brian G. McAdoo
Earth Syst. Sci. Data, 12, 2899–2918, https://doi.org/10.5194/essd-12-2899-2020, https://doi.org/10.5194/essd-12-2899-2020, 2020
Short summary
Short summary
Kerala in India was subjected to an extreme rainfall event in the monsoon season of 2018 which triggered extensive floods and landslides. In order to study whether the landslides were related to recent land use changes, we generated an accurate and almost complete landslide inventory based on two existing datasets and the detailed interpretation of images from the Google Earth platform. The final dataset contains 4728 landslides with attributes of land use in 2010 and land use in 2018.
Cited articles
Aaron, J. and Hungr, O.: Dynamic simulation of the motion of partially-coherent landslides, Eng. Geol., 205, 1–11, 2016.
Abe, K. and Konagai, K.: Numerical simulation for runout process of debris
flow using depth-averaged material point method, Soils Found., 56,
869–888, 2016.
Alsalman, M., Myers, M., and Sharf-Aldin, M.: Comparison of multistage to
single stage triaxial tests, in: 49th US Rock Mechanics/Geomechanics Symposium, Francisco, California, 28 June 2015, ARMA-2015-767,
2015.
Bandara, S., Ferrari, A., and Laloui, L.: Modelling landslides in
unsaturated slopes subjected to rainfall infiltration using material point
method, Int. J. Numer. Anal. Met., 40, 1358–1380, 2016.
Batcher, K. E.: Sorting networks and their applications, in: Proceedings of the spring joint computer conference, Atlantic City, New Jersey, 30 April–2 May 1968, 307–314, 1968.
Beutner, E. C. and Gerbi, G. P.: Catastrophic emplacement of the Heart
Mountain block slide, Wyoming and Montana, USA, Geol. Soc.
Am. Bull., 117, 724–735, 2005.
Bieniawski, Z. T.: Mechanism of brittle fracture of rock: part I – theory of the fracture process, Int. J. Rock. Mech. Min., 4, 395–406, https://doi.org/10.1016/0148-9062(67)90030-7, 1967.
Bout, B., Lombardo, L., van Westen, C. J., and Jetten, V. G.: Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures, Environ. Modell. Softw., 105, 1–16, 2018.
Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S.: Lagrangian meshfree
particles method (SPH) for large deformation and failure flows of
geomaterial using elastic–plastic soil constitutive model, Int. J. Numer. Anal. Met., 32, 1537–1570, 2008.
Chen, W.-F. and Mizuno, E.: Nonlinear analysis in soil mechanics,
Elsevier, Amsterdam, 1990.
Cohen, D., Lehmann, P., and Or, D.: Fiber bundle model for multiscale
modeling of hydromechanical triggering of shallow landslides, Water
resources research, 45, W10436, https://doi.org/10.1029/2009WR007889, 2009.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P.,
Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., and
Agliardi, F.: Recommendations for the quantitative analysis of landslide
risk, Bull. Eng. Geol. Environ., 73, 209–263, 2014.
Corominas, J., Matas, G., and Ruiz-Carulla, R.: Quantitative analysis of
risk from fragmental rockfalls, Landslides, 16, 5–21, 2019.
Cuomo, S., Pastor, M., Capobianco, V., and Cascini, L.: Modelling the space–time evolution of bed entrainment for flow-like landslides, Eng. Geol., 212, 10–20, 2016.
David, L. G. and Richard, M.: A two-phase debris-flow model that includes
coupled evolution of volume fractions, granular dilatancy, and pore-fluid
pressure, Ital. J. Eng. Geol. Environ., 43, 415–424, 2011.
Davies, T. and McSaveney, M.: The role of rock fragmentation in the motion
of large landslides, Eng. Geol., 109, 67–79, 2009.
Davies, T., McSaveney, M., and Beetham, R.: Rapid block glides:
slide-surface fragmentation in New Zealand's Waikaremoana landslide,
Q. J. Eng. Geol. Hydroge., 39, 115–129, 2006.
Delaney, K. B. and Evans, S. G.: The 1997 Mount Munday landslide (British
Columbia) and the behaviour of rock avalanches on glacier surfaces,
Landslides, 11, 1019–1036, 2014.
Delestre, O., Cordier, S., Darboux, F., Du, M., James, F., Laguerre, C.,
Lucas, C., and Planchon, O.: FullSWOF: A software for overland flow
simulation, in: Advances in hydroinformatics, Springer, Singapore, 221–231, 2014.
De Vuyst, T. and Vignjevic, R.: Total Lagrangian SPH modelling of necking
and fracture in electromagnetically driven rings, Int. J. Fracture, 180, 53–70, 2013.
Dhanmeher, S.: Crack pattern observations to finite element simulation: An
exploratory study for detailed assessment of reinforced concrete structures, Delft University, Delft, the Netherlands,
2017.
Drew, D. A.: Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech., 15, 261–291, 1983.
Dufresne, A., Geertsema, M., Shugar, D., Koppes, M., Higman, B., Haeussler,
P., Stark, C., Venditti, J., Bonno, D., and Larsen, C.: Sedimentology and
geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska,
Sediment. Geol., 364, 302–318, 2018.
Fornes, P., Bihs, H., Thakur, V. K. S., and Nordal, S.: Implementation of
non-Newtonian rheology for Debris Flow simulation with REEF3D, in: E-proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia,
13–18 August 2017, 2017.
Grady, D. E. and Kipp, M. E.: Continuum modelling of explosive fracture in
oil shale, Int. J. Rock Mechanics Min., 17, 147–157, 1980.
Greco, M., Di Cristo, C., Iervolino, M., and Vacca, A.: Numerical simulation of mud-flows impacting structures, J. Mt. Sci., 16, 364–382, 2019.
Griffiths, D. and Lane, P.: Slope stability analysis by finite elements,
Geotechnique, 49, 387–403, 1999.
Hayir, A.: The effects of variable speeds of a submarine block slide on
near-field tsunami amplitudes, Ocean Eng., 30, 2329–2342, 2003.
Hušek, M., Kala, J., Hokeš, F., and Král, P.: Influence of SPH
regularity and parameters in dynamic fracture phenomena, Proc.
Eng., 161, 489–496, 2016.
Hutter, K., Svendsen, B., and Rickenmann, D.: Debris flow modeling: a
review, Continuum Mech. Therm., 8, 1–35, 1994.
Ishii, M.: Thermo-fluid dynamic theory of two-phase flow, NASA Sti/recon Technical Report A, 75, 29657, https://doi.org/10.1007/978-1-4419-7985-8, 1975.
Ishii, M. and Zuber, N.: Drag coefficient and relative velocity in bubbly,
droplet or particulate flows, AICHE J., 25, 843–855, 1979.
Iverson, R. M.: Elementary theory of bed-sediment entrainment by debris
flows and avalanches, J. Geophys. Res.-Earth, 117, F03006, https://doi.org/10.1029/2011JF002189, 2012.
Iverson, R. M. and Denlinger, R. P.: Flow of variably fluidized granular
masses across three-dimensional terrain: 1. Coulomb mixture theory, J.
Geophys. Res.-Solid Ea., 106, 537–552, 2001.
Iverson, R. M. and George, D. L.: A depth-averaged debris-flow model that
includes the effects of evolving dilatancy. I. Physical basis, P.
Roy. Soc. A Math. Phy., 470, 20130819, https://doi.org/10.1098/rspa.2013.0819, 2014.
Iverson, R. M. and George, D. L.: Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster, Géotechnique, 66, 175–187, 2016.
Iverson, R. M. and Ouyang, C.: Entrainment of bed material by Earth-surface
mass flows: Review and reformulation of depth-integrated theory, Rev.
Geophys., 53, 27–58, 2015.
Jakob, M., Hungr, O., and Jakob, D. M.: Debris-flow hazards and related
phenomena, Springer, Berlin, Heidelberg, 2005.
Kaklauskas, G. and Ghaboussi, J.: Stress-strain relations for cracked
tensile concrete from RC beam tests, J. Struc. Eng., 127,
64–73, 2001.
Kern, J. S.: Evaluation of soil water retention models based on basic soil
physical properties, Soil Sc. Soc. Am. J., 59, 1134–1141,
1995.
Kjekstad, O. and Highland, L.: Economic and social impacts of landslides,
in: Landslides–disaster risk reduction, Springer-Verlag Berlin Heidelberg, 573–587, 2009.
Li, C., Wang, C., and Qin, H.: Novel adaptive SPH with geometric subdivision
for brittle fracture animation of anisotropic materials, Visual
Comput., 31, 937–946, 2015.
Libersky, L. D. and Petschek, A. G.: Smooth particle hydrodynamics with
strength of materials, in: Advances in the free-Lagrange method including
contributions on adaptive gridding and the smooth particle hydrodynamics
method, Springer, Berlin, Heidelberg, 248–257, 1991.
Loehnert, S. and Mueller-Hoeppe, D. S.: Multiscale methods for fracturing solids, in: IUTAM symposium on theoretical, computational and modelling aspects of inelastic media, Springer, Dordrecht, the Netherlands, pp. 79–87, 2008.
Luna, B. Q., Remaître, A., Van Asch, T. W., Malet, J.-P., and Van
Westen, C.: Analysis of debris flow behavior with a one dimensional run-out
model incorporating entrainment, Eng. Geol., 128, 63–75, 2012.
Ma, G., Wang, Q., Yi, X., and Wang, X.: A modified SPH method for dynamic
failure simulation of heterogeneous material, Math. Probl.
Eng., 2014, 808359, https://doi.org/10.1155/2014/808359, 2014.
Matsui, T. and San, K.-C.: Finite element slope stability analysis by shear
strength reduction technique, Soils Found., 32, 59–70, 1992.
Maurel, B. and Combescure, A.: An SPH shell formulation for plasticity and
fracture analysis in explicit dynamics, Int. J. Num.
Meth. Eng., 76, 949–971, 2008.
Menin, R., Trautwein, L. M., and Bittencourt, T. N.: Smeared crack models
for reinforced concrete beams by finite element method, Revista IBRACON de
Estruturas e Materiais, 2, 166–200, 2009.
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017.
Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J. T., Huggel, C., and Pudasaini, S. P.: How well can we simulate complex hydro‐geomorphic process chains? The 2012 multi‐lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú), Earth Surf. Proc. Land., 43, 1373–1389, 2018.
Monaghan, J. J.: SPH without a tensile instability, J. Comput. Phys., 159, 290–311, 2000.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C.: Global
landslide and avalanche hotspots, Landslides, 3, 159–173, 2006.
Necas, J. and Hlavácek, I.: Mathematical theory of elastic and
elasto-plastic bodies: an introduction, Elsevier, https://doi.org/10.1016/B978-0-444-99754-8.50008-4, 2017.
Ngekpe, B., Ode, T., and Eluozo, S.: Application of total-strain crack model
in finite element analysis for punching shear at edge connection,
Int. J. Res. Eng. Social Sci., 6, 1–9, 2016.
Julien, P. Y. and O'Brien, J. S.: Selected notes on debris flow dynamics, in: Recent Developments on Debris Flows. Lecture Notes in Earth Sciences, , edited by: Armanini, A. and Michiue, M., vol 64, Springer, Berlin, Heidelberg, https://doi.org/10.1007/BFb0117766, 1997.
Osorno, M. and Steeb, H.: Coupled SPH and Phase Field method for hydraulic
fracturing, Proc. Appl. Math. Mech., 17, 533–534, https://doi.org/10.1002/pamm.201710236, 2017.
Pailha, M. and Pouliquen, O.: A two-phase flow description of the
initiation of underwater granular avalanches, J. Fluid Mech.,
633, 115, https://doi.org/10.1017/S0022112009007460, 2009.
Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S.: Application of a SPH depth-integrated model to landslide run-out analysis, Landslides, 11, 793–812, https://doi.org/10.1007/s10346-014-0484-y, 2014.
Pitman, E. B. and Le, L.: A two-fluid model for avalanche and debris flows,
Philos. Trans. A. Math. Phys. Eng. Sci., 363, 1573–1601, https://doi.org/10.1098/rsta.2005.1596, 2005.
Price, N. J.: Fault and joint development: in brittle and semi-brittle rock,
Elsevier, https://doi.org/https://doi.org/10.1016/C2013-0-05410-2, 2016.
Pudasaini, S. P.: A general two‐phase debris flow model, J. Geophys. Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P. and Fischer, J.-T.: A mechanical erosion model for
two-phase mass flows, arXiv preprint, arXiv:1610.01806, 2016.
Pudasaini, S. P. and Hutter, K.: Rapid shear flows of dry granular masses
down curved and twisted channels, J. Fluid Mech., 495, 193–208,
2003.
Pudasaini, S. P. and Hutter, K.: Avalanche dynamics: dynamics of rapid
flows of dense granular avalanches, Springer Science & Business Media,
Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-540-32687-8,
2007.
Pudasaini, S. P. and Mergili, M.: A multi-phase mass flow model, J.
Geophys. Res.-Earth, 124, 2920–2942, 2019.
Pudasaini, S. P., Hajra, S. G., Kandel, S., and Khattri, K. B.: Analytical
solutions to a nonlinear diffusion–advection equation, ZAMM-Z Angew. Math. Phys., 69, 150, https://doi.org/10.1007/s00033-018-1042-6, 2018.
Rankine, W. J. M.: II. On the stability of loose earth, Philos. T. R. Soc. Lond., 147, 9–27, 1857.
Reiche, P.: The Toreva-Block: A distinctive landslide type, J.
Geol., 45, 538–548, 1937.
Rickenmann, D., Laigle, D., McArdell, B., and Hübl, J.: Comparison of 2D
debris-flow simulation models with field events, Comput. Geosci.,
10, 241–264, 2006.
Roberts, M.: Evenly Distributing Points in a Triangle, available at: http://extremelearning.com.au/evenly-distributing-points-in-a-triangle/ (last access: 3 March 2021), 2020.
Savage, S. B. and Hutter, K.: The motion of a finite mass of granular
material down a rough incline, J. Fluid Mech., 199, 177–215,
1989.
Saxton, K. E. and Rawls, W. J.: Soil water characteristic estimates by
texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, 2006.
Sheridan, M. F., Stinton, A. J., Patra, A., Pitman, E., Bauer, A., and
Nichita, C.: Evaluating Titan2D mass-flow model using the 1963 Little Tahoma
peak avalanches, Mount Rainier, Washington, J. Volcanol. Geotherm. Res., 139, 89–102, 2005.
Spencer, A. J. M.: Continuum mechanics, Courier Corporation, Dover Publications, ISBN-13 9780486139470, 2012.
Stead, D. and Wolter, A.: A critical review of rock slope failure
mechanisms: the importance of structural geology, J. Struct.
Geol., 74, 1–23, 2015.
Steffen, M., Kirby, R. M., and Berzins, M.: Analysis and reduction of
quadrature errors in the material point method (MPM), Int. J. Num. Meth. Eng., 76, 922–948, 2008.
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.: A material
point method for snow simulation, ACM Transactions on Graphics (TOG), 32,
1–10, 2013.
Tang, C.-L., Hu, J.-C., Lin, M.-L., Angelier, J., Lu, C.-Y., Chan, Y.-C.,
and Chu, H.-T.: The Tsaoling landslide triggered by the Chi-Chi earthquake,
Taiwan: insights from a discrete element simulation, Eng. Geol.,
106, 1–19, 2009.
Van Asch, T. W., Tang, C., Alkema, D., Zhu, J., and Zhou, W.: An integrated
model to assess critical rainfall thresholds for run-out distances of debris
flows, Nat. Haz., 70, 299–311, 2014.
van den Bout, B.: OpenLISEM Hazard 2.0 alpha, DANS, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente https://doi.org/10.17026/dans-xz4-2tut, 2020.
van den Bout, B.: openLISEM, available at: https://sourceforge.net/projects/lisem/ (last access: 22 March 2021), SourceForge, 2021.
van den Bout, B and Jetten, V. G.: openLISEM a spatial model for runoff, floods and erosion, available at: https://blog.utwente.nl/lisem/ (last access: 22 March 2021), 2020.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U.,
Montzka, C., Nemes, A., Pachepsky, Y. A., and Padarian, J.: Pedotransfer
functions in Earth system science: challenges and perspectives, Rev.
Geophys., 55, 1199–1256, 2017.
Varnes, D. J.: Slope movement types and processes, Special Rep., 176,
11–33, 1978.
von Boetticher, A., Turowski, J. M., McArdell, B. W., Rickenmann, D., Hürlimann, M., Scheidl, C., and Kirchner, J. W.: DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – Part 2: Model validation with experiments, Geosci. Model Dev., 10, 3963–3978, https://doi.org/10.5194/gmd-10-3963-2017, 2017.
Williams, J. R.: Application of SPH to coupled fluid-solid problems in the
petroleum industry, Videos of Plenary Lectures presented at the IV
International Conference on Particle-Based Methods, Fundamentals and
Applications (PARTICLES 2015), Technical University of Catalonia (UPC), Barcelona, Spain, 28–30 September 2015, 2019.
Xie, M., Esaki, T., and Cai, M.: GIS-based implementation of
three-dimensional limit equilibrium approach of slope stability, J.
Geotech. Geoenviron. Eng., 132, 656–660, 2006.
Xu, F., Zhao, Y., Li, Y., and Kikuchi, M.: Study of numerical and physical
fracture with SPH method, Acta Mech. Solida Sinica, 23, 49–56, 2010.
Xu, R., Kang, L., and Tian, H.: A g-octree based fast collision detection for large-scale particle systems, in: 2012 International Conference on Computer Science and Electronics Engineering, IEEE, 3, 269–273), 2012.
Xu, S. Y., Lawal, A. I., Shamsabadi, A., and Taciroglu, E.: Estimation of static earth pressures for a sloping cohesive backfill using extended Rankine theory with a composite log-spiral failure surface, Acta Geotech., 14, 579–594, 2019.
Zhang, L., Zhang, J., Zhang, L., and Tang, W.: Stability analysis of
rainfall-induced slope failure: a review, P. I. Civil Eng.-Geotec., 164, 299–316, 2011.
Zhou, F., Molinari, J.-F., and Ramesh, K.: A cohesive model based
fragmentation analysis: effects of strain rate and initial defects
distribution, Int. J. Solid. Struct., 42, 5181–5207, 2005.
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods...