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Abstract. Research software for simulating Earth processes enables estimating past, current, and future world states and guides 

policy. However, this modelling software is often developed by scientists with limited training, time, and funding, leading to 

software that is hard to understand, (re)use, modify, and maintain, and is, in this sense, non-sustainable. Here we evaluate the 10 

sustainability of global-scale impact models across ten research fields. We use nine sustainability indicators for our assessment. 

Five of these indicators – documentation, version control, open-source license, provision of software in containers, and the 

number of active developers – are related to best practices in software engineering and characterize overall software 

sustainability. The remaining four – comment density, modularity, automated testing, and adherence to coding standards – 

contribute to code quality, an important factor in software sustainability. We found that 29% (32 out of 112) of the global 15 

impact models (GIMs) participating in the Inter-Sectoral Impact Model Intercomparison Project were accessible without 

contacting the developers. Regarding best practices in software engineering, 75% of the 32 GIMs have some kind of 

documentation, 81% use version control, and 69% have open-source license. Only 16% provide the software in containerized 

form which can potentially limit result reproducibility. Four models had no active development after 2020. Regarding code 

quality, we found that models suffer from low code quality, which impedes model improvement, maintenance, reusability, and 20 

reliability. Key issues include a non-optimal comment density in 75%, insufficient modularity in 88%, and the absence of a 

testing suite in 72% of the GIMs. Furthermore, only 5 out of 10 models for which the source code, either in part or in its 

entirety, is written in Python show good compliance with PEP 8 coding standards, with the rest showing low compliance. To 

improve the sustainability of GIM and other research software, we recommend best practices for sustainable software 

development to the scientific community. As an example of implementing these best practices, we show how reprogramming 25 

a legacy model using best practices has improved software sustainability. 

 

 

https://doi.org/10.5194/gmd-2024-97
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 

2 

 

1 Introduction 

Simulation models of the Earth system are essential tools for scientists and their outcomes are relevant for decision-makers 30 

(Prinn, 2013). They improve our understanding of complex subsystems of the Earth (Prinn, 2013; Warszawski et al., 2014) 

and enable us to perform numerical experiments that would otherwise be impossible in the real world, e.g., exploring future 

pathways (Wan et al., 2022; Satoh et al., 2022; Kemp et al., 2022). While so-called Earth System Models always include the 

simulation of atmospheric processes and thus compute climate variables and how they change due to greenhouse gas emissions, 

so-called impact models enable us to quantitatively estimate the potential impacts of climate change on, e.g.,  floods (Sauer et 35 

al., 2021), droughts (Satoh et al., 2022), and food security (Schmidhuber and Tubiello, 2007). These impact models also 

quantify the historical development and current situation of, e.g., water stress, wildfire hazard, and fish population, thus 

providing crucial information for policymakers, scientists, and citizens. The central role of impact models can be seen in model 

intercomparison efforts of  ISIMIP (Inter-Sectoral Impact Model Intercomparison Project) (Warszawski et al., 2014; ISIMIP, 

2024) which encompasses more than 130 sectoral models (Frieler and Vega, 2019). ISIMIP uses bias-corrected climate 40 

forcings to assess the potential impacts of climate change in controlled experiments, and their outputs provide valuable 

contributions to the Intergovernmental Panel on Climate Change reports (Warszawski et al., 2014). 

 

Impact models quantify physical processes related to specific components of the Earth system at various spatial and temporal 

scales by using mathematical equations. The complexity of impact models is influenced by the complexity of the included 45 

physical processes, the choice of the perceptual and mathematical model, the computational effort needed for simulation, as 

well as their spatial-temporal resolution and spatial extent of the simulated domain (Azmi et al., 2021; Wagener et al., 2021). 

This complexity can result in models with very large source codes (Alexander and Easterbrook, 2015). 

  

The software for these impact models is categorized as research software, which includes “source code files, algorithms, 50 

computational workflows, and executables developed during the research process or for a research objective” (Barker et al., 

2022). Impact modelling research software is predominantly developed and maintained by scientists without formal training 

in software engineering (Hannay et al., 2009; Barton et al., 2022; Carver et al., 2022; Reinecke et al., 2022). Most of these 

researchers are self-taught software developers with little knowledge of software requirements (specifications and features of 

software), industry-standard software design patterns (Gamma et al., 1994), good coding practices (e.g., using descriptive 55 

variable names), version control, software documentation, automated testing and project management practice (e.g. agile) 

(Carver et al., 2013, 2022; Hannay et al., 2009; Reinecke et al., 2022). We hypothesize that this leads to the creation of source 

code that is not well-structured, not easily (re)usable, difficult to modify and maintain, has scarce internal documentation (code 

comments) and external documentation (e.g. manuals, guides, and tutorials), and poorly documented workflows. 

 60 
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Research software that suffers from these shortcomings is likely difficult to sustain and has severe drawbacks for scientific 

research. For example, it can impede research progress, decrease research efficiency, and hinder scientific progress, as 

implementing new ideas or correcting mistakes in code that is not well-structured is more difficult and time-consuming. In 

addition, it increases the likelihood of erroneous results, thereby reducing reliability and hindering reproducibility (Reinecke 

et al., 2022). We argue that these harmful properties can be averted, to some extent, with sustainable research software. 65 

 

There are various interpretations of the meaning of “sustainable research software”. Anzt et al. (2021) describe it as research 

software that is maintainable, extensible, flexible (adapts to user requirements), has a defined software architecture, is testable, 

has comprehensive in-code and external documentation, and is accessible (the software is licensed as Open Source with a 

digital object identifier (DOI) for proper attribution) (Anzt et al., 2021). Katz views research software sustainability as the 70 

process of developing and maintaining software that continues to meet its purpose over time (Katz, 2022). This includes adding 

new capabilities as needed by its users, responding to bugs and other problems that are discovered, and porting to work with 

new versions of the underlying layers, including software as well as new hardware (Katz, 2022). Both definitions share 

common aspects like the adaptation to user requirements but differ in scope and perspective. Katz’s definition is more user-

oriented, focusing on the software’s ability to continue meeting its purpose over time. On the other hand, Anzt et al.'s definition 75 

is more developer-oriented, aiming to improve the quality and robustness of research software. We chose to adopt Anzt et al.'s 

definition in the following because it provides measurable qualities relevant to this study. In contrast, Katz’s definition is more 

challenging to measure and evaluate but is likely closer to the reality of software development. For example, one of the models 

in our analysis is more than 25 years old (Nyenah et al., 2023) and thus certainly was sustained during that period, while at the 

same time, it does not meet some sustainability requirements of Anzt et al.'s definition. It is possible that such software can be 80 

sustained but requires substantial additional resources. 

  

Recent advances in developing sustainable research software have led to a set of community standard principles: FAIR 

(findable, accessible, interoperable, reusable) for research software (FAIR4RS), aimed towards increasing transparency, 

reproducibility, and reusability of research (Barker et al., 2022; Chue Hong et al., 2022). Software quality which impacts 85 

sustainability overlaps with the FAIR4RS principles, particularly reusability, but is not directly addressed by them (Chue Hong 

et al., 2022). Reusable software here means software can be understood, modified, built upon, or incorporated into other 

software (Chue Hong et al., 2022). A high degree of reusability is therefore important for efficient further development and 

improvement of research software, and thus for scientific progress. However, many models are not FAIR (Barton et al., 2022).  

To our knowledge, research software sustainability in Earth System Sciences has not been evaluated before. As an example of 90 

complex research software in the Earth System Sciences, in this study, we assess the sustainability of the software of global 

impact models (GIMs) that participate in the ISIMIP project to investigate factors that contribute to sustainable software 

development. The GIMs belong to the ten research fields (or impact sectors): agriculture, biomes, fire, fisheries, health, lakes, 

water (resources), water quality, Groundwater, and terrestrial biodiversity. In our assessment, we consider nine indicators of 
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research software sustainability, five of them related to best practices in software engineering and four related to source code 95 

quality. We further provide first-order cost estimates required to develop these GIMs. We also demonstrate how 

reprogramming legacy software using best practices can lead to significant improvements in code quality and thus 

sustainability. Finally, we offer actionable recommendations for developing sustainable research software for the scientific 

community. 

2 Methods 100 

2.1 Accessing GIM Source code  

ISIMIP manages a comprehensive database of participating impact models (available in an Excel file at 

https://www.isimip.org/impactmodels/download/), which provides essential information such as model ownership, name, 

source code links, and simulation rounds. Initially, we identified 375 models across five simulation rounds (fast track, 2a, 2b, 

3a, and 3b). As the focus of our analysis is on global impact models, we sorted the data by spatial domain and filtered out 105 

models operating at local and regional scales, resulting in a subset of 264 GIMs. We then removed duplicate models, 

prioritizing the most recent versions for inclusion, resulting in 112 unique models. For models with available source links, we 

obtained their source code directly. In instances where source links were not readily available, we conducted manual searches 

for source code by referring to code availability sections in reference papers. Additionally, we searched for source code using 

model names along with keywords such as "GitHub" and "GitLab” using the Google search engine. As of April 2024, 32 110 

model source codes out of the 112 unique model source codes were accessible in the described way. However, it’s important 

to note that our sample may suffer from a “survivor bias,” as we are not investigating models that are no longer in use (GIMs 

that couldn’t be sustained over time). This bias could potentially skew our analysis towards models that have survived i.e., 

they are still in use and their source code is accessible. Due to time constraints, we refrained from contacting developers for 

models that were not immediately accessible.   115 

 

2.2 Research software sustainability indicators 

We examine nine indicators of research software sustainability, distinguishing five indicators related to the best practice in 

software engineering and four indicators of source code quality (Table 1).  

 120 
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Table 1: Indicators used for the assessment of research software sustainability  

No. Indicator  Description  

1 Documentation  Enables software use and also makes software maintenance 

easier (Wilson et al., 2014) 

2 Version control Provides transparency and traceability throughout the 

software development lifecycle and enables collaboration 

between developers as well as user communities (Wilson et 

al., 2014) 

3 Use of an open-source license Allows code copying and reuse. This openness fosters a 

collaborative environment where the user community can 

provide valuable feedback and support. Users can 

potentially contribute to the software’s development and 

maintenance, enhancing its overall quality (Jiménez et al., 

2017), 

4 Number of active developers Prevent single points of failure in the development process 

and make software development as well as maintenance 

easier (Long, 2006) 

5 Containerization Makes the software easy to install  and facilitates 

reproducibility (Nüst et al., 2020; Wilson et al., 2014) 

6 Public availability of an (automated) testing suite 1 Shows that software functionality can be or was tested 

7 Compliance with coding standards (eg. PEP 8) 1 Improves code quality, readability and makes maintenance 

easier (Capiluppi et al., 2009; Simmons et al., 2020; Wang 

et al., 2008) 

8 Comment density 1 Precursor to software maintainability and re-usability 

(Arafat and Riehle, 2009; Stamelos et al., 2002; He, 2019) 

9 Modularity 1 Necessary for extensible and flexible research software 

(Stamelos et al., 2002; Sarkar et al., 2008). 

1 Indicators that impact research software quality 

 

 

 130 
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In the following, we describe the indicators and their rationale and how we evaluated the GIMs with respect to each indicator. 

 

Documentation. Documentation is crucial for understanding and effectively utilizing software (Wilson et al., 2014). This 135 

includes various materials such as manuals, guides, tutorials that explain the usage and functionality of the software as well 

reference model description papers. When assessing documentation availability, relying solely on a reference model 

description paper may be insufficient, as it may not provide the level of detail necessary for the effective utilization and 

maintenance of the research software.  All GIMs used in this assessment have an associated description or reference paper (see 

supplementary file ISIMIP_models.xlsx). Therefore, in addition to the reference model paper we checked for available 140 

manuals, guides, readme files, and tutorials. We consider any of these resources, alongside the reference model paper, as 

documentation for the model. These resources provide essential information such as user, contributor, and troubleshooting 

guides, which are valuable for model usage and maintenance. In our assessment, we searched within the source code and 

official websites (if available).  We also utilized the Google search engine to find model documentation by inputting model 

names along with keywords such as 'documentation,' 'manuals,' 'readme,' 'guides,' and 'tutorials'. 145 

 

Version control. Version control systems such as Git and Mercurial facilitate track changes, and collaborative development, 

and provide a history of software evolution. To assess whether GIMs use version control for development, we focused on 

commonly used open-source version control hosting repositories such as GitLab, GitHub, BitBucket, Google Code, and Source 

Forge. The hostname such as “github” or “gitlab” in the source link of models provides clear indications of version control 150 

adoption in their development process. For other models, we searched within the Google search engine using model names 

and keywords such as “Bitbucket”, “Google Code”, and “Source Forge”. 

 

Use of an Open source license. Open-source licenses foster collaboration and transparency by enabling community 

contributions and ensuring that software remains freely accessible. We determined the existence of open-source licenses by 155 

checking license files within repositories or official websites against Open source initiative (OSI) approved licenses 

(https://opensource.org/licenses).  

 

Number of active developers. The presence of multiple active developers serves as a safeguard against halts within the 

development process. In instances where a sole developer departs or transitions roles, the absence of additional contributors 160 

could lead to disruptions or challenges in maintaining and advancing the software. We measured the number of active 

developers by counting the individuals who made commits or contributions to the projects codebase within the period 2020-

2024. A higher number of developers indicates a greater capacity for bug review (enhancing source code quality) and code 

maintenance. It can also lead to more frequent updates to the source code. On the other hand, the absence of active developers 

suggests potential stagnation in software evolution, possibly impacting the relevance and usability of the software. 165 
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Containerization. Containerization provides convenient ways to package and distribute software, facilitating reproducibility 

and deployment. It encapsulates an application along with its environment, ensuring consistent operation across various 

platforms (Nüst et al., 2020). Despite these benefits, containerization in high-performance computing systems encounters 

challenges like performance, prompting the proposal of solutions (Zhou et al., 2023). Some popular containerization solutions 170 

include Docker (https://www.docker.com/) and Singularity (https://sylabs.io/). To evaluate the availability of container 

solutions, we conducted searches through reference papers, official websites, and software documentation for links to container 

images or image-building files such as “Dockerfiles”, and “singularity definition file (.def file)”. In addition, we also searched 

through source code repositories to identify the previous stated images or image-building files.  Lastly, we utilize the Google 

search engine, inputting the name of the GIM, the sector, and keywords such as “containerization”, to ascertain if any other 175 

containerized solutions exist.  

 

Public availability of an (automated) testing suite. Test coverage, which verifies the software’s functionality, is the property 

of actual interest. However, research software may have an automatic testing suite but not provide information on test coverage 

or test results. As a practical approach, we consider the availability of a testing suite as a proxy for the ability to test software 180 

functionality. By examining testing suites within repositories, we gain insights into the developers’ commitment to software 

testing, which contributes to enhancing software quality. 

 

Compliance with coding standards. Coding standards are a set of industry-recognized best practices that provide guidelines 

for developing software code (Wang et al., 2008). Analysing the conformance to these standards can be complex, particularly 185 

when the source code is written in multiple languages. As an example analysis, we focused on GIMs containing Python in 

their source code as it is one of the most prevalent languages used in development.  The tool used, known as Pylint , is designed 

to analyze Python code for potential errors and adherence to coding standards (Obermüller et al., 2021; Molnar et al., 2020).  

Pylint evaluates source files for their compliance with PEP8 conventions. To quantify adherence to this coding standard,  it 

assigns a maximum score of 10  as perfect compliance but has no lower bound (Molnar et al., 2020). We consider scores below 190 

6 as indicative of weak compliance as code contain several violations.  

 

Comment density. Good commenting practice is valuable for code comprehension and debugging. Comment density is an 

indicator of maintainable software (Arafat and Riehle, 2009; He, 2019). Comment density is defined as 

𝐶𝑜𝑚𝑚𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 
        (1) 195 

Here, the total lines of code (TLOC) include both comments and source lines of code (SLOC) (SLOCCount, 2024). SLOC is 

defined as the physical non-blank, non-comment line in a source file. According to Arafat et al. (2009) and He (2019), the 

optimal comment density is 30-60% (Arafat and Riehle, 2009; He, 2019). For most programming languages, this range is 
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considered to represent a compromise between providing sufficient comments for code explanation and having too many 

comments that may distract from the code logic (Arafat and Riehle, 2009; He, 2019).  200 

 

Modularity.  Researchers typically pursue new knowledge by asking and then attempting to answer new research questions. 

When the questions can be answered via computation, this requires either building new software, adding new source code, or 

modifying existing source code. Addition and modification of source code are more easily achieved if the software has a 

modular structure that is implemented as extensible and flexible software (McConnell, 2004). Therefore, modularity is chosen 205 

as another indicator for research software sustainability. Modular programming is an approach where source codes are 

organised into smaller and well-manageable units (modules) that execute one aspect of the software functionality, such as the 

computation of evapotranspiration in a hydrological model (Sarkar et al., 2008; Trisovic et al., 2022). The aim is that each 

module can be easily understood, modified, and reused.  Depending on the programming language, a module can be a single 

file (e.g. Python) or a set of files (e.g. C++).  210 

To assess the modularity of research software, we use the TLOC per file as a metric. This metric reflects the organization of 

the source code into modules, each performing a specific function (Sarkar et al., 2008; Trisovic et al., 2022). We opted for this 

approach over measuring TLOC per function or subroutine due to variations in programming languages and the challenges 

associated with accurately measuring different functions using program-specific tools. For instance, in Python, a module that 

contains significantly more TLOC than usual (here over 1,000 TLOC) likely includes multiple functions. These functions may 215 

perform more than one aspect of the software’s functionality, such as reading input files and computing other functions (e.g. 

evapotranspiration function), which contradicts the principle of modularity. Keeping the length of code in each file concise 

also enhances readability. 

The ideal number of TLOC per file can vary with the language, paradigm (e.g., procedural or object-oriented), and coding 

style used in a software project (Fowler, 2019; McConnell, 2004). However, a common heuristic is to keep the code size per 220 

file under 1,000 lines to prevent potential performance issues such as crashes or slow program execution with some integrated 

development environments (IDEs) (Fowler, 2019; McConnell, 2004). IDEs are software applications that provide tools like 

code editors, debuggers, and build automation tools. As reported by Trisovic et al. (2022), based on interviews with top 

software engineers, a module with a single file should contain at least 10 lines of code, consisting of either functions or 

statements (Trisovic et al., 2022). We used this heuristic as a criterion for good modularity, assuming that 10-1,000 TLOC per 225 

file indicates adequate modularity. We also varied the upper bounds of the total lines of code to 5,000 and 500 to investigate 

how modularity changes across models and sectors.  

2.3 Source code counter 

To count SLOC, comment lines, and TLOC of computational models, the counting tool developed by Ben Boyter 

(https://github.com/boyter50/scc) was used (Sloc, Cloc, and Code, 2024). This tool builds on the industrial standard source 230 

code counter tool called SLOCCount (Source Lines of Code Count) (SLOCCount, 2024).  
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2.4 Software cost estimation 

The cost of developing research software is mostly unknown and depends on many factors, such as project size, computing 

infrastructure, and developer experience (Boehm, 1981). A model that attempts to estimate the cost of software development 

is the widely used Constructive Cost Model (COCOMO) (Boehm, 1981; Sachan et al., 2016), which computes the cost of 235 

commercial software by deriving the person-months required for developing the code based on the lines of code. Sachan et al. 

(2016) used the TLOC and effort estimates of 18 very large NASA projects (Average TLOC = 35,000) to optimise the 

parameters of the COCOMO regression model (Sachan et al., 2016). Effort in person months is estimated following Eq. (2): 

𝐸𝑓𝑓𝑜𝑟𝑡 =  2.022817(𝑘𝑇𝐿𝑂𝐶)0.897183             (2) 

where total lines of code are expressed in 1,000 TLOC (kTLOC) (Sachan et al., 2016). We use this cost model to estimate the 240 

cost of GIMs.  

3 Results and Discussion  

3.1 GIM programming languages and access points 

The source code of the 32 GIMs is written in 10 programming languages (Fig. 1a). Fortran and Python are the most widely 

used, with 11 and 10 models, respectively. The dominance of Fortran stems from its performance, and the fact that it is one of 245 

the oldest programming languages designed for scientific computing (Van Snyder, 2007), and was the main such language 

used at the time some of the GIMs were originally built. This specialization makes it particularly suitable for tasks involving 

numerical simulations and complex computations. On the other hand, Python enjoys popularity among model developers due 

to readability, large user community, and rich ecosystem of packages, including those supporting parallel computing. R, C++ 

and C follow with 5, 5, and 4 models respectively (Fig. 1a).  GIMs may employ one or more programming languages to target 250 

specific benefits the programming languages offer, such as readability and performance. For example, one of the studied 

models, HydroPy, written in Python, enhances its runtime performance by integrating a routing scheme built in Fortran (Stacke 

and Hagemann, 2021).   

 

24 (75%) of the readily accessible 32 GIMs were hosted on GitHub (Fig. 1b). The rest are made available on GitLab (2, or 255 

6%), Zenodo (4, or 12%), or the official website of the model (2, or 6%) (Fig. 1b, see supplementary file ISIMIP_models.xlsx).  

We note that for one of the GIMs used for analysis, WaterGAP2.2e, only part of the complete model (the global hydrology 

model) was accessed (Müller Schmied et al., 2021). This might be the case for other models as well. 

 

 260 
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Figure 1: Programming languages for model development and model accessibility. (a) Bar plots showing programming 

languages used for developing 32 global impact models. (b) Bar plot showing open-source hosting platforms where 32 global 

impact models were accessed  

 265 

3.2 Indicators of Software Sustainability 

3.2.1 Software Engineering Practices 

Documentation: 

Our analysis reveals that 75% of the GIMs (24 out of 32) have publicly accessible documentation (Table 2). We observed a 

range of documentation formats across these GIMs. Specifically, 6 GIMs provided readme files, 13 had dedicated webpages 270 

for documentation, and 5 included comprehensive manuals (see supplementary file ISIMIP_models.xlsx). This prevalence of 

documentation practices among most models underscores the importance of documenting research software. However, a 

notable portion (25%) of the studied models either lack documentation or documentation has not been made publicly available 

(Table 2).   

 275 
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Table 2: Availability of Documentation, Version Control, Open-Source License, Test Suite, and Container for 32 Global 

Impact Models across 10 Sectors in Earth System Science. ‘x’, ‘-’,  ‘not valid’ and ‘no info’ represent the availability, 285 

unavailability, not OSI-approved and absence of information, respectively. 

No. Sector Model Documentation Version 

control 

Open Source 

License 

Test 

Suite 

Container  

1 Agriculture CGMS-WOFOST x x x - - 

2 Agriculture DSSAT-Pythia x x no info x x 

3 Agriculture EPIC-TAMU x no info x - - 

4 Agriculture LPJmL x x x - - 

5 Agriculture ACEA x no info not valid  - - 

6 Agriculture LPJ-GUESS x no info x - - 

7 Biomes CLASSIC x x x x x 

8 Biomes MC2-USFS-r87g5c1 x x x - - 

9 Fire SSiB4/TRIFFID-Fire - x no info  - - 

10 Fisheries  BOATS - x no info  - - 

11 Fisheries  DBPM - x no info  x - 

12 Fisheries  EcoTroph x x no info  - - 

13 Fisheries  FEISTY - x no info  - - 

14 Fisheries  ZooMSS x x x - - 

15 Groundwater G³M x x x x - 

16 Groundwater parflow x x x x x 

17 Lakes  ALBM x x x - - 

18 Lakes  GOTM x x x x - 

19 Lakes  SIMSTRAT-UoG x x x x x 

20 Terrestrial 

biodiversity 

BioScen15-SDM-GAM/GBM - x no info  - - 

21 Terrestrial 

biodiversity 

BioScen1.5-MEM-GAM/GBM - x x - - 

22 Vector-borne 

diseases (health) 

VECTRI x x x - - 

23 Water  CWatM x x x x - 

24 Water  DBH x no info not valid - - 

25 Water  HydroPy x no info x - - 

26 Water  PCR-GLOBWB x x x - - 

27 Water  WBM x x x - - 

28 Water  WaterGAP2.2e - no info x - - 

29 Water  VIC x x x x x 

30 Water  H08 x x x - - 

31 Water  WAYS - x x - - 

32 Water quality DynQual x x no info - - 

  Total 24 26 22 9 5 
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Version control: 

We find that 81% (26 out of 32) of GIMs uses Git as their version control system reflecting the widespread acceptance of Git 

across the sectors (Table 2).  In the remaining cases, GIMs were made available on Zenodo and the models' official websites 290 

(Table 2, Fig. 1b); information about the specific version control system used for these GIMs was unavailable. Developers' 

preference for Git highlights its user-friendly nature and effectiveness in supporting collaborative efforts.  

 

Use of an open source license: 

Most of the research software, 69% (22 out of 32), have open-source licenses (Table 2) with the “GNU General Public License” 295 

being the commonly used license (56%, 18 out of 32) (Fig. 2). However, the remaining 31% (10 out of 32) either have no 

information on the license even though the source code is made publicly available (8 or 25% of GIMs)  or uses license which 

is not OSI-approved (1 GIM each with creative commons license and user agreement)  (Fig. 2).  This ambiguity or absence of 

licensing details can deter potential users and contributors, as it raises uncertainties about the permissions and restrictions 

associated with the software. 300 

 

 

Figure 2:  License distribution for 32 global impact models across 10 sectors. 8 (25%) GIMs lack license information, and 

two (6%) GIMs have licenses that are not OSI-approved. 

 305 

Number of active developers: 

Our results reveal a diverse distribution of active developers across the GIMs. We have excluded GIMs without version control 

information from our results, as without could not be evaluated for this indicator, resulting in data for 26 GIMs. Notably, GIMs 

https://doi.org/10.5194/gmd-2024-97
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 

13 

 

such as parflow, CWatM, LPJmL, and GOTM have a significant number of active developers, with 28, 12, 11, and 8 developers 

respectively (Fig. 3). These values correlates with the size of GIMs source code, as evidenced by TLOC (282,722 for ParFlow, 310 

33,286 for CWatM, 136,002 for LPJmL, and 29,477 for GOTM.). However, models such as WAYS, VIC, BioScen1.5-MEM, 

and CGMS-WOFOST had no active developers during the considered period of 2020 to 2024 (Fig.  3). 

 

 

Figure 3: Number of active developers within 5 years (2020-2024) for 26 global impact models across 10 sectors.  The 315 

results for the 6 remaining GIMs could not be measured since version control information could not be found. Zero value 

means no active developers within the 5 year period. 

 

Containerization: 

Only 5 (16%) of the GIMs have implemented containerized solutions (Table 2). Despite the recognized benefits of 320 

containerization in promoting reproducible research, provisioning of the software in containers is not yet a common practice 

in GIM development. 

 

 

https://doi.org/10.5194/gmd-2024-97
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 

14 

 

 3.2.2 Code Quality Indicators 325 

Public availability of an (automated) testing suite:  

Our research indicates that 28% (9 out of 32) of the examined GIMs have a testing suite in place to test the software’s 

functionality (Table 2). A typical test might involve ensuring that a global hydrological model such as CWatM runs without 

errors with different configuration file options (e.g., different resolutions and basins) (Burek et al., 2020). However, this 

practice is not widespread in the development of GIMs, with the majority (72%) lacking a testing suite (Table 2). This absence 330 

of testing suites in GIM development highlights a deficiency in the developers’ dedication to software testing. The presence 

of a testing suite could lead to more frequent testing, thereby enhancing the overall quality of the software. 

 

Compliance with coding standards:  

We restricted our analysis to GIMs that include Python in their source code due to challenges described in section 2.2. Among 335 

the ten models we examined, we observed varying levels of adherence to the PEP8 style guide for Python. Five models 

(DSSAT-Pythia, parflow, HydroPy, VIC, and WAYS) demonstrated good compliance, each achieving a lint score above 6 out 

of a maximum of 10 (Fig. 4). Good compliance indicates minimal PEP8 code violations. However, the remaining five models 

showed lower compliance, with lint scores between 0 and 3 (Fig. 4). This suggests numerous violations leading to potential 

issues like poor code readability and an increased likelihood of bugs, which could hinder code maintenance.  340 

 

 

Figure 4: Lint scores of GIMs containing Python code. 

 

 345 
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Comment density: 

25% (8 of 32) of the GIMs have well-commented source code, i.e. 30-60% of all source lines of code are comment lines (Fig. 

5). The remaining 75% (24) of the GIMs have too few comments, which indicates that overall, commenting practice is low 350 

across the studied research fields.  

 

Figure 5: Comment density per model across 10 sectors. The grey zone denotes the optimal comment density (Arafat and 

Riehle, 2009; He, 2019). 

 355 

Modularity: 

The investigated GIMs have TLOC values between 262 and 500,000, distributed over 6-2400 files (Fig. 6). Only 4 out of the 

32 (12%) simulation models (EcoTroph, ZooMSS, HydroPy, and BioScen1.5_SDM) meet the criterion of having between 10 

and 1,000 TLOC per file (Fig. 6). The remaining 28 GIMs either had at least one file exceeding 1,000 TLOC, which likely 

could be divided into smaller modules with distinct functionality or had at least one file less than 10 TLOC, which makes 360 

source code harder to navigate and understand, especially if the files are not well-named or documented. We also performed a 

sensitivity analysis by changing the criterion to 5,000 and 500 TLOC per file with the same lower limit of 10 TLOC. Nine 

simulation models (LPJmL, MC2-USFS-r87g5c1, EcoTroph, ZooMSS, BioScen1.5_SDM, BioScen1.5_MEM, H08, 

HydroPy, and DynQual) meet the 5,000-line criterion and two models (EcoTroph, ZooMSS) met the 500-line criterion (Fig. 

6). Because code comments, which are included in TLOC, aid code comprehension, we also assessed modularity using the 365 
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criterion of 1,000 SLOC instead of 1,000 TLOC with 10 SLOC. Three GIMs (ZooMSS, BioScen1.5_SDM, and Hydropy) 

meet the 10-1,000 SLOC criterion (see supplementary Fig. S1).  

 

 

Figure 6: Letter value plot (Hofmann et al., 2017) of total lines of code (TLOC) per file (logarithmic scale) of 32 global impact 370 

models across 10 sectors. The dotted blue, black, and green lines show upper modularity limits, the dotted red line the lower 

limit. The values (x|y) in the upper section of Fig. 6, show, for each GIM, TLOC | Number of files. 

 

 

 375 
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3.3 Cost of GIM software development 

Research software is a valuable and complex research tool that often requires a lot of effort to develop and maintain (Carver 

et al., 2022; Reinecke et al., 2022). Here we use the cost estimate model from Sachan et al. (2016) (see section 2.4) in a scenario 

of “what if we would hire a commercial software company to develop the source code of the global impact models?”  to provide 380 

a rough cost estimate for the software development of the 32 impact models. This cost estimate does not include developing 

the science (e.g., concepts, algorithms, and input data) nor costs of documenting, running, and maintaining the software, only 

the implementation of code. We assume that the COCOMO model is transferable to research software as the NASA projects 

used in cost model contain software that is similar to research software. As the TLOC of the impact model codes ranges from 

262 to 500,000 TLOC (Fig. 7), the effort required to produce these models ranges from 1 to 495 person-months (Fig. 7). 385 

 

The results suggest that these complex research software programs are expensive tools that require adequate funding for 

development and maintenance to make them sustainable. This is consistent with previous studies that have highlighted funding 

challenges for developing and maintaining sustainable research software in various domains (Carver et al., 2022; Reinecke et 

al., 2022; Carver et al., 2013; Merow et al., 2023; Eeuwijk et al., 2021). 390 

 

Figure 7 : Effort estimates of 32 global impact models across 10 sectors. Each bar represents one GIM. Darker colours 

represents large TLOC and effort values.  
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3.4 Case Study: Reprogramming legacy simulation models with best practices  395 

Legacy codes often suffer from poor code readability and poor documentation, which hinder their maintenance, extension, and 

reuse. To overcome this problem, some of GIMs such as HydroPy (Stacke and Hagemann, 2021; Stacke, Tobias and 

Hagemann, Stefan, 2021) were reprogrammed, while others (e.g., WaterGAP, Nyenah et al., 2023) are in the process of being 

reprogrammed. We compared the legacy global hydrological model MPI-HM (in Fortran) and its reprogrammed version 

HydroPy (in Python) in terms of the sustainability indicators. The reprogrammed model has improved modularity (Fig. 8a), 400 

which supports source code modification and extensibility. HydroPy has good compliance with the PEP8 coding standard, 

which improves readability and lower the likelihood of bugs in source code (Fig. 4). It  has an open-source license and a 

persistent digital object identifier, which makes it easier to cite (Editorial, 2019). This research software refers to its associated 

publication for information and instructions on Zenodo to setup and run Hydropy. A software testing suite and container are 

not yet available. 405 

We find that HydroPy has a comment density of 25% (Fig. 8b), which is below the desired 30-60% range, but the developers 

argue that “the code is self-explanatory and comments are added only when necessary” (Stacke, 2023). MPI-HM has more 

comments (49%, Fig. 8b) because of its legacy Fortran code that limits variable names to a maximum length of 8 characters, 

so they have to be described in comments. Another reason is that the MPI-HM developers kept track of the file history in the 

header, which adds to the comment lines in MPI-HM. This raises a question: Is the comment density threshold metric still valid 410 

if a code is self-explanatory? The need for comments can depend on the language’s readability (Python vs. Fortran), the 

complexity of the implemented algorithms and concepts, and the coder’s expertise. Nevertheless, comment density remains a 

valuable metric, especially for code written by novice developers.  

Reprogramming legacy code not only allows developers to use more descriptive variable names, which increases code 

readability and maintainability, but also enables them to share their code and documentation with the scientific community 415 

through open source platforms and tools. This practice enhances transparency and accountability, as the code can be inspected, 

verified, and reproduced by others.  Reprogramming legacy code with best practices always improves code quality, which 

makes software more sustainable. 

 

 420 
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Figure 8: Modularity and commenting practice of a legacy (MPI-HM) and reprogrammed (HydroPy) global simulation 

model. (a) Letter value plot of total lines of code per file (logarithmic scale) of each model. The dotted black (red) line shows 

the upper (lower) modularity limit defined as the maximum of 1000 (minimum of 10) total lines of code per file. The values 425 

(x|y) shown in the upper section of Fig. 8a correspond to (TLOC | Number of files per model). (b) Comment density per 

model. The grey zone in Fig. 8b denotes the optimal comment density. 
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4 Limitations  

Our study has limitations in the following regards. In the interest of timely analysis, developers were not contacted for models 430 

that were not readily available, causing a bias in the distribution of models. Specifically, the simulation model distribution 

does not favour certain sectors. For instance, only 2 out of the 18 global biomes impact models were readily available and 

therefore included in our assessment. This may affect the generalizability of our findings across different domains of Earth 

System Sciences.   

Moreover, our sustainability indicators do not cover other relevant aspects of sustainable research software, such as user base 435 

size, code development activity (e.g. frequency of code contributions, date of last update or version), number of publications 

and citations, coupling and cohesion, information content of comments, software adaptability to user requirement and 

interoperability. A larger user base often results in more reported bugs, which ultimately enhances software reliability. 

However, determining the exact size of the user base presents challenges due to data reliability issues. Additionally, there is 

the question of whether to include model output (data) users as part of the user base. Code development activity, such as the 440 

frequency of code contributions, indicates an ongoing commitment to improving and maintaining the software, but it does not 

necessarily reflect the quality of those contributions. In addition, the date of the last update or version is a useful metric, but it 

can be complex to interpret. For instance, research software might have an old last update date but still be widely used and 

reliable. Hence, these metrics were not evaluated here. The number of publications and citations referencing a model serves 

as an indicator of its impact and relevance within the research community. Yet, collecting and analysing this data is a time-445 

consuming and complex task. We further did not evaluate the interdependence of software modules (coupling) and how 

functions in a module work towards the purpose of the module (cohesion) (Sarkar et al., 2008), as language-specific tools are 

required to evaluate such properties.  

In addition to the previously discussed limitations, the indicator analysed in this study are quantitative metrics that can be 

measured. Factors such as information content of comments, software adaptability to user requirements and interoperability 450 

(Chue Hong et al., 2022) are examples of qualitative metrics that contribute to software sustainability. However, qualitative 

analysis is outside the scope of this study. We focus on measurable metrics that can be easily applied by the scientific 

community and by novice developers.  

Also, we did not explore the analysis of code compliance to standards for other programming languages used for GIM 

development. Specifically for Python, the Pylint tool provides a lint score for all source code analysed, making it easier to 455 

interpret results. However, the tools for other languages (e.g., lintr for R) does not have this feature, which presents challenges 

in result interpretation.  
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5 Recommendations  

Making our research software sustainable requires a combined effort of the modelling community, scientific publishers, 

funders, and academic and research organizations that employ modelling researchers (Barton et al., 2022; Barker et al., 2022; 460 

McKiernan et al., 2023; Research Software Alliance, 2023). Some scientific publishers, research organizations, funders and 

scientific communities adopted and proposed solutions to this challenge, such as 1) requiring that authors make source code 

and workflows available, 2) implementing FAIR standards, 3) providing training and certification programs in software 

engineering and reproducible computational research, 4) providing specific funding for sustainable software development, 5) 

recognizing the scientific merit of sustainable research software, and 6) establishing the support of permanently employed 465 

research software engineers for disciplinary software developers (Carver et al., 2022; Eeuwijk et al., 2021; Editorial, 2018; 

Döll et al., 2023). In addition, we recommend the following actionable best practices for researchers developing software, 

based on literature and our own experience (summarized in Fig. 9): 

 

 Apply project management practices in software development (e.g., Agile): This can help plan, organize, and monitor 470 

your software development process, as well as improve collaboration and communication within your team and with 

stakeholders. Project management practices can also help you identify and mitigate risks, handle changes, and deliver 

quality software on time and within budget (Anzt et al., 2021). 

 Consider software architecture (organisation of software components) and requirements (user needs): This will help 

design your software in a way that meets the needs and expectations of your users. Considering software architecture 475 

(such as Model-Controller-View (Guaman et al., 2021)) and user requirements helps to design a software system that 

has a clear and coherent structure, well-defined functionality, and suitable quality (Jay and Haines, 2019). 

 Select an open-source license: Choosing an open-source license will make your software accessible and open to the 

research community, enable collaborations with other developers and contributors, as well as protect your intellectual 

property rights (Carver et al., 2022; Anzt et al., 2021). Accessible software is crucial to reduce reliance on email 480 

requests (Barton et al., 2022).  

 Use version control:  Version control can help you track and manage changes to your source code and ensure your 

software is reproducible and traceable (Jiménez et al., 2017). Platforms like GitHub and GitLab are commonly used 

for this purpose. However, it’s important to note that these platforms are not archival - the code can be removed by 

the developer at any time.  A current best practice is to use both GitHub and GitLab for development, and to archive 485 

major releases on Zenodo or another archival repository. 

 Use coding standards (e.g., PEP8 for Python), good and consistent variable names, design principles, code quality 

metrics, peer code review, linters and software testing: Coding standards help you write clear, consistent, and readable 

code that follows the best practices of your programming language and domain. Good variable names are descriptive 

and meaningful, reflecting the role and value of the variable. Design principles help adhere to the principles of 490 
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sustainable research software, such as modularity, reusability and interoperability. Code quality metrics can help 

measure and improve the quality of source code in terms of readability, maintainability, reliability, modularity and 

reusability. (Stamelos et al., 2002). Peer code review and linters (tools that analyse source code for potential errors) 

can help detect and fix errors, and vulnerabilities in your code, as well as improve your coding skills and knowledge 

(Jay and Haines, 2019). Software testing verifies if the research software performs as intended. 495 

 Make internal and external documentation comprehensible: This can help you explain the purpose, functionality, 

structure, design, usage, installation, deployment, and maintenance of your software to yourself and others. Internal 

documentation refers to the comments and annotations within your code that describe what the code does and how it 

works. External documentation refers to manuals, guides, tutorials and any material that provide information about 

your software to users and developers. Comprehensible documentation can help you make your software more 500 

understandable, maintainable, and reusable. (Carver et al., 2022; Reinecke et al., 2022; Barker et al., 2022; Jay and 

Haines, 2019; Wilson et al., 2014) 

 Engage the research software community in the software development process. This will help you get feedback, 

support, advice, collaboration, contribution and recognition from other researchers and developers who share your 

interests and goals. Engaging the research software community via conferences and workshops can also help you 505 

disseminate your software to a wider audience, increase its impact and visibility, and foster open science practices 

(Anzt et al., 2021). Additionally, consider utilizing containerization technologies, such as Docker, to simplify the 

installation and usage of your software. It helps eliminate the “it works on my machine” problem. This approach 

also facilitates easy sharing of your software with software users. Furthermore, implement continuous integration 

and automated testing to maintain the quality and reliability of your code. Continuous integration merges code 510 

changes from contributing developers frequently and automatically into a shared repository. 
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Figure 9: Actionable best practices for sustainable research software. The image summarizes the actions that modelling 515 

communities and individual developers should take, such as following project management practices, coding standards, 

reviews, documentation and community engagement strategies. These actions can help produce high-quality, robust, and 

reusable software that can be maintained. 

6 Conclusion 

The studied Earth system models are valuable and complex research tools that exhibit strengths and weaknesses in the use of 520 

certain software engineering practices (strengths, for example, in version control, open-source licensing, and documentation). 

However, notable areas remain for improvement, particularly in areas such as containerization and factors affecting code 

quality like comment density, modularity, and the availability of test suites. These shortcomings hinder the sustainability of 

such research software; they limit research reliability, reproducibility, collaboration, and scientific progress. To address this 

challenge, we urge all stakeholders, such as scientific publishers, funders, as well as academic and research organizations, to 525 

facilitate the development and maintenance of sustainable research software. We also propose to use best practices for the 

developers of research software such as using project management and software design techniques, coding reviews, 

documentation, and community engagement strategies. We further suggest reprogramming the legacy code of well-established 

models. These practices can help achieve higher-quality code that is more understandable, reusable, and maintainable.  

 530 

Efficient computational science requires high-quality software. While our study primarily focuses on Earth System Sciences, 

our assessment method and recommendations should be applicable to other scientific domains that employ complex research 

software. Future research could explore additional sustainability indicators, such as user base size, code development activity 
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(e.g. frequency of code contributions), software adaptability and interoperability, as well as code compliance standards for 

various programming languages. 535 

Code Availability 

The Python scripts utilized for analysis can be accessed at https://zenodo.org/doi/10.5281/zenodo.10245636 . Additionally, 

the line counting tool developed by Ben Boyter is available through the GitHub repository: https://github.com/boyter/scc. 

Data Availability 

The results obtained from the line count analysis are accessible at https://zenodo.org/doi/10.5281/zenodo.10245636.   540 

For convenient downloads of global impact models, links to the 32 global impact models, along with the respective dates of 

access, can be found in an Excel sheet named "ISIMIP_models.xlsx." present in the Zenodo repository. 
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