Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1725-2019
https://doi.org/10.5194/gmd-12-1725-2019
Model evaluation paper
 | 
30 Apr 2019
Model evaluation paper |  | 30 Apr 2019

Quantifying uncertainties due to chemistry modelling – evaluation of tropospheric composition simulations in the CAMS model (cycle 43R1)

Vincent Huijnen, Andrea Pozzer, Joaquim Arteta, Guy Brasseur, Idir Bouarar, Simon Chabrillat, Yves Christophe, Thierno Doumbia, Johannes Flemming, Jonathan Guth, Béatrice Josse, Vlassis A. Karydis, Virginie Marécal, and Sophie Pelletier

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Vincent Huijnen on behalf of the Authors (01 Apr 2019)  Author's response    Manuscript
ED: Publish as is (05 Apr 2019) by Jason Williams
Download
Short summary
We report on an evaluation of tropospheric ozone and its precursor gases in three atmospheric chemistry versions as implemented in ECMWF’s Integrated Forecasting System (IFS), referred to as IFS(CB05BASCOE), IFS(MOZART) and IFS(MOCAGE). This configuration of having various chemistry versions within IFS provides a quantification of uncertainties in CAMS trace gas products that are induced by chemistry modelling.