Articles | Volume 10, issue 8
Geosci. Model Dev., 10, 3001–3023, 2017
https://doi.org/10.5194/gmd-10-3001-2017
Geosci. Model Dev., 10, 3001–3023, 2017
https://doi.org/10.5194/gmd-10-3001-2017

Model description paper 10 Aug 2017

Model description paper | 10 Aug 2017

lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models

Tobias Pilz et al.

Related authors

Seasonal drought prediction for semiarid northeast Brazil: what is the added value of a process-based hydrological model?
Tobias Pilz, José Miguel Delgado, Sebastian Voss, Klaus Vormoor, Till Francke, Alexandre Cunha Costa, Eduardo Martins, and Axel Bronstert
Hydrol. Earth Syst. Sci., 23, 1951–1971, https://doi.org/10.5194/hess-23-1951-2019,https://doi.org/10.5194/hess-23-1951-2019, 2019
Short summary

Related subject area

Hydrology
GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model
Dejian Zhang, Bingqing Lin, Jiefeng Wu, and Qiaoying Lin
Geosci. Model Dev., 14, 5915–5925, https://doi.org/10.5194/gmd-14-5915-2021,https://doi.org/10.5194/gmd-14-5915-2021, 2021
Short summary
Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0)
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021,https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Marko Kallio, Joseph H. A. Guillaume, Vili Virkki, Matti Kummu, and Kirsi Virrantaus
Geosci. Model Dev., 14, 5155–5181, https://doi.org/10.5194/gmd-14-5155-2021,https://doi.org/10.5194/gmd-14-5155-2021, 2021
Short summary
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021,https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021,https://doi.org/10.5194/gmd-14-4713-2021, 2021
Short summary

Cited articles

Ajami, H., Khan, U., Tuteja, N. K., and Sharma, A.: Development of a computationally efficient semi-distributed hydrologic modeling application for soil moisture, lateral flow and runoff simulation, Environ. Modell. Softw., 85, 319–331, https://doi.org/10.1016/j.envsoft.2016.09.002, 2016.
Band, L. E., Tague, C. L., Brun, S. E., Tenenbaum, D. E., and Fernandes, R. A.: Modelling Watersheds as Spatial Object Hierarchies: Structure and Dynamics, Trans. GIS, 4, 181–196, https://doi.org/10.1111/1467-9671.00048, 2000.
Beven, K.: Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models, Hydrol. Process., 9, 507–525, https://doi.org/10.1002/hyp.3360090504, 1995.
Beven, K.: Searching for the Holy Grail of scientific hydrology: Qt = (S, R, Δt)A as closure, Hydrol. Earth Syst. Sci., 10, 609–618, https://doi.org/10.5194/hess-10-609-2006, 2006.
Beven, K., Calver, A., and Morris, E. M.: The Institute of Hydrology distributed model, IH Report 98, Institute of Hydrology, Wallingford, UK, 1987.
Download
Short summary
To discretise and transfer a landscape into a hydrological model, many different algorithms and software implementations exist. These are, however, often model specific, commercial, and allow for only a limited workflow automation. Overcoming these limitations, the software package lumpR was developed. It employs an hillslope-based discretisation algorithm directed at large-scale application. The software is demonstrated in a case study and crucial discretisation parameters are investigated.