Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Download
Short summary
Galerkin finite element discretizations for atmospheric modeling often require the solution of ill-conditioned, saddle point equations which can be efficiently solved using a hybridized method. By extending Firedrake's domain-specific abstraction, we provide a mechanism for the rapid implementation of hybridization methods for a wide class of methods. In this paper, we show that hybridization is an effective alternative to traditional block solvers for simulating geophysical flows.
GMD | Articles | Volume 13, issue 2
Geosci. Model Dev., 13, 735–761, 2020
https://doi.org/10.5194/gmd-13-735-2020

Special issue: The Firedrake automatic code generation system

Geosci. Model Dev., 13, 735–761, 2020
https://doi.org/10.5194/gmd-13-735-2020

Development and technical paper 25 Feb 2020

Development and technical paper | 25 Feb 2020

Slate: extending Firedrake's domain-specific abstraction to hybridized solvers for geoscience and beyond

Thomas H. Gibson et al.

Viewed

Total article views: 1,138 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
759 358 21 1,138 33 22
  • HTML: 759
  • PDF: 358
  • XML: 21
  • Total: 1,138
  • BibTeX: 33
  • EndNote: 22
Views and downloads (calculated since 26 Apr 2019)
Cumulative views and downloads (calculated since 26 Apr 2019)

Viewed (geographical distribution)

Total article views: 949 (including HTML, PDF, and XML) Thereof 943 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 16 Jan 2021
Publications Copernicus
Download
Short summary
Galerkin finite element discretizations for atmospheric modeling often require the solution of ill-conditioned, saddle point equations which can be efficiently solved using a hybridized method. By extending Firedrake's domain-specific abstraction, we provide a mechanism for the rapid implementation of hybridization methods for a wide class of methods. In this paper, we show that hybridization is an effective alternative to traditional block solvers for simulating geophysical flows.
Citation