Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5175-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5175-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Zebedee R. J. Nicholls
CORRESPONDING AUTHOR
Australian–German Climate and Energy College, The University of Melbourne, Parkville, Victoria, Australia
School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
Malte Meinshausen
Australian–German Climate and Energy College, The University of Melbourne, Parkville, Victoria, Australia
School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Jared Lewis
Australian–German Climate and Energy College, The University of Melbourne, Parkville, Victoria, Australia
Robert Gieseke
Independent Researcher, Potsdam, Germany
Dietmar Dommenget
Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria 3800, Australia
Kalyn Dorheim
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Chen-Shuo Fan
Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria 3800, Australia
Jan S. Fuglestvedt
CICERO Center for International Climate Research, Oslo, Norway
Thomas Gasser
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Ulrich Golüke
BI Norwegian Business School, Nydalsveien 37, 0484 Oslo, Norway
Philip Goodwin
School of Ocean and Earth Science, University of Southampton, Southampton, UK
Corinne Hartin
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Austin P. Hope
Department of Atmospheric and Oceanic Science, University of Maryland-College Park, College Park, MD 20740, USA
Elmar Kriegler
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Nicholas J. Leach
Department of Physics, Atmospheric Oceanic and Planetary Physics, University of Oxford, Oxford, UK
Davide Marchegiani
Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria 3800, Australia
Laura A. McBride
Department of Chemistry and Biochemistry, University of Maryland-College Park, College Park, MD 20740, USA
Yann Quilcaille
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Joeri Rogelj
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK
Ross J. Salawitch
Department of Atmospheric and Oceanic Science, University of Maryland-College Park, College Park, MD 20740, USA
Department of Chemistry and Biochemistry, University of Maryland-College Park, College Park, MD 20740, USA
Earth System Science Interdisciplinary Center, University of Maryland-College Park, College Park, MD 20740, USA
Bjørn H. Samset
CICERO Center for International Climate Research, Oslo, Norway
Marit Sandstad
CICERO Center for International Climate Research, Oslo, Norway
Alexey N. Shiklomanov
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Ragnhild B. Skeie
CICERO Center for International Climate Research, Oslo, Norway
Christopher J. Smith
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Priestley International Centre for Climate, University of Leeds, Leeds, UK
Steve Smith
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, USA
Katsumasa Tanaka
National Institute for Environmental Studies (NIES), Tsukuba, Japan
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Gif sur Yvette, France
Junichi Tsutsui
Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan
Zhiang Xie
Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria 3800, Australia
Viewed
Total article views: 13,976 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jan 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 11,411 | 2,394 | 171 | 13,976 | 737 | 250 | 266 |
- HTML: 11,411
- PDF: 2,394
- XML: 171
- Total: 13,976
- Supplement: 737
- BibTeX: 250
- EndNote: 266
Total article views: 12,231 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 31 Oct 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 10,666 | 1,433 | 132 | 12,231 | 452 | 197 | 205 |
- HTML: 10,666
- PDF: 1,433
- XML: 132
- Total: 12,231
- Supplement: 452
- BibTeX: 197
- EndNote: 205
Total article views: 1,745 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jan 2020)
| HTML | XML | Total | Supplement | BibTeX | EndNote | |
|---|---|---|---|---|---|---|
| 745 | 961 | 39 | 1,745 | 285 | 53 | 61 |
- HTML: 745
- PDF: 961
- XML: 39
- Total: 1,745
- Supplement: 285
- BibTeX: 53
- EndNote: 61
Viewed (geographical distribution)
Total article views: 13,976 (including HTML, PDF, and XML)
Thereof 12,671 with geography defined
and 1,305 with unknown origin.
Total article views: 12,231 (including HTML, PDF, and XML)
Thereof 11,191 with geography defined
and 1,040 with unknown origin.
Total article views: 1,745 (including HTML, PDF, and XML)
Thereof 1,480 with geography defined
and 265 with unknown origin.
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Country | # | Views | % |
|---|
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
| Total: | 0 |
| HTML: | 0 |
| PDF: | 0 |
| XML: | 0 |
- 1
1
Latest update: 20 Nov 2025
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Computational limits mean that we cannot run our most comprehensive climate models for all...