Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6325-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-6325-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach
Yihui Zhou
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
State Key Laboratory of Severe Weather (LaSW), Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
Jian Li
State Key Laboratory of Severe Weather (LaSW), Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
Rucong Yu
State Key Laboratory of Severe Weather (LaSW), Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
Zhuang Liu
National Supercomputing Center, Wuxi, Jiangsu, China
Related authors
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Yiming Wang, Yi Zhang, Yilun Han, Wei Xue, Yihui Zhou, Xiaohan Li, and Haishan Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2790, https://doi.org/10.5194/egusphere-2025-2790, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work explores the use of global storm-resolving model (GSRM) simulation data to enhance global climate modeling (GCM) through a machine learning–based model physics suite. Stable multiyear climate simulations with improved precipitation characteristics are achieved by using 80-day GSRM data.
Qing Zheng, Wei Sun, Zhiquan Liu, Jiajia Mao, Jieying He, Jian Li, and Xingwen Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-12, https://doi.org/10.5194/egusphere-2025-12, 2025
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer high temporal resolution observations with strong sensitivity to the lower atmosphere, making them valuable for data assimilation. However, their assimilation has traditionally focused on retrieved profiles. This study implemented the direct assimilation of brightness temperatures from MWRs with a machine learning-based bias correction scheme. The results show improvements in the low-level atmospheric structure and precipitation predictions.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023, https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, https://doi.org/10.5194/essd-13-2437-2021, 2021
Short summary
Short summary
In this study, the first 30 m resolution terrace map of China was developed through supervised pixel-based classification using multisource, multi-temporal data based on the Google Earth Engine platform. The classification performed well with an overall accuracy of 94 %. The terrace mapping algorithm can be used to map large-scale terraces in other regions globally, and the terrace map will be valuable for studies on soil erosion, carbon cycle, and ecosystem service assessments.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Xiaohan Li, Yi Zhang, Xindong Peng, and Jian Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-254, https://doi.org/10.5194/gmd-2020-254, 2020
Revised manuscript not accepted
Short summary
Short summary
This study develops a single-column model (SGRIST1.0) to bridge the coupling of physical parameterizations and a new unstructured-mesh modeling system. The physical parameterization suite is first isolated and evaluated via SGRIST1.0 to reduce the uncertainty of physics during transfer, then the validated parameterization suite is coupled to the 3D dynamical framework. The transferred package shows reasonable behavior in the full physics-dynamics interaction.
Zhuang Liu, Yi Zhang, Xiaomeng Huang, Jian Li, Dong Wang, Mingqing Wang, and Xing Huang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-158, https://doi.org/10.5194/gmd-2020-158, 2020
Revised manuscript not accepted
Short summary
Short summary
This paper describes several techniques for the parallelization and performance optimization of
an unstructured-mesh global atmospheric model. The purpose of this research is to facilitate the rapid iterative model development. These techniques are general and can be used for other parallel modeling on unstructured meshes.
Cited articles
Denis, B., Côté, J., and Laprise, R.:
Spectral Decomposition of Two-Dimensional Atmospheric Fields on Limited-Area Domains Using the Discrete Cosine Transform (DCT),
Mon. Weather Rev.,
130, 1812–1829, https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2, 2002.
Du, Q., Faber, V., and Gunzburger, M.:
Centroidal Voronoi tessellations: Applications and algorithms,
Siam Rev.,
41, 637–676, 1999.
Düben, P. D. and Korn, P.:
Atmosphere and Ocean Modeling on Grids of Variable Resolution – A 2D Case Study,
Mon. Weather Rev.,
142, 1997–2017, https://doi.org/10.1175/mwr-d-13-00217.1, 2014.
Dubos, T., Dubey, S., Tort, M., Mittal, R., Meurdesoif, Y., and Hourdin, F.: DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 3131–3150, https://doi.org/10.5194/gmd-8-3131-2015, 2015.
Gassmann, A.:
A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency,
Q. J. Roy. Meteor. Soc.,
139, 152–175, https://doi.org/10.1002/qj.1960, 2013.
Gettelman, A., Callaghan, P., Larson, V. E., Zarzycki, C. M., Bacmeister, J. T., Lauritzen, P. H., Bogenschutz, P. A., and Neale, R. B.:
Regional Climate Simulations With the Community Earth System Model,
J. Adv. Model. Earth Sy.,
10, 1245–1265, https://doi.org/10.1002/2017ms001227, 2018.
GRIST-Dev.: ParGRIST-A20-0705, Zenodo, https://doi.org/10.5281/zenodo.3930643, 2020a.
GRIST-Dev.: GRIST-QUVR-Mesh (Version 1.0), Zenodo, https://doi.org/10.5281/zenodo.3817060, 2020b.
Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, D. L., Klocke, D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi, K., and Leung, R.:
Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress,
Mon. Weather Rev.,
146, 3505–3544, https://doi.org/10.1175/MWR-D-17-0345.1, 2018.
Guba, O., Taylor, M. A., Ullrich, P. A., Overfelt, J. R., and Levy, M. N.: The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity, Geosci. Model Dev., 7, 2803–2816, https://doi.org/10.5194/gmd-7-2803-2014, 2014.
Harris, L. M. and Lin, S.-J.:
A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid,
Mon. Weather Rev.,
141, 283–306, https://doi.org/10.1175/MWR-D-11-00201.1, 2012.
Harris, L. M., Lin, S.-J., and Tu, C.:
High-Resolution Climate Simulations Using GFDL HiRAM with a Stretched Global Grid,
J. Climate,
29, 4293–4314, https://doi.org/10.1175/JCLI-D-15-0389.1, 2016.
Hashimoto, A., Done, J. M., Fowler, L. D., and Bruyère, C. L.:
Tropical cyclone activity in nested regional and global grid-refined simulations,
Clim. Dynam.,
47, 497–508, https://doi.org/10.1007/s00382-015-2852-2, 2015.
Hollingsworth, A., Kållberg, P., Renner, V., and Burridge, D. M.:
An internal symmetric computational instability,
Q. J. Roy. Meteor. Soc.,
109, 417–428, https://doi.org/10.1002/qj.49710946012, 1983.
Hong, S.-Y., Noh, Y., and Dudhia, J.:
A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes,
Mon. Weather Rev.,
134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.:
The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection,
Clim. Dynam.,
27, 787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006.
Jablonowski, C. and Williamson, D. L.:
A baroclinic instability test case for atmospheric model dynamical cores,
Q. J. Roy. Meteor. Soc.,
132, 2943–2975, https://doi.org/10.1256/qj.06.12, 2006.
Jacobsen, D. W., Gunzburger, M., Ringler, T., Burkardt, J., and Peterson, J.: Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations, Geosci. Model Dev., 6, 1353–1365, https://doi.org/10.5194/gmd-6-1353-2013, 2013.
Ju, L., Ringler, T., and Gunzburger, M.:
Voronoi tessellations and their application to climate and global modeling,
in: Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, 80,
edited by: Lauritzen, P. H., Jablonowski, C., Taylor, M. A., and Nair, R. D.,
Springer-Verlag, 313–342, 2011.
Jung, T., Miller, M. J., Palmer, T. N., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M., Altshuler, E. L., Cash, B. A., Kinter, J. L., Marx, L., Stan, C., and Hodges, K. I.:
High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill,
J. Climate,
25, 3155–3172, https://doi.org/10.1175/jcli-d-11-00265.1, 2012.
Klemp, J. B., Skamarock, W. C., and Ha, S.:
Damping Acoustic Modes in Compressible Horizontally Explicit Vertically Implicit (HEVI) and Split-Explicit Time Integration Schemes,
Mon. Weather Rev.,
146, 1911–1923, https://doi.org/10.1175/MWR-D-17-0384.1, 2018.
Lauritzen, P. H., Jablonowski, C., Taylor, M. A., and Nair, R. D.:
Rotated Versions of the Jablonowski Steady-State and Baroclinic Wave Test Cases: A Dynamical Core Intercomparison,
J. Adv. Model. Earth Sy.,
2, https://doi.org/10.3894/JAMES.2010.2.15, 2010.
Li, X., Zhang, Y., Peng, X., and Li, J.: Using a single column model (SGRIST1.0) for connecting model physics and dynamics in the Global-to-Regional Integrated forecast SysTem (GRIST-A20.8), Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-254, in review, 2020.
Lin, S.-J.:
A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models,
Mon. Weather Rev.,
132, 2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004.
Lin, Y.-L., Farley, R. D., and Orville, H. D.:
Bulk Parameterization of the Snow Field in a Cloud Model,
J. Clim. Appl. Meteorol.,
22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Liu, Y. and Yang, T.:
Impact of Local Grid Refinements of Spherical Centroidal Voronoi Tessellations for Global Atmospheric Models,
Commun. Comput. Phys.,
21, 1310–1324, https://doi.org/10.4208/cicp.050815.020916a, 2017.
Liu, Z., Zhang, Y., Huang, X., Li, J., Wang, D., Wang, M., and Huang, X.: Development and performance optimization of a parallel computing infrastructure for an unstructured-mesh modelling framework, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-158, in review, 2020.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,
J. Geophys. Res.,
102, 16663–16682, https://doi.org/10.1029/97jd00237, 1997.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W., and Duda, M. G.:
The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions,
B. Am. Meteorol. Soc.,
98, 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Reed, K. A. and Jablonowski, C.:
An Analytic Vortex Initialization Technique for Idealized Tropical Cyclone Studies in AGCMs,
Mon. Weather Rev.,
139, 689–710, https://doi.org/10.1175/2010mwr3488.1, 2011.
Reed, K. A. and Jablonowski, C.:
Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs,
J. Adv. Model. Earth Sy.,
4, https://doi.org/10.1029/2011MS000099, 2012.
Reed, K. A., Bacmeister, J. T., Rosenbloom, N. A., Wehner, M. F., Bates, S. C., Lauritzen, P. H., Truesdale, J. E., and Hannay, C.:
Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model,
Geophys. Res. Lett.,
42, 3603–3608, https://doi.org/10.1002/2015GL063974, 2015.
Ringler, T., Ju, L., and Gunzburger, M.:
A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations,
Ocean Dynam.,
58, 475–498, https://doi.org/10.1007/s10236-008-0157-2, 2008.
Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.:
A multi-resolution approach to global ocean modeling,
Ocean Model.,
69, 211–232, https://doi.org/10.1016/j.ocemod.2013.04.010, 2013.
Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.:
A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids,
J. Comput. Phys.,
229, 3065–3090, https://doi.org/10.1016/j.jcp.2009.12.007, 2010.
Ringler, T. D., Jacobsen, D., Gunzburger, M., Ju, L., Duda, M., and Skamarock, W.:
Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations,
Mon. Weather Rev.,
139, 3348–3368, https://doi.org/10.1175/mwr-d-10-05049.1, 2011.
Sakaguchi, K., Leung, L. R., Zhao, C., Yang, Q., Lu, J., Hagos, S., Rauscher, S. A., Dong, L., Ringler, T. D., and Lauritzen, P. H.:
Exploring a Multiresolution Approach Using AMIP Simulations,
J. Climate,
28, 5549–5574, https://doi.org/10.1175/JCLI-D-14-00729.1, 2015.
Skamarock, W.:
NGGPS/DTG briefing on MPAS configuration options,
available at: https://www.weather.gov/media/sti/nggps/20160122_MPAS_configuration_overview.pdf (last access: 7 December 2020), 2016.
Skamarock, W. C. and Gassmann, A.:
Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration,
Mon. Weather Rev.,
139, 2962–2975, https://doi.org/10.1175/MWR-D-10-05056.1, 2011.
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and Ringler, T. D.:
A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering,
Mon. Weather Rev.,
140, 3090–3105, https://doi.org/10.1175/MWR-D-11-00215.1, 2012.
Skamarock, W. C., Duda, M. G., Ha, S., and Park, S.-H.:
Limited-Area Atmospheric Modeling Using an Unstructured Mesh,
Mon. Weather Rev.,
146, 3445–3460, https://doi.org/10.1175/MWR-D-18-0155.1, 2018.
Smagorinsky, J.:
General Circulation Experiments with the Primitive Equations,
Mon. Weather Rev.,
91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N., and Zhou, L.:
DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains,
Progr. Earth Planet. Sci.,
6, 61, https://doi.org/10.1186/s40645-019-0304-z, 2019.
Taylor, M. A.:
Conservation of Mass and Energy for the Moist Atmospheric Primitive Equations on Unstructured Grids,
in: Numerical Techniques for Global Atmospheric Models,
edited by: Lauritzen, P., Jablonowski, C., Taylor, M., and Nair, R.,
Springer, Berlin, Heidelberg, 357–380, 2011.
Thuburn, J., Ringler, T. D., Skamarock, W. C., and Klemp, J. B.:
Numerical representation of geostrophic modes on arbitrarily structured C-grids,
J. Comput. Phys.,
228, 8321–8335, https://doi.org/10.1016/j.jcp.2009.08.006, 2009.
Tiedtke, M.:
A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models,
Mon. Weather Rev.,
117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2, 1989.
Ullrich, P. A. and Jablonowski, C.:
An analysis of 1D finite-volume methods for geophysical problems on refined grids,
J. Comput. Phys.,
230, 706–725, https://doi.org/10.1016/j.jcp.2010.10.014, 2011.
Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K.: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, 2017.
Wang, L., Zhang, Y., Li, J., Liu, Z., and Zhou, Y.:
Understanding the Performance of an Unstructured-Mesh Global Shallow Water Model on Kinetic Energy Spectra and Nonlinear Vorticity Dynamics,
J. Meteorol. Res.-PRC,
33, 1075–1097, https://doi.org/10.1007/s13351-019-9004-2, 2019.
Wehner, M. F., Reed, K. A., Li, F., Prabhat, Bacmeister, J., Chen, C.-T., Paciorek, C., Gleckler, P. J., Sperber, K. R., Collins, W. D., Gettelman, A., and Jablonowski, C.:
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1,
J. Adv. Model. Earth Sy.,
6, 980–997, https://doi.org/10.1002/2013ms000276, 2014.
Weller, H., Weller, H. G., and Fournier, A.:
Voronoi, Delaunay, and Block-Structured Mesh Refinement for Solution of the Shallow-Water Equations on the Sphere,
Mon. Weather Rev.,
137, 4208–4224, https://doi.org/10.1175/2009mwr2917.1, 2009.
Yu, R.:
A Two-Step Shape-Preserving Advection Scheme,
Adv. Atmos. Sci.,
11, 479–490, 1994.
Yu, R., Zhang, Y., Wang, J., Li, J., Chen, H., Gong, J., and Chen, J.:
Recent Progress in Numerical Atmospheric Modeling in China,
Adv. Atmos. Sci.,
36, 938–960, https://doi.org/10.1007/s00376-019-8203-1, 2019.
Zarzycki, C. M. and Jablonowski, C.:
A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model,
J. Adv. Model. Earth Sy.,
6, 805–828, https://doi.org/10.1002/2014ms000352, 2014.
Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.:
Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model,
Mon. Weather Rev.,
142, 1221–1239, https://doi.org/10.1175/mwr-d-13-00179.1, 2014.
Zhang, Y.:
Extending High-Order Flux Operators on Spherical Icosahedral Grids and Their Applications in the Framework of a Shallow Water Model,
J. Adv. Model. Earth Sy.,
10, 145–164, https://doi.org/10.1002/2017MS001088, 2018.
Zhang, Y., Chen, H., and Yu, R.:
Simulations of Stratus Clouds over Eastern China in CAM5: Sensitivity to Horizontal Resolution,
J. Climate,
27, 7033–7052, https://doi.org/10.1175/jcli-d-13-00732.1, 2014.
Zhang, Y., Chen, H., and Yu, R.:
Simulations of Stratus Clouds over Eastern China in CAM5: Sources of Errors,
J. Climate,
28, 36–55, https://doi.org/10.1175/JCLI-D-14-00350.1, 2015.
Zhang, Y., Yu, R., and Li, J.:
Implementation of a conservative two-step shape-preserving advection scheme on a spherical icosahedral hexagonal geodesic grid,
Adv. Atmos. Sci.,
34, 411–427, https://doi.org/10.1007/s00376-016-6097-8, 2017.
Zhang, Y., Li, J., Yu, R., Zhang, S., Liu, Z., Huang, J., and Zhou, Y.:
A Layer-Averaged Nonhydrostatic Dynamical Framework on an Unstructured Mesh for Global and Regional Atmospheric Modeling: Model Description, Baseline Evaluation, and Sensitivity Exploration,
J. Adv. Model. Earth Sy.,
11, 1685–1714, https://doi.org/10.1029/2018ms001539, 2019.
Zhang, Y., Li, J., Yu, R., Liu, Z., Zhou, Y., Li, X., and Huang, X.:
A Multiscale Dynamical Model in a Dry-mass Coordinate for Weather and Climate Modeling: Moist Dynamics and its Coupling to Physics,
Mon. Weather Rev.,
148, 2671–2699, https://doi.org/10.1175/mwr-d-19-0305.1, 2020.
Zhao, M., Held, I. M., and Lin, S.-J.:
Some Counterintuitive Dependencies of Tropical Cyclone Frequency on Parameters in a GCM,
J. Atmos. Sci.,
69, 2272–2283, https://doi.org/10.1175/JAS-D-11-0238.1, 2012.
Short summary
This paper explores the configuration of a global atmospheric model (global-to-regional integrated forecast system-atmosphere; GRIST-A) with various multiresolution grids. The model performance is evaluated from dry dynamics to simple physics and full physics. The model is able to resolve the fine-scale structures in the grid-refinement region, and the adverse impact due to the mesh transition and the coarse-resolution area can be controlled well.
This paper explores the configuration of a global atmospheric model (global-to-regional...