Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-1007-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1007-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the development of systematic errors in the Asian summer monsoon
Gill M. Martin
CORRESPONDING AUTHOR
Met Office, Exeter, Devon, EX1 3PB, UK
Richard C. Levine
Met Office, Exeter, Devon, EX1 3PB, UK
José M. Rodriguez
Met Office, Exeter, Devon, EX1 3PB, UK
Michael Vellinga
Met Office, Exeter, Devon, EX1 3PB, UK
Related authors
Ankur Srivastava, Gill M. Martin, Maheswar Pradhan, Suryachandra A. Rao, and Sarah Ineson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2303, https://doi.org/10.5194/egusphere-2025-2303, 2025
Short summary
Short summary
This study documents the dynamics behind the first occurrence of a multi-year negative Indian Ocean Dipole (nIOD) event during 2021–2022, which lasted for an unprecedented 19 months! The event was sustained by the triple-dip La Niña event of 2020–2022. The conducive background state led to anomalous westerly wind activity and a record number and duration of westerly-wind bursts in the equatorial Indian Ocean. The resulting modulation of Wyrtki jets aided the sustenance of the nIOD event.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702, https://doi.org/10.5194/wcd-5-671-2024, https://doi.org/10.5194/wcd-5-671-2024, 2024
Short summary
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Ankur Srivastava, Gill M. Martin, Maheswar Pradhan, Suryachandra A. Rao, and Sarah Ineson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2303, https://doi.org/10.5194/egusphere-2025-2303, 2025
Short summary
Short summary
This study documents the dynamics behind the first occurrence of a multi-year negative Indian Ocean Dipole (nIOD) event during 2021–2022, which lasted for an unprecedented 19 months! The event was sustained by the triple-dip La Niña event of 2020–2022. The conducive background state led to anomalous westerly wind activity and a record number and duration of westerly-wind bursts in the equatorial Indian Ocean. The resulting modulation of Wyrtki jets aided the sustenance of the nIOD event.
Chihiro Matsukawa, José M. Rodríguez, and Sean F. Milton
EGUsphere, https://doi.org/10.5194/egusphere-2025-1466, https://doi.org/10.5194/egusphere-2025-1466, 2025
Short summary
Short summary
To identify sources of the model systematic errors, we investigate northern hemisphere mid-latitude wind errors at short- to medium-range timescale using the atmospheric zonal-mean budgets analysis and the relaxation technique. These process-based diagnostics specify to what extent the individual components in the budgets contribute to the total tendency of the corresponding variable. This study shows disentanglements of compensating errors caused by mechanical and thermal forcings.
Gill M. Martin and José M. Rodríguez
Weather Clim. Dynam., 5, 711–731, https://doi.org/10.5194/wcd-5-711-2024, https://doi.org/10.5194/wcd-5-711-2024, 2024
Short summary
Short summary
Using sensitivity experiments, we show that model errors developing in the Maritime Continent region contribute substantially to the Asian summer monsoon (ASM) circulation and rainfall errors through their effects on the western North Pacific subtropical high-pressure region and the winds and sea surface temperatures in the equatorial Indian Ocean, exacerbated by local coupled feedback. Such information will inform future model developments aimed at improving model predictions for the ASM.
Richard J. Keane, Ankur Srivastava, and Gill M. Martin
Weather Clim. Dynam., 5, 671–702, https://doi.org/10.5194/wcd-5-671-2024, https://doi.org/10.5194/wcd-5-671-2024, 2024
Short summary
Short summary
We evaluate the performance of two widely used models in forecasting the Indian summer monsoon, which is one of the most challenging meteorological phenomena to simulate. The work links previous studies evaluating the use of the models in weather forecasting and climate simulation, as the focus here is on seasonal forecasting, which involves intermediate timescales. As well as being important in itself, this evaluation provides insights into how errors develop in the two modelling systems.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2
global precipitation climatology project (GPCP) monthly precipitation
analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Amaya, D. J., Kosaka, Y., Zhou, W., Zhang, Y., Xie, S., and Miller, A. J.:
The North Pacific Pacemaker Effect on Historical ENSO and Its Mechanisms, J.
Climate, 32, 7643–7661,
https://doi.org/10.1175/JCLI-D-19-0040.1, 2019.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D.: Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts, Geosci. Model Dev., 7, 2613–2638, https://doi.org/10.5194/gmd-7-2613-2014, 2014.
Bowler, N., Arribas, A., Beare, S., Mylne, K. E., and Shutts, G.: The local
ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction
system, Q. J. Roy. Meteor. Soc., 135, 767–776, 2009.
Bush, S. J., Turner, A. G., Woolnough, S. J., Martin, G. M., and Klingaman,
N. P.: The effect of increased convective entrainment on Asian monsoon
errors in the MetUM general circulation model, Q. J. Roy. Meteor. Soc., 141,
311–326, https://doi.org/10.1002/qj.2371, 2015.
Chen, J. and Bordoni, S.: Early Summer Response of the East Asian Summer
Monsoon to Atmospheric CO2 Forcing and Subsequent Sea Surface Warming,
J. Climate, 29, 5431–5446, 2016.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!home (last access: 16 February 2021),
2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Deser, C., Simpson, I. R., McKinnon, K. A., and Phillips, A. S.: The
Northern Hemisphere extratropical atmospheric circulation response to ENSO:
How well do we know it and how do we evaluate models accordingly?, J.
Climate, 30, 5059–5082,
https://doi.org/10.1175/JCLI-D-16-0844.1, 2017.
Ding, Y. H. and Chan, J. C. L.: The East Asian summer monsoon: An overview,
Meteor. Atmos. Phys., 89, 117–142,
https://doi.org/10.1007/s00703-005-0125-z, 2005.
Hermanson, L., Ren, H., Vellinga, M., Dunstone, N. D., Hyder, P., Ineson,
S., Scaife, A. A., Smith, D. M., Thompson, V., Tian, B., and Williams, K.
D.: Different types of drifts in two seasonal forecast systems and their
dependence on ENSO, Clim. Dynam., 51, 1411–1426,
https://doi.org/10.1007/s00382-017-3962-9, 2018.
Huang, B., Hu, Z.-Z., and Jha, B.: Evolution of model systematic errors in
the tropical Atlantic Basin from coupled climate hindcasts, Clim. Dynam.,
28, 668–682, 2007.
Huffman, G. J. and Bolvin, D. T.: TRMM and Other Data Precipitation Data
Set Documentation, NASA Goddard Space Flight
Center and Science Systems and Applications, Laboratory for Atmospheres,
available at: https://gpm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf (last access: 17 February 2021), 2013.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Nelkin, E. J.: The TRMM
multi-satellite precipitation analysis (TMPA), in: Satellite Rainfall
Applications for Surface Hydrology, edited by: Gebremichael, M. and Hossain, F., Springer, Dordrecht, the Netherlands,
3–22, https://doi.org/10.1007/978-90-481-2915-7_1, 2010.
Hunke, E. C. and Lipscomb, W. H.: CICE: the Los Alamos sea ice model documentation and software user's manual, Version 4.1, LA-CC-06-012, Los Alamos National Laboratory, New Mexico, 76 pp., 2010.
Hurrell, J., Meehl, G. A., Bader, D., Delworth, T. L., Kirtman, B., and
Wielicki, B.: A unified modeling approach to climate system prediction,
B. Am. Meteorol. Soc., 90, 1819–1832, 2009.
Johnson, S. J., Levine, R. C., Turner, A. G., Martin, G. M., Woolnough, S. J.,
Schiemann, R., Mizielinski, M. S., Roberts, M. J., Vidale, P. L., Demory,
M.-E., and Strachan, J.: The resolution sensitivity of the South Asian
monsoon and Indo-Pacific in a global 0.35∘ AGCM, Clim. Dynam., 46,
807–831, https://doi.org/10.1007/s00382-015-2614-1, 2016.
Johnson, S. J., Turner, A. G., Woolnough, S., Martin, G., and MacLachlan, C.:
GloSea5-GC2 seasonal forecasts of the Indian Monsoon: Skill and mechanisms,
Clim. Dynam., 48, 1447–1465, https://doi.org/10.1007/s00382-016-3151-2, 2017.
Karmacharya, J., Levine, R. C., Jones, R., Moufouma-Okia, W., and New, M.:
Sensitivity of systematic errors in South Asian summer monsoon simulations
to regional climate model domain size and implications for downscaled
regional process studies, Clim. Dynam., 45, 213–231, https://doi.org/10.1007/s00382-015-2565-6, 2015.
Keane, R. J., Williams, K. D., Stirling, A. J., Martin, G. M., Birch, C. E.,
and Parker, D. J.: Fast Errors in Monsoon Rainfall over Southern and Central
India in the Met Office Unified Model, J. Climate, 32, 6385–6402,
https://doi.org/10.1175/JCLI-D-18-0650.1, 2019.
Klinker, E.: Investigation of systematic errors by relaxation experiments,
Q. J. Roy. Meteor. Soc., 116, 573–594, 1990.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical
Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Ocean.
Technol., 15, 809–817,
https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998.
Lazar, A., Vintzileos, A., Doblas-Reyes, F. J., Rogel, P., and Delecluse, P.:
Seasonal forecast of tropical climate with coupled ocean–atmosphere general
circulation models: on the respective role of the atmosphere and the ocean
components in the drift of the surface temperature error, Tellus A, 57,
387–397, https://doi.org/10.1111/j.1600-0870.2005.00135.x, 2005.
Levine, R. C. and Martin, G. M.: On the climate model simulation of Indian
monsoon low pressure systems and the effect of remote disturbances and
systematic errors, Clim. Dynam., 50, 4721–4743,
https://doi.org/10.1007/s00382-017-3900-x, 2018.
Levine, R. C. and Turner, A. G.: Dependence of Indian monsoon rainfall on
moisture fluxes across the Arabian Sea and the impact of coupled model sea
surface temperature errors, Clim. Dynam., 38, 2167–2190,
https://doi.org/10.1007/s00382-011-1096-z, 2012.
Levine, R. C., Turner, A. G., Marathayil, D., and Martin, G. M.: The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall, Clim. Dynam., 41, 155–172, https://doi.org/10.1007/s00382-012-1656-x, 2013.
Liu, H., Zhang, M., and Lin, W.: An investigation of the initial development
of the double ITCZ warm SST errors in the CCSM, J. Climate, 25, 140–155,
2012.
Lutsko, N., Marshall, J., and Green, B.: Modulation of Monsoon Circulations
by Cross-Equatorial Ocean Heat Transport, J. Climate, 32, 3471–3485, https://doi.org/10.1175/JCLI-D-18-0623.1, 2019.
MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D.,
Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp,
J., Xavier, P., and Madec, G.: Global Seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor.
Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396, 2015.
Madec, G.: NEMO ocean engine, Technical Report 27, Note du Pole
demodélisation, Institut Pierre-Simon Laplace (IPSL), Paris, France, 300 pp., 2008.
Marathayil, D., Turner, A. G., Shaffrey, L. C., and Levine, R. C.: Systematic
winter sea-surface temperature errors in the northern Arabian Sea in HiGEM
and the CMIP3 models, Environ. Res. Lett., 8, 014028,
https://doi.org/10.1088/1748-9326/8/1/014028, 2013.
Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S.,
Reichler, T., and Kim, J.: Analysis and Reduction of Systematic Errors through
a Seamless Approach to Modeling Weather and Climate, J. Climate, 23,
5933–5957, 2010.
Martin, G. M., Dunstone, N. J., Scaife, A. A., and Bett, P. E.: Predicting June
Mean Rainfall in the Middle/Lower Yangtze River Basin, Adv. Atmos. Sci., 37,
29–41, https://doi.org/10.1007/s00376-019-9051-8, 2020.
Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014.
NEMO System Team: NEMO ocean engine, Scientific Notes of Climate Modelling Center, 27, Institut Pierre-Simon Laplace (IPSL), https://doi.org/10.5281/zenodo.1464816, 2020.
Phillips, T. J., Potter, G. L., Williamson, D. L., Cederwall, R. T., Boyle, J. S., Fiorino, M., Hnilo, J. J., Olson, J. G., Xie, S., and Yio, J. J.: Evaluating parameterizations in General
Circulation Models: Climate simulation meets weather prediction, B. Am.
Meteorol. Soc., 85, 1903–1915, 2004.
Rae, J. G. L., Hewitt, H. T., Keen, A. B., Ridley, J. K., West, A. E., Harris, C. M., Hunke, E. C., and Walters, D. N.: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model, Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015, 2015.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface
Temperature, J. Climate, 20, 5473–5496, 2007.
Ringer, M. A., Martin, G. M., Greeves, C. Z., Hinton, T. J., James, P. M.,
Pope, V. D., Scaife, A. A., Stratton, R. A., Inness, P. M., Slingo, J. M.
and Yang, G.-Y.: The physical properties of the atmosphere in the new Hadley
Centre Global Environment Model, HadGEM1. Part II: Aspects of variability
and regional climate, J. Climate, 19, 1302–1326,
https://doi.org/10.1175/JCLI3713.1, 2006.
Rodwell, M. J. and Palmer, T. N.: Using numerical weather prediction to
assess climate models, Q. J. Roy. Meteor. Soc., 133, 129–146, 2007.
Rodriguez, J. M. and Milton, S. F.: East Asian Summer Atmospheric Moisture
Transport and its Response to Interannual Variability of the West Pacific
Subtropical High: an evaluation of the Met Office Unified Model, Atmosphere,
10, 457, https://doi.org/10.3390/atmos10080457, 2019.
Rodríguez, J. M., Milton, S. F., and Marzin, C.: The East Asian
atmospheric water cycle and monsoon circulation in the Met Office Unified
Model, J. Geophys. Res.-Atmos., 122, 10246–10265,
https://doi.org/10.1002/2016JD025460, 2017.
Saji, N., Goswami, B., Vinayachandran, P., and Yamagata, T.: A dipole mode in
the tropical Indian Ocean, Nature, 401, 360–363,
https://doi.org/10.1038/43854, 1999.
Siongco, A. C., Ma, H., Klein, S. A.,
Xie, S., Karspeck, A. R., Raeder, K., and Anderson, J. L.: A Hindcast
Approach to Diagnosing the Equatorial Pacific Cold Tongue SST Error in
CESM1, J. Climate, 33, 1437–1453, https://doi.org/10.1175/JCLI-D-19-0513.1,
2020.
Sperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A. G.,
Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of
CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41,
2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Vannière, B., Guilyardi, E., Madec, G., Doblas-Reyes, F. J., and Woolnough, S.: Using seasonal hindcasts
to understand the origin of the equatorial cold tongue error in CGCMs and
its impact on ENSO, Clim. Dynam., 40, 963–981,
https://doi.org/10.1007/s00382-012-1429-6, 2013.
Vannière, B., Guilyardi, E., Toniazzo, T., Madec, G., and Woolnough, S.: A systematic approach
to identify the sources of tropical SST errors in coupled models using the
adjustment of initialised experiments, Clim. Dynam., 43, 2261–2282.
https://doi.org/10.1007/s00382-014-2051-6, 2014.
Vellinga, M., Copsey, D., Graham, T., Milton, S., and Johns, T.: Evaluating
benefits of two-way ocean-atmosphere coupling for global NWP forecasts,
Weather Forecast., 35, 2127–2144,
https://doi.org/10.1175/WAF-D-20-0035.1, 2020.
Voldoire, A., Exarchou, E., Sanchez‐Gomez, E., Demissie, T., Deppenmeier, A. L., Frauen, C., and Traoré, A. K.: Role of wind stress in
driving SST errors in the Tropical Atlantic, Clim. Dynam., 53, 3481–3504,
https://doi.org/10.1007/s00382-019-04717-0, 2019.
Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wang, B., Zhang, Y., and Lu, M. M.: Definition of South China Sea monsoon
onset and commencement of the East Asia summer monsoon, J. Climate, 17,
699–710, 2004.
Wang, B., Wu, Z., Li, J., Liu, J., Chang, C., Ding, Y., and Wu, G.: How to
Measure the Strength of the East Asian Summer Monsoon, J. Climate, 21,
4449–4463, https://doi.org/10.1175/2008JCLI2183.1, 2008.
Wang, C., Zou, L., and Zhou, T.: SST biases over the Northwest Pacific and
possible causes in CMIP5 models, Sci. China Earth Sci., 61, 792–803,
https://doi.org/10.1007/s11430-017-9171-8, 2018.
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While, J.:
Implementing a variational data assimilation system in an operational 1/4
degree global ocean model, Q. J. Roy. Meteor. Soc., 141, 333–349,
https://doi.org/10.1002/qj.2388, 2014.
Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled model 2.0 (GC2) configuration, Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, 2015.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert,
D., Comer, R., and Xavier, P. K.: The Met Office Global Coupled
model 3.0 and 3.1 (GC3.0 and GC3.1) configurations, J. Adv. Mod. Earth Sys.,
10, 357–380, https://doi.org/10.1002/2017MS001115, 2017.
Wu, B., Zhou, T., and Li, T.: Impacts of the Pacific-Japan and Circumglobal
Teleconnection Patterns on the Interdecadal Variability of the East Asian
Summer Monsoon, J. Climate, 29, 3253–3271,
https://doi.org/10.1175/JCLI-D-15-0105.1, 2016.
Xie, P., Janowiak, J., Arkin, P., Adler, R. F., Gruber, A., Ferraro, R.,
Huffman, G. J., and Curtis, S.: GPCP pentad precipitation analyses: an
experimental data set based on gauge observations and satellite estimates,
J. Climate, 16, 2197–2214, 2003.
Zhang, D., Martin, G. M., Rodríguez, J. M., Ke, Z., and Chen, L.:
Predictability of the Western North Pacific Subtropical High Associated with
Different ENSO Phases in GloSea5, J. Meteorol. Res., 34, 926–940,
https://doi.org/10.1007/s13351-020-0055-1, 2020.
Zhang, Y., Xie, S., Kosaka, Y., and Yang, J.: Pacific Decadal Oscillation:
Tropical Pacific Forcing versus Internal Variability, J. Climate, 31,
8265–8279, https://doi.org/10.1175/JCLI-D-18-0164.1, 2018.
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian summer monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterisations and/or model resolution.
Our study highlights a number of different techniques that can be employed to investigate the...