Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-1841-2021
https://doi.org/10.5194/gmd-14-1841-2021
Model description paper
 | 
06 Apr 2021
Model description paper |  | 06 Apr 2021

Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a

Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen

Related authors

Physically based modeling of co-seismic landslide, debris flow, and flood cascade
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022,https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary

Related subject area

Solid Earth
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023,https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023,https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
A new temperature-photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes
Shouzhi Chen, Yongshuo H. Fu, Mingwei Li, Zitong Jia, Yishuo Cui, and Jing Tang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-212,https://doi.org/10.5194/gmd-2023-212, 2023
Revised manuscript accepted for GMD
Short summary
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023,https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
High-precision 1′×1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2132,https://doi.org/10.5194/egusphere-2023-2132, 2023
Short summary

Cited articles

Aaron, J. and Hungr, O.: Dynamic simulation of the motion of partially-coherent landslides, Eng. Geol., 205, 1–11, 2016. 
Abe, K. and Konagai, K.: Numerical simulation for runout process of debris flow using depth-averaged material point method, Soils Found., 56, 869–888, 2016. 
Alsalman, M., Myers, M., and Sharf-Aldin, M.: Comparison of multistage to single stage triaxial tests, in: 49th US Rock Mechanics/Geomechanics Symposium, Francisco, California, 28 June 2015, ARMA-2015-767, 2015. 
Bandara, S., Ferrari, A., and Laloui, L.: Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method, Int. J. Numer. Anal. Met., 40, 1358–1380, 2016. 
Batcher, K. E.: Sorting networks and their applications, in: Proceedings of the spring joint computer conference, Atlantic City, New Jersey, 30 April–2 May 1968, 307–314, 1968. 
Download
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.