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Abstract. Quantile mapping is a method often used for bias adjustment of climate model data toward a reference, i.e. to

construct a transformation of the model’s distribution to that of the reference. The main moments of the distributions are

typically well transformed by quantile mapping, but statistical uncertainty increases towards the extreme tails, making robust

transformations challenging. Because of the limited data at the extreme tails, also an empirical quantile mapping needs to

make some estimation or fit a parameterized function for data beyond the calibration data range. The MIdAS bias adjustment5

platform is here employed to explore different methods for handling the extreme tail, which are evaluated using an indicator

for extreme precipitation - the maximum daily precipitation amount per year. Different methodologies are evaluated for a large

ensemble of regional climate model projections over Scandinavia. The sensitivity of the empirical quantile mapping for the

tails of the distribution is demonstrated, and it is found that the behaviour is significantly different within and without the

calibration period, causing severe issues with the temporal consistency of the timeseries. The sensitivity is identified to be due10

to differences in the activated features of the bias adjustment, within the calibration period where the empirical transfer function

is applied, and outside that period, where the extrapolation method is likely applied. This means that the bias adjustment method

is in a sense different between different time periods. Currently MIdAS uses separate calibrations for each day of the year, as

opposed to e.g. for each calendar month, which further aggravates this issue. Further, finding a robust parametrisation for the

tail is not straightforward. We identify a two-step solution which works well for this problem: (i) "murder your darlings" by15

excluding data from the tail data in the calibration period, the extrapolation feature is activated for all time periods, even the

calibration period, and (ii) applying an outlier insensitive method for linear regression works well for finding an extrapolation

parametrisation for the tail.

1 Introduction

Bias adjusted climate projections are routinely used for impact modelling, and further processed into climate indicators for20

various climate services. Climate indicators of extremes are, by definition, sensitive to the small sample, which becomes

even more sensitive when combined with reference data to map a transformation in the bias adjustment step. Such sensitivity

can impose large uncertainties in the interpretation and conclusions drawn from the extreme indicator, and in the worst case

rendering the information useless or even misleading.
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Many bias adjustment methods are based on the quantile mapping approach, where a transfer function is used to map model25

data in different quantiles of a distribution to match that of the reference data set, see further detailed descriptions in Berg et al.

(2022). Earlier studies have identified issues with bias adjusting data outside the calibration range for pure empirical quantile

mapping approaches (Boé et al., 2007; Bellprat et al., 2013). A common solution is to apply the adjustment value of the high

end of the calibration period for all data outside the calibration range (Themeßl et al., 2011), although this may introduce

unrealistically large adjustments (Switanek et al., 2017). A combination of empirical and parametric approaches have been30

proposed by several authors, e.g. by using extreme value theory fits to the top 5% data (Tani and Gobiet, 2021), while others

have applied linear fits to the extremes (Holthuijzen et al., 2022).

Clearly, a purely empirical method based on all data in the calibration period might act differently when applied outside

the calibration data range compared to its calibration. The method reacts to data outside the calibration range differently to

inside the range, e.g. re-using the highest adjustment value of the calibration range (Themeßl et al., 2011), which means that35

the behaviour of the bias adjustment differs depending on the magnitude of the values that are adjusted. In other words, the

bias adjustment method differs for data inside and outside the calibration range. This may lead to unexpected results for the

bias adjusted tails. One can force the bias adjustment to apply its full behaviour only by making sacrifices at the very tail of the

distribution. In a way similar to the literary method of "Murder your darlings" (Quiller-Couch, 2015), also known as "kill your

darlings", i.e. to remove the most precious items for the greater good of the work: "Whenever you feel an impulse to perpetrate40

a piece of exceptionally fine writing, obey it—whole-heartedly—and delete it before sending your manuscript to press. Murder

your darlings."

This paper presents a clear example of problematic side effects of bias adjustment within and outside the calibration period.

A new method to handle the calibration strategy and distribution fits to the tail is presented and tuned to find a pragmatic use of

data while reducing the side-effects. The example is based on data from the Swedish climate service, using a large ensemble45

of regional climate models and the MIdAS bias adjustment method (Berg et al., 2022).

2 Bias adjustment

The MIdAS implementation of quantile mapping starts from the quantile-quantile (Q-Q) plots of the reference and model data

sets, which share the same number of data points. A piece-wise linear smoothing spline function is fitted to the Q-Q plot, see

Berg et al. (2022) for details. MIdAS applies a linear function fitted to the 90% most central data points of the Q-Q plot, with50

weights defined by the standard deviation of the data points from the linear fit. A linear continuation of the spline is applied to

data points outside of the calibration data range, i.e. a "1− 1" linear continuation of the spline in the Q-Q plot, as explained in

detail in (Berg et al., 2022).

The transfer functions are calculated based on a historical period, here 1971–2000, for each grid point and in sub-sets of the

annual cycle. Rather than using calendar month sub-sets, as in most published methods, MIdAS is set up to calculate and apply55

the transfer functions based on the day of the year (doy = [1,365]), using a moving window of 15 d before and after doy, such

that 31 d times the number of calibration years are used to build the distribution of the reference and model data.
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2.1 New parameterization for the tail

The new development to handle data at the tails of the distributions is based on the fitting procedure of Theil-Sen (Theil,

1950; Sen, 1968) which is an outlier insensitive method. The procedure is to calculate the median of slopes derived from each60

individual pair of points in the sample, i.e. in the Q-Q plot. It means that outliers will have little individual effect on the fits,

making the linear fits robust to the high sample uncertainties that are unavoidable at the tail of the distributions. The Theil-Sen

approach aligns with the general philosophy of MIdAS to use generally applicable methods that are not dependent on specific

distributions. The reason for this philosophy is that MIdAS shall be transparent and equally applicable across geographic

regions and climates without the need to pre-define specific distribution functions for each case.65

When excluding high extreme data points in the calibration sample of precipitation, in order to activate extrapolation be-

haviour and the full bias adjustment method, there are unavoidable effects on other moments of the distribution. Because

precipitation extremes often add significant quantities of precipitation, they are important in defining the mean moment. A

balance between a good handling of extremes, and a good adjustment of the mean moment must be found.

Different versions of excluding data from the calibration data range are combined with the Theil-Sen regression on the top70

5% data to find a balance between side-effects on the tail data and mainly the mean moment of the bias adjusted data:

– R0T5 - no excluded data and calibration on percentiles 95–100

– R1T5 - exclude 1% of the data on the upper tail and calibrate on percentiles 94–99

– R5T5 - exclude 5% on the upper end and calibrated on percentiles 90–95.

2.2 Data75

Precipitation data from SMHIGridClim (Andersson et al., 2021) is used as reference data for the bias adjustment. SMHIGrid-

Clim is a data set based on the regional reanalysis UERRA (UERRA, 2019) combined with gauge data from Sweden and

neighbouring countries, mapped at a 2.5 km grid and with daily temporal resolution. For this analysis, the data set is con-

servatively remapped (using first order conservative remapping following Jones (1998)) to the Euro-CORDEX 0.11 degree

(approximately 12.5 km) grid covering Scandinavia.80

The climate projections are acquired from the Euro-CORDEX CMIP5 data set (Jacob et al., 2020). A large ensemble of 67

unique combinations of global and regional models are used (see Table 1), using the RCP8.5 scenario of future emissions. The

ensemble members all have bias to different extent both for the mean and the extreme tails, as evaluated for a sub-set of the

ensemble in, e.g., Vautard et al. (2021).

2.3 Evaluation methods85

Two statistics are used to evaluate the different methods in Sec. 2.1: the annual mean, and the annual maximum of daily

precipitation. The mean is evaluated because it is summarizing the performance of the bias adjustment across all data, while

the annual maximum highlights the most extreme values, that are specifically targeted in this study. Because the signal-to-
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Figure 1. Remaining bias in the annual precipitation maxima (mm d−1) for the ensemble members presented in a boxplot. Results are shown

for the original MIdAS code and the different experiments.

noise levels are very high for the annual maxima, the ensemble mean is calculated across all members, and in addition a spatial

average is calculated over the land regions of the complete domain. The figures present the temporal evolution of ensemble90

mean for the the domain average annual mean and maxima.

3 Results

Figure 1 shows the performance of the different MIdAS setups for the annual maxima. The original MIdAS code is close to the

reference data, which is expected as all the data points are included, and the deviations for different ensemble members is due

to how well the spline is fitted to the tail of the distribution. The different Theil-Sen methods show similar behaviour across the95

ensemble, but with a general underestimation of the annual maxima after bias adjustment. The remaining bias is on the order

of less than 1 mm d−1 for the mean of the ensemble, which is less than o.5% relative bias. We consider this a sufficiently good

fit, which does not urge for using more advanced fitting methods using extreme value theory.

Figure 2 shows the original ensemble result of annual maxima of daily precipitation averaged over the domain, together

with the reference data and the resulting bias adjusted data using the original implementation of MIdAS, as presented in100

Berg et al. (2022). In the calibration period, marked with vertical bars, the bias adjustment is efficiently offsetting the annual

maxima to be at a similar level as the reference. Note that the interannual variability is reduced due to the ensemble averaging

performed for the model data. However, outside the calibration period, there is almost no visible effect of the bias adjustment,

resulting in significant discontinuities at the beginning and the end of the calibration period. This is clearly an issue, and is,

as will be shown, caused by the essentially different bias adjustment methods within (without extrapolation) and outside (with105

extrapolation) of the calibration period. The issue is very clearly seen in Fig. 2 because of the averaging over a larger domain.

When assessed for single grid points or smaller domains, the issues are hidden within the large noise levels for this kind of

4



Figure 2. Annual precipitation maxima (mm d−1) for SMHIGridClim, the original RCM ensemble mean, and the bias adjusted data using

the standard MIdAS setup: for absolute levels (a), and for the difference between bias adjusted and original model data (b).

extreme precipitation statistics. This highlights the need to quality control and evaluate bias adjustment across larger areas, even

though the parametrization and scale of the bias adjustment is intended for single grid points. Clearly, if the calibration period

would also be used as a historical reference period, the climate change signal would be exaggerated by almost 3 mmd−1,110

which is about twice the signal from the original data at mid-century.

In an attempt to improve on the performance outside the calibration period, the Theil-Sen method is applied to find a good

fit to the top 5% data of the distribution (experiment R0T5), which is shown as a red line in Fig. 3. The adjustment within

the calibration period is only mildly affected, due to the change from an assumed linear extrapolation in the original MIdAS

method, and the Theil-Sen methodology. However, the main issue remains as there is still a significant offset at the beginning115

and the end of the calibration period.

Because the bias adjustment method will inevitably activate the extrapolation routine with data outside the calibration range,

the next experiments (R1T5 and R5T5) force the extrapolation to be active also within the calibration range. In other words,
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Figure 3. Same as Fig. 2, but with the additional data sets for the experiments R0T5, R1T5 and R5T5. Note that the green lines lies behind

the blue line in panel a.

some extremes are excluded for the benefit of an overall better adjustment, at the likely cost of worse performance in the

calibration period. Combining the Theil-Sen fit with exclusion of the top 5% of the calibration data (R5T5, blue) has a strong120

impact on the bias across the whole time series. The bias is still well adjusted in the calibration period, equal to the R0T5

experiment, but with the additional much improved performance outside the period. This result indicates that one can only

reach a consistent bias adjustment across the time periods by activating the extrapolation routine for all periods, which implies

disregarding of some tail data. In other words, by "murdering your darlings". Similar results are seen for the experiment R1T5

(green), where less data (1%) is excluded.125

So what are the side-effects? The annual maxima is but one of many important aspects that the bias adjustment is supposed

to improve, and often the more accumulated statistics such as the mean values are more important to reproduce. Figure 4 shows

the annual sums of precipitation, i.e. the result on the accumulated precipitation of all intensities. While the original MIdAS

method works well for this measure, the R5T5 method clearly imposes a dry bias. This is because a significant amount of
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Figure 4. Same as Fig. 3, but for the annual sum of precipitation. Note that R0T5 is very close to R1T5 in panel a.

precipitation has been removed from the distribution in the calibration period (the 5% highest intensity events), which strongly130

impacts the overall bias. The sign of this impact depends on the original bias in the mean and the maximum precipitation.

They are likely of the same sign as the maximum strongly affects the mean, but it may not always be that way. Reducing the

exclusion of data to 1% (R1T5), the annual sums are closer to the reference data set, and the original method (Fig. 4, and as

presented above, still resulting in a much similar result for the adjustment of the annual maxima (Fig. 3). However, Fig. 4 also

highlights another important side-effect - a reduced trend of the increasing precipitation with time; most clearly seen in the135

difference plot Fig. 4b. This trend is seen for the original MIdAS, as well as all the experiments, although the impact seems

significantly stronger for experiment R5T5. No significant impact on trends in annual maxima is seen for the original MIdAS

adjustment and experiment R0T5, see Fig. 3b. However, when data are excluded in experiment R1T5 and R5T5, there is also

an impact on the trends; much similar to that imposed on the mean statistic. One can debate whether this is a side-effect, or

whether it is good to have consistent behaviour across the statistics, i.e. that the relative effects of the extremes and the means140

more closely follow each other in time.
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4 Conclusions

This study focuses on an identified issue with bias adjustment of the highest extremes, which are adjusted differently within

and outside the calibration period. A new outlier insensitive linear fit is used for the extreme tails, and a solution to the issue is

presented in a set of experiments. The main conclusions are:145

– The more extreme the statistic of interest is, the more elusive any bias becomes as the available data becomes scarcer

and bias is a fundamentally statistical property. Therefore, to create a robust sample size the bias should be assessed over

an ensemble of simulations and/or over a larger set of gridcells.

– A consistent bias adjustment method must have all features activated across all time periods, including the calibration

period, in order to produce consistent bias adjustment.150

– The extrapolation feature can be activated by excluding the highest data points in the calibration period, making sure that

the extrapolation feature is acting on the complete time range, and result in consistent bias adjustment.

– An unavoidable trade-off between adjustment of the mean moment and the extremes is necessary, as excluding high

intensity data points from the calibration will inevitably affect the mean.

– As there is an ever increasing focus on climate extremes we suggest that the performance of bias adjustment methods155

should routinely include an assessment of its impact on the extreme tails

Code and data availability. The MIdAS git repository is open for all to access and use under the GNU LESSER GENERAL PUBLIC

LICENSE v3, at https://git.smhi.se/midas/midas. The code used for the final setup that handles the extreme tails is implemented in v0.3.0.

The annual maxima and mean values, as well as Python scripts for reproducing the figures are available in Berg and Södling (2024).
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Table 1. List of the EURO-CORDEX GCM-RCM simulations included in the evaluation and the RIP (realisation-initialization-physics)

code.

GCM RCM RIP GCM RCM RIP

CCCma-CanESM2 CCLM4-8-17 r1i1p1 MOHC-HadGEM2-ES ALADIN63 r1i1p1

CCCma-CanESM2 REMO2015 r1i1p1 MOHC-HadGEM2-ES HIRHAM5 r1i1p1

CNRM-CERFACS-CNRM-CM5 COSMO-crCLIM-v1-1 r1i1p1 MOHC-HadGEM2-ES REMO2015 r1i1p1

CNRM-CERFACS-CNRM-CM5 ALADIN63 r1i1p1 MOHC-HadGEM2-ES RegCM4-6 r1i1p1

CNRM-CERFACS-CNRM-CM5 HIRHAM5 r1i1p1 MOHC-HadGEM2-ES WRF381P r1i1p1

CNRM-CERFACS-CNRM-CM5 REMO2015 r1i1p1 MOHC-HadGEM2-ES RACMO22E r1i1p1

CNRM-CERFACS-CNRM-CM5 WRF381P r1i1p1 MOHC-HadGEM2-ES HadREM3-GA7-05 r1i1p1

CNRM-CERFACS-CNRM-CM5 RACMO22E r1i1p1 MOHC-HadGEM2-ES RCA4 r1i1p1

ICHEC-EC-EARTH COSMO-crCLIM-v1-1 r12i1p1 MPI-M-MPI-ESM-LR COSMO-crCLIM-v1-1 r1i1p1

ICHEC-EC-EARTH COSMO-crCLIM-v1-1 r1i1p1 MPI-M-MPI-ESM-LR COSMO-crCLIM-v1-1 r2i1p1

ICHEC-EC-EARTH COSMO-crCLIM-v1-1 r3i1p1 MPI-M-MPI-ESM-LR COSMO-crCLIM-v1-1 r3i1p1

ICHEC-EC-EARTH CCLM4-8-17 r12i1p1 MPI-M-MPI-ESM-LR CCLM4-8-17 r1i1p1

ICHEC-EC-EARTH HIRHAM5 r12i1p1 MPI-M-MPI-ESM-LR ALADIN63 r1i1p1

ICHEC-EC-EARTH HIRHAM5 r1i1p1 MPI-M-MPI-ESM-LR HIRHAM5 r1i1p1

ICHEC-EC-EARTH HIRHAM5 r3i1p1 MPI-M-MPI-ESM-LR REMO2015 r3i1p1

ICHEC-EC-EARTH REMO2015 r12i1p1 MPI-M-MPI-ESM-LR RegCM4-6 r1i1p1

ICHEC-EC-EARTH RegCM4-6 r12i1p1 MPI-M-MPI-ESM-LR WRF381P r1i1p1

ICHEC-EC-EARTH WRF381P r12i1p1 MPI-M-MPI-ESM-LR RACMO22E r1i1p1

ICHEC-EC-EARTH RACMO22E r12i1p1 MPI-M-MPI-ESM-LR HadREM3-GA7-05 r1i1p1

ICHEC-EC-EARTH RACMO22E r1i1p1 MPI-M-MPI-ESM-LR REMO2009 r1i1p1

ICHEC-EC-EARTH RACMO22E r3i1p1 MPI-M-MPI-ESM-LR REMO2009 r2i1p1

ICHEC-EC-EARTH HadREM3-GA7-05 r12i1p1 MPI-M-MPI-ESM-LR RCA4 r1i1p1

ICHEC-EC-EARTH RCA4 r12i1p1 MPI-M-MPI-ESM-LR RCA4 r2i1p1

ICHEC-EC-EARTH RCA4 r1i1p1 MPI-M-MPI-ESM-LR RCA4 r3i1p1

ICHEC-EC-EARTH RCA4 r3i1p1 NCC-NorESM1-M COSMO-crCLIM-v1-1 r1i1p1

IPSL-IPSL-CM5A-MR HIRHAM5 r1i1p1 NCC-NorESM1-M ALADIN63 r1i1p1

IPSL-IPSL-CM5A-MR REMO2015 r1i1p1 NCC-NorESM1-M HIRHAM5 r1i1p1

IPSL-IPSL-CM5A-MR WRF381P r1i1p1 NCC-NorESM1-M REMO2015 r1i1p1

IPSL-IPSL-CM5A-MR RACMO22E r1i1p1 NCC-NorESM1-M RegCM4-6 r1i1p1

IPSL-IPSL-CM5A-MR RCA4 r1i1p1 NCC-NorESM1-M WRF381P r1i1p1

MIROC-MIROC5 CCLM4-8-17 r1i1p1 NCC-NorESM1-M RACMO22E r1i1p1

MIROC-MIROC5 REMO2015 r1i1p1 NCC-NorESM1-M HadREM3-GA7-05 r1i1p1

MOHC-HadGEM2-ES COSMO-crCLIM-v1-1 r1i1p1 NCC-NorESM1-M RCA4 r1i1p1

MOHC-HadGEM2-ES CCLM4-8-17 r1i1p1
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