Articles | Volume 10, issue 8
https://doi.org/10.5194/gmd-10-3001-2017
https://doi.org/10.5194/gmd-10-3001-2017
Model description paper
 | 
10 Aug 2017
Model description paper |  | 10 Aug 2017

lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models

Tobias Pilz, Till Francke, and Axel Bronstert

Related authors

Seasonal drought prediction for semiarid northeast Brazil: what is the added value of a process-based hydrological model?
Tobias Pilz, José Miguel Delgado, Sebastian Voss, Klaus Vormoor, Till Francke, Alexandre Cunha Costa, Eduardo Martins, and Axel Bronstert
Hydrol. Earth Syst. Sci., 23, 1951–1971, https://doi.org/10.5194/hess-23-1951-2019,https://doi.org/10.5194/hess-23-1951-2019, 2019
Short summary

Related subject area

Hydrology
DECIPHeR-GW v1: a coupled hydrological model with improved representation of surface–groundwater interactions
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris E. Wendt
Geosci. Model Dev., 18, 4247–4271, https://doi.org/10.5194/gmd-18-4247-2025,https://doi.org/10.5194/gmd-18-4247-2025, 2025
Short summary
Wastewater matters: incorporating wastewater treatment and reuse into a process-based hydrological model (CWatM v1.08)
Dor Fridman, Mikhail Smilovic, Peter Burek, Sylvia Tramberend, and Taher Kahil
Geosci. Model Dev., 18, 3735–3754, https://doi.org/10.5194/gmd-18-3735-2025,https://doi.org/10.5194/gmd-18-3735-2025, 2025
Short summary
A reach-integrated hydraulic modelling approach for large-scale and real-time inundation mapping
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev., 18, 3387–3403, https://doi.org/10.5194/gmd-18-3387-2025,https://doi.org/10.5194/gmd-18-3387-2025, 2025
Short summary
Graphical representation of global water models
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025,https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
LM4-SHARC v1.0: resolving the catchment-scale soil–hillslope aquifer–river continuum for the GFDL Earth system modeling framework
Minki Hong, Nathaniel Chaney, Sergey Malyshev, Enrico Zorzetto, Anthony Preucil, and Elena Shevliakova
Geosci. Model Dev., 18, 2275–2301, https://doi.org/10.5194/gmd-18-2275-2025,https://doi.org/10.5194/gmd-18-2275-2025, 2025
Short summary

Cited articles

Ajami, H., Khan, U., Tuteja, N. K., and Sharma, A.: Development of a computationally efficient semi-distributed hydrologic modeling application for soil moisture, lateral flow and runoff simulation, Environ. Modell. Softw., 85, 319–331, https://doi.org/10.1016/j.envsoft.2016.09.002, 2016.
Band, L. E., Tague, C. L., Brun, S. E., Tenenbaum, D. E., and Fernandes, R. A.: Modelling Watersheds as Spatial Object Hierarchies: Structure and Dynamics, Trans. GIS, 4, 181–196, https://doi.org/10.1111/1467-9671.00048, 2000.
Beven, K.: Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models, Hydrol. Process., 9, 507–525, https://doi.org/10.1002/hyp.3360090504, 1995.
Beven, K.: Searching for the Holy Grail of scientific hydrology: Qt = (S, R, Δt)A as closure, Hydrol. Earth Syst. Sci., 10, 609–618, https://doi.org/10.5194/hess-10-609-2006, 2006.
Beven, K., Calver, A., and Morris, E. M.: The Institute of Hydrology distributed model, IH Report 98, Institute of Hydrology, Wallingford, UK, 1987.
Download
Short summary
To discretise and transfer a landscape into a hydrological model, many different algorithms and software implementations exist. These are, however, often model specific, commercial, and allow for only a limited workflow automation. Overcoming these limitations, the software package lumpR was developed. It employs an hillslope-based discretisation algorithm directed at large-scale application. The software is demonstrated in a case study and crucial discretisation parameters are investigated.
Share