Articles | Volume 11, issue 8
https://doi.org/10.5194/gmd-11-3089-2018
https://doi.org/10.5194/gmd-11-3089-2018
Development and technical paper
 | 
01 Aug 2018
Development and technical paper |  | 01 Aug 2018

Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8

Emre Esentürk, Nathan Luke Abraham, Scott Archer-Nicholls, Christina Mitsakou, Paul Griffiths, Alex Archibald, and John Pyle

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Emre Esenturk on behalf of the Authors (22 May 2018)
ED: Publish as is (08 Jun 2018) by Jason Williams
AR by Emre Esenturk on behalf of the Authors (18 Jun 2018)
Download
Short summary
An integral and expensive part of coupled climate model simulations is the gas-phase chemistry which gives rise to hundreds of coupled differential equations. We propose a method which improves the convergence and robustness properties of commonly used Newton–Raphson solvers. The method is flexible and can be appended to most algorithms. The approach can be useful for a broader community of computational scientists whose interests lie in solving systems with intensive interactive chemistry.