IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate
Abstract. We present a computationally efficient modelling system, IMOGEN, designed to undertake global and regional assessment of climate change impacts on the physical and biogeochemical behaviour of the land surface. A pattern-scaling approach to climate change drives a gridded land surface and vegetation model MOSES/TRIFFID. The structure allows extrapolation of General Circulation Model (GCM) simulations to different future pathways of greenhouse gases, including rapid first-order assessments of how the land surface and associated biogeochemical cycles might change. Evaluation of how new terrestrial process understanding influences such predictions can also be made with relative ease.