the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A process-based Sphagnum plant-functional-type model for implementation in the TRIFFID Dynamic Global Vegetation Model
Richard Coppell
Emanuel Gloor
Joseph Holden
Abstract. Peatlands are important carbon stores and Sphagnum moss represents a critical peatland genus contributing to carbon exchange and storage. However, gas fluxes in Sphagnum-dominated systems are poorly represented in Dynamic Global Vegetation Models (DGVMs) which simulate, via incorporation of Plant Functional Types (PFTs), biogeochemical and energy fluxes between vegetation, the land surface and the atmosphere. Mechanisms characterised by PFTs within DGVMs include photosynthesis, respiration and competition and, in more recent DGVMs, sub-daily gas-exchange processes regulated by leaf 10 stomata. However, Sphagnum, like all mosses, are non-vascular plants and do not exhibit stomatal regulation. In order to achieve a level of process detail consistent with existing vascular vegetation PFTs within DGVMs, this paper describes a new process-based non-vascular-PFT model that is implemented within the TRIFFID DGVM used by the JULES land surface model. The new PFT model was tested against extant published field and laboratory studies of peat assemblage-net primary productivity, assemblage-gross primary productivity, assemblage respiration, water-table position, incoming 15 photosynthetically active radiation, temperature, and canopy dark respiration. The PFT model’s parameters were roughly tuned and the PFT model easily produced curves of the correct shape for peat assemblage-net primary productivity against water-table position, incoming photosynthetically active radiation and temperature, suggesting that it replicates the internal productivity mechanism of Sphagnum for the first time. Minor modifications should also allow it to be used across a range of other bryophytes enabling this non-vascular PFT model to have enhanced functionality.
This preprint has been withdrawn.
-
Withdrawal notice
This preprint has been withdrawn.
-
Preprint
(578 KB)
Richard Coppell et al.
Interactive discussion


-
SC1: 'Executive Editor Comment on gmd-2019-51', Astrid Kerkweg, 26 Jul 2019
-
SC2: 'reply to 'Executive Editor Comment on gmd-2019-51'', Richard Coppell, 01 Aug 2019
-
SC2: 'reply to 'Executive Editor Comment on gmd-2019-51'', Richard Coppell, 01 Aug 2019
-
RC1: 'Review of « A process-based Sphagnum plant-functional-type model for implementation in the TRIFFID Dynamic Global Vegetation Model », by R. Coppell et al., submitted to Geoscientific Model Development.', Anonymous Referee #1, 18 Dec 2019
-
RC2: 'Review of Coppell et al. A process-based Sphagnum plant-functional-type model for implementation in the TRIFFID Dynamic Global Vegetation Model', Anonymous Referee #2, 15 Oct 2020
Interactive discussion


-
SC1: 'Executive Editor Comment on gmd-2019-51', Astrid Kerkweg, 26 Jul 2019
-
SC2: 'reply to 'Executive Editor Comment on gmd-2019-51'', Richard Coppell, 01 Aug 2019
-
SC2: 'reply to 'Executive Editor Comment on gmd-2019-51'', Richard Coppell, 01 Aug 2019
-
RC1: 'Review of « A process-based Sphagnum plant-functional-type model for implementation in the TRIFFID Dynamic Global Vegetation Model », by R. Coppell et al., submitted to Geoscientific Model Development.', Anonymous Referee #1, 18 Dec 2019
-
RC2: 'Review of Coppell et al. A process-based Sphagnum plant-functional-type model for implementation in the TRIFFID Dynamic Global Vegetation Model', Anonymous Referee #2, 15 Oct 2020
Richard Coppell et al.
Model code and software
JULES DGVM modified SURFACE subroutines only, incorporating Sphagnum PFT func University of Leeds R. Coppell https://doi.org/10.5518/567
Richard Coppell et al.
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
571 | 361 | 68 | 1,000 | 52 | 52 |
- HTML: 571
- PDF: 361
- XML: 68
- Total: 1,000
- BibTeX: 52
- EndNote: 52
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1