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Dear Reviewers,  

We appreciate your prompt and critical review of our paper. Your thoughtful comments and 

suggestions have greatly improved the quality of our revised manuscript. 

In the following sections, we have addressed your comments point-by-point and changed the 

manuscript accordingly. Your suggestions are highlighted in blue, while our responses are in black and 

new text italics. All section and line numbers mentioned correspond to the revised manuscript. In 

summary, we have revised aspects of the introduction and enhanced the results and discussion 

sections. 

 

Reply to Reviewer 1:  Rolf Hut 

The authors set out to study how sustainable (the software of) a collection of global impact models is 

and to provide the readership with hands-on advice on how to improve software sustainability. This 

work is an important addition to our (meta-) knowledge about the (software behind the) models that 

we use. It fits the scope of the journal and is well-written. 

Thank you for highlighting the importance and quality of our paper. 

I do, however, want to raise some points that I would invite the authors to respond to. Most of these 

points are more starters for discussion than concrete suggestions for how to change the paper. 

Major (including philosophical) point 

On purpose of the work 

The work hinges on two thoughts: on the one hand do the authors conduct a study into the state of 

software sustainability and present their findings. This is a subject fitting of a research paper. On the 

other hand the authors write an opinion paper on how they advise the community to improve the 

sustainability of their software. While not made explicit in the paper, it seems (to me) that the authors 

use the analysis to justify the need for the advice given, for example: “in software development a best 

practice is to write (good) documentation. From our analysis we conclude that good documentation 

is lacking for X % of the GIMs studied. We therefore urgently advice the community to write better 

documentation.”. Although not made explicit in the article, I think this is a good logical structure for 

an opinion article like this. My main concern is that of the six advice given three (maybe four) are 

covered by the questions and results of the analysis. The need for the other advice is not justified by 

the analysis. 

- “apply project management” not covered by survey (and see ‘on agile’ below). 

- “consider software architecture” maybe covered by analyses of lines of code per file, but hard 

to justify given different software architectures 

- “select license & consider version control” covered by analysis 

- “improve code standards / test” partially covered by analysis 

- “make documentation comprehensible” partially covered by analysis: quality is not checked, 

only if documentation is available at all. 

- “Engage community” marginally covered by analysis of active number of developers. 

For more clarity and overall a stronger point towards the community I would restructure the paper to 

follow this logic: 
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1. We know that these advices are good practices in software design. (Make clear if the source 

of this best practice is literature or the lived experience of the authors themselves.) 

2. To pinpoint the need for these advices we conduct an analysis that studies KPIs that 

signal of these advices are already implemented 

3. For 3 out of 6 of these advices we find evidence that these are not being implemented 

4. For the other advices, based on our lived experience, we think those are not being 

implemented 

5. Science would be better if they were implemented broadly. 

(note: this is an advice on how I would restructure the paper, I am looking forward to the reply of the 

authors with potential different viewpoints and I certainly do not say that restructuring like suggested 

is a “must” before the paper can be published). 

Thank you very much for the valuable feedback. We agree that the paper in its previous version was 

a balancing act between evidence and opinion in the last section of the paper. Even though we did not 

restructure the whole paper, we revised our recommendation section by linking them more clearly to 

the core findings of our paper. Furthermore, we have now expressed more clearly that the 

recommendations that cannot be backed up with our own results are based on other findings in the 

literature. The section now reads (Section 5, Line 495-513) 

“Making our research software sustainable requires a combined effort of the modelling community, 

scientific publishers, funders, and academic and research organizations that employ modelling 

researchers (Barker et al., 2022; Barton et al., 2022; McKiernan et al., 2023; Research Software 

Alliance, 2023). Some scientific publishers, research organizations, funders and scientific communities 

adopted and proposed solutions to this challenge, such as 1) requiring that authors make source code 

and workflows available, 2) implementing FAIR standards, 3) providing training and certification 

programs in software engineering and reproducible computational research, 4) providing specific 

funding for sustainable software development, 5) establishing the support of permanently employed 

research software engineers for disciplinary software developers and 6) recognizing the scientific merit 

of sustainable research software by acknowledging and rewarding the development of high-quality, 

sustainable software as valuable scientific output in evaluation, hiring, promotions, etc. (Carver et al., 

2022; Döll et al., 2023; Editorial, 2018; Eeuwijk et al., 2021; Merow et al., 2023). This software should 

be treated as a citable academic contribution and included, for instance, in PhD theses (Merow et al., 

2023).  

To assess the current state of these practices in Earth system science, we conducted an analysis of 

sustainability indicators across global impact models. Our findings reveal that while some best 

practices are widely adopted, others are significantly lacking. Specifically, we found high 

implementation rates for documentation, open-source licensing, version control, and active developer 

involvement. However, four out of eight sustainability indicators showed poor implementation: 

automated testing suites, containerization, sufficient comment density, and modularity. Additionally, 

only 50% of Python-specific models adhere to Python-based coding standards. These results highlight 

the urgent need for improved software development practices in Earth system science. Based on the 

results of our study, as well as the findings from existing literature, we propose the following actionable 

best practices for researchers developing software  (summarized in Fig. 9):” 
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On purpose of research software 

The authors state that impact model “provide crucial information for policymakers, scientists and 

citizens” (line 38). Further on they argue that “research software that suffers from these shortcomings 

[….] impede research progress, decrease research efficiency and hinder scientific progress” (line 63). 

The citizens and policymakers seem to be out of the picture here. The point I want to raise is that 

different GIMs are made for different audiences. Most GIMs are made by scientists for scientists. The 

output of the model runs, the conclusions of the papers, can impact policymakers, but the model itself 

is not intended to be run, or analysed, by them. This contrasts with a number of GIMs that are used 

by policymakers (and / or citizens) themselves. For example, in my field (hydrology) the PCRGlobWB 

model (one of the GIMs in this paper) made by Utrecht University is used in academic research. On 

the other hand, the WFLOW model made by Deltares is both used by Deltares in consultancy work, it 

is run by operational institutes (governments) as part of their daily operations and it is used in 

academic publications. Organisations like Deltares (and DHI & SMHI for example) have dedicated 

software design teams. I wonder if the software behind models like this are at a different quality level 

compared to purely academic software. I would like to ask the authors to reflect on this and what it 

means for the interpretation of their analysis results. 

While we acknowledge that different models are created for different purposes, we set out to 

specifically understand global impact models in this paper. Global Impact Models (GIMs) are created 

for scientific applications; the key issue we aim to highlight is the potential limitation for our scientific 

insights resulting from unsustainable GIMs, rather than the technical aspects of running these models. 

The outputs of such models—whether data, publications, or reports—are, however, very much used 

or at least noticed by policymakers and citizens and impact their decision-making. Therefore, potential 

errors in these outputs can misinform decision-making processes. 

1) To clarify this, we have revised our statement about GIMs in the introduction to: (Section 1,   Line 

35-38) 

“These impact models also quantify the historical development and current situation of key 

environmental issues such as water stress, wildfire hazard, and fish population. The outputs of these 

models whether data, publications or reports thus provide crucial information for policymakers, 

scientists, and citizens.” 

2) Although comparing the sustainability levels of research software developed in academia (by Ph.D. 

students and postdoctoral researchers) with that created by dedicated software design teams is an 

intriguing idea, it would lead to a different study setup. These software rarely exist as global scale 

models (except maybe the SMHI Hype, which, however, does not participate in ISIMIP), which is the 

focus of this paper. For example, the suggested WFLOW model is a catchment-scale hydrological 

model and thus falls outside the scope of this paper. We acknowledge, however, the value of this 

suggestion, and we refine our limitation sections to include this. 

(Section 4,   Line 492-493) “Furthermore, future research could compare the sustainability levels of 

impact models developed by professional software design teams with those created in academic 

settings by non-professional software developers."   

 

On representativeness of the selected GIMs 

The authors acknowledge the bias introduced by the selection mechanism of GIMs for their analysis. 

I think that the implications of this bias stretch further than the considerations they authors give in 
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their ‘limitations’ section. The amount of ‘legacy code’ differs greatly between different fields of 

science. Not long ago (I’m getting old…) it was perfectly acceptable to make software available through 

“please email me”. These models are still used, even as GIMs. By using this selection, not only does 

that exclude some fields of science, but it also selects on 

- The type of programming language used at the time 

- The type of code quality and style of documentation 

Because of this, I’m afraid that the analysis of the authors shows a “best case” situation of the state 

of software quality in the field, which makes their advice all the more urgent. 

We agree that the selection process may have introduced bias.  We have revised our limitation section 

to include stated suggestions.  

(Section 4, Line 462-468) “Our study has limitations in the following regards. In the interest of timely 

analysis, we did not contact the developers of models that were not readily available. This means that 

older software, particularly that written in less common or outdated programming languages, might 

be underrepresented. Additionally, software with higher code quality and better documentation is 

more likely to be made readily available and thus may have been selected more frequently. This 

selection process could introduce bias in the distribution of models. Specifically, the simulation model 

distribution does not favour certain sectors. For instance, only 2 out of the 18 global biomes impact 

models were readily available and therefore included in our assessment. This may affect the 

generalizability of our findings across different domains of Earth System Sciences.”  

 

On costs and rewards 

The authors conclude that the quality of research software would improve if their advice is followed 

and they also conclude that writing and maintaining complex research software is expensive (line 386). 

The obvious questions that the authors do not address are: why is this as it is and who should pay for 

the change? To answer the first question, I would argue that scientists do not have an incentive to 

make their software better. A Good paper with bad software gets you just as far and writing bad code 

is much faster than nicely documenting and structuring your work (I have been guilty of this myself). 

Just asking scientist to “do better” will not change if those that do better are not rewarded for these 

efforts (or, more negatively, those providing bad code punished with negative career outcomes). I 

invite the authors to reflect on this and provide their vision on how to arrive on a situation where 

researchers feel they have the time, the budget and the incentives to actually spend time on writing 

better research software. 

We agree with the reviewer and therefore revise line 386 based on your suggestion to: 

(Section 3, Line 414-419) “The results suggest that these complex research software programs are 

expensive tools that require adequate funding for development and maintenance to make them 

sustainable. This is consistent with previous studies that have highlighted funding challenges for 

developing and maintaining sustainable research software in various domains (Carver et al., 2013, 

2022; Eeuwijk et al., 2021; Merow et al., 2023; Reinecke et al., 2022). Merow et al. (2023) also 

emphasized that the accuracy and reproducibility of scientific results increasingly depend on updating 

and maintaining software. However, the incentive structure in academia for software development — 

and especially maintenance — is insufficient (Merow et al., 2023).” 
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Also, regarding a vision of producing better software and who should pay, we provide 

recommendations based on literature in the recommendation section (Section 5, Line 495-505), with 

which we already responded to your comment on the purpose of the work on page 2 of this response.  

“Making our research software sustainable requires a combined effort of the modelling community, 

scientific publishers, funders, and academic and research organizations that employ modelling 

researchers (Barker et al., 2022; Barton et al., 2022; McKiernan et al., 2023; Research Software 

Alliance, 2023). Some scientific publishers, research organizations, funders and scientific communities 

adopted and proposed solutions to this challenge, such as 1) requiring that authors make source code 

and workflows available, 2) implementing FAIR standards, 3) providing training and certification 

programs in software engineering and reproducible computational research, 4) providing specific 

funding for sustainable software development, 5) establishing the support of permanently employed 

research software engineers for disciplinary software developers and 6) recognizing the scientific 

merit of sustainable research software by acknowledging and rewarding the development of high-

quality, sustainable software as valuable scientific output in evaluation, hiring, promotions, etc. 

(Carver et al., 2022; Döll et al., 2023; Editorial, 2018; Eeuwijk et al., 2021; Merow et al., 2023). This 

software should be treated as a citable academic contribution and included, for instance, in PhD 

theses (Merow et al., 2023).”  

On agile 

One of the advices that the authors give and that I want to push back on is to “apply project 

management practices” and in particular “Agile” when building research software. The ‘agile’ 

framework for developing software originated in the start-up culture of silicon valley and it is laced 

with assumptions that the environment that one works in is that of an anglo-saxon, shareholder value 

driven, software start-up. The main idea of Agile as I distil it is for a team at any point in time to decide 

on the next action that optimizes the value of the software product (sic) most. The underlying 

assumption are: 

- It is unclear what the final product should be, we develop as we go, requirements can change 

any moment 

- We have an existing product and an existing user base (customers) that we can continuously 

test our improvements with 

- The crucial limit is the amount of development time (cost). 

Especially the first point is plainly not true in many scientific projects such as big EU projects where it 

is decided upfront what should be delivered and requirements are fixed, yet budgets are not (always). 

(This is partly why many software projects in government and big institutes always go over budget). I 

hope the authors recognize that I strongly push back against advocating for agile and would be much 

happier with something akin to: “choose a project management practice that honors the boundary 

conditions of the institutional environment and culture you are part of”. I’m looking forward to reading 

the authors view on this. 

We agree with the reviewer, particularly regarding the limitations of Agile in certain scientific settings, 

such as those with fixed requirements. However, we believe that some principles and practices from 

Agile can still provide significant value in academic software development, particularly in 

environments where timelines are constrained and requirements do change quickly (with newly 

available data or methods), such as PhD and Postdoc positions. Below, we outline some key benefits: 

 Flexibility in Handling Evolving Requirements: While many scientific projects have well-

defined requirements, others benefit from Agile’s adaptability to changing conditions. For 
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example, as new research questions arise or additional factors need to be considered (e.g., 

integrating karst regions into hydrological research software for groundwater recharge), 

Agile’s iterative process allows for the efficient incorporation of these updates. This flexibility 

ensures that the software remains responsive to ongoing developments. 

 Transparency and Progress Tracking: Agile’s use of tools like backlogs, task boards, and regular 

progress updates provides clear visibility into the project’s status. This is particularly useful in 

academic settings, where project continuity can be disrupted due to personnel changes, such 

as the arrival or departure of researchers. These tools help ensure smooth transitions by 

clearly indicating completed tasks and those still in progress, thereby minimizing disruptions 

to the workflow. 

 Enhanced Collaboration and Communication: Agile emphasizes frequent communication 

among team members and stakeholders, which can be highly beneficial in academic settings. 

Regular meetings and updates help ensure alignment among diverse contributors, such as 

students, researchers, and supervisors. This ongoing collaboration helps keep the team 

informed and engaged, and allows for timely input and feedback as the project evolves. 

To be more nuanced about our recommendation we have revised our recommendation on project 

management practices to  

(Section 5, Line 515-522) “Choose project management practices that align with your institutional 

environment, culture, and project requirements: This can help plan, organize, and monitor your 

software development process, as well as improve collaboration and communication within your team 

and with stakeholders. Project management practices also help identify and mitigate risks, manage 

changes, and deliver quality software on time and within budget (Anzt et al., 2021). While traditional 

methods may be better suited for projects with fixed requirements, certain principles from more 

flexible frameworks, such as Agile, can provide benefits in environments where requirements evolve or 

adaptability is critical. For example, Agile’s iterative approach allows for incorporating changing 

research questions and hence software modifications or extensions, improving responsiveness to new 

developments (Turk et al., 2005).”  

 

Minor points 

On reproducibility through platforms. 

 With the risk of sounding like a reviewer that is mainly pushing their own work: reproducibility does 

not, per se, have to be fixed by the model developer. There are a few ‘model platforms’ that have 

emerged in the last years that give people access to either models itself, or the output of models, in a 

FAIR way. This is also a way in which the community as a whole can arrange for better (reproducible) 

software. Projects that spring to mind from my own field include ESMValTool, eWaterCycle (the one I 

work on), PAVICS-Hydro, Deltares FEWS. Do the authors agree that this is a way as a community to 

make research software more reproduceable? 

Thank you for your insightful comments on reproducibility through platforms. We agree that 

reproducibility is not solely the responsibility of the model developer. The emergence of community-

driven model platforms like ESMValTool, eWaterCycle, PAVICS-Hydro, and Deltares FEWS provides a 

FAIR way to access models and their outputs. For example, eWaterCycle allows users to run 

hydrological models in containers, ensuring consistency and reproducibility (as we encourage 

developers to use, see Section 5: Line 561). Additionally, tools like ESMValTool eliminate the need to 

create custom code to assess model outputs (diagnostics), significantly enhancing reproducibility. 



7 
 

 

On researchers as software developers 

On line 54 the authors claim that “most of these researchers are self-taught software developers with 

little knowledge of software requirements.”. The authors do not back up this claim by referencing 

literature that has studied this. While I do agree that this might have been true a few decades ago, I 

w ould argue that currently at least all scientists get some sort of programming classes in their 

education and those doing a MSc or similar in “our fields” get quite extensive programming classes. 

This leads to two questions to the authors: 

- do they stand by their claim? 

We stand by our claim based on recent studies by Reinecke et al. (2022) and Nangia & Katz 

(2017). To provide clarity and support for our statement, we have revised it as follows: 

(Section 1, Line 53-57) “Most of these researchers are self-taught software developers (Nangia 

and Katz, 2017; Reinecke et al., 2022) with little knowledge of software requirements 

(specifications and features of software), industry-standard software design patterns (Gamma 

et al., 1994), good coding practices (e.g., using descriptive variable names), version control, 

software documentation, automated testing and project management practice (e.g. agile) 

(Carver et al., 2013, 2022; Hannay et al., 2009; Reinecke et al., 2022).”  

 

- More related to the conclusion and how to implement the advices that the authors give: what 

do they think the role of education in general and graduate level education in particular should 

be? 

 

Education, especially at the graduate level, could focus on developing essential skills in 

software engineering and reproducible computational research in addition to other mention 

in Section 5 Line 495-505. 

 

On the software cost estimation 

While I recognize the need to somehow quantify the amount of work (money) invested in I strongly 

think that the number of decimals in the coefficients presented hint at more certainty in the relation 

than the underlying data that this is fitted to justifies. I would like to ask the authors to do a bit of a 

sensitivity analyses on these coefficients to see how much their conclusions change. Furthermore, I 

think that the 18 large NASA projects include those kind of projects where an error in a line of code 

could mean that the lander misses the moon and astronauts die, where-as an error in a GIM usually 

means that a future projection is slightly off. (I’m being mean, but I do think that NASA spends more 

time on code quality control than most post-docs working on GIMs). I’d like to ask the authors to 

reflect on this a little bit in their discussion. 

We conducted a sensitivity analysis on the COCOMO model coefficients as requested. The results are 

now included as Supplementary Figure S2. With a small additive change (±0.1) in these coefficients, 

the estimated effort ranges from approximately 1 to 255 person-months on -0.1 scenario, and up to 

about 960 person-months on the +0.1 scenario(Supplementary Fig. S2). These findings generally show 

that these models require a lot of effort especially if the model has large total lines of code.  

We revise our manuscript with these new findings.   
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(Section 3, Line 409-412) “As the TLOC of the impact model codes ranges from 262 to 500,000 TLOC 

(Fig. 7), the effort required to produce these models ranges from 1 to 495 person-months (Fig. 7). With 

a small additive change of ±0.1 of the COCOMO model coefficients, the range of estimated effort 

changes to  1 to 255 person-months in the case of  -0.1 , and to 1 to 960 person-months in the case of 

+0.1 (Supplementary Fig. S2).”  

Also, we acknowledge that likely NASA invests significantly more time and resources into code quality 

control due to the critical nature of their projects (however we do not know if that is really the case). 

While we do not evaluate or discuss NASA's quality control processes, as that is beyond the scope of 

this paper, we aim to provide a rough estimate of the cost of producing research software. We utilize 

cost model built on NASA's data in our paper because it offers a simplified alternative compared to 

other software cost models and is widely used. The NASA projects used in developing this cost model 

contain software components similar to research software, making it a suitable reference point for 

our estimation purposes. 

Really minor points  

- Line 44: are non-physical impact models also possible (economical models? Demographic 

models? Statistical models?) 

While impact models can indeed represent both physical and non-physical processes, such as 

economic or demographic models, our focus in this paper is solely on impact models in 

participating in ISIMIP.  

 

- Line 81: what about the cost of re-implementing / making reproducible versus the cost of 

maintaining old code? 

Thank you for the comment. We do not address the cost of re-implementing or making code 

reproducible versus the cost of maintaining old code in this study, as it falls outside the scope 

of this study. 

We now state that explicitly in the revised manuscript (Section 1, Line 101-102) 

 

“We further provide first-order cost estimates required to develop these GIMs but do not 

address the cost of re-implementing or making code reproducible versus the cost of 

maintaining old code in this study.” 

 

- Line 102: I find it somewhat funny that the list of isimip models is itself not a FAIR datasource 

(no further action required) 

That is certainly true. We are thinking about presenting our findings to the ISIMIP community 

at one of their next conferences to discuss this. 

- Line 165: could the absence of active developers not also imply very mature software that is 

just perfect? 

While it is possible that the absence of active developers could suggest the software is very 

mature and stable, it is unlikely that software can ever be "perfect." In practice, users often 

request new features or bug fixes over time.  As technologies, libraries, and hardware evolve, 

software typically needs updates to remain compatible and secure. Even highly mature 

software may require occasional maintenance to address security vulnerabilities, adapt to 

new operating systems, or improve performance. Therefore, the need for active developers 

is almost always present to ensure long-term relevance and usability. 
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- Line 171: singularity is now called apptainer 

Thank you for the correction. We have revised the name accordingly. Section now reads  

(Section 2, Line 185-186) “Some popular containerization solutions include Docker 

(https://www.docker.com/) and Apptainer (https://apptainer.org/).”  

 

- Line 230: the references to sloc look weird: is this the preferred format? 

We have corrected the reference.  

 

- Table 2: I suggest to use ‘+’ instead of ‘x’ to indicate availability. 

We have revised Table 2 accordingly.  

 

- Figure 2: I suggest to add “no license” and “not OSI license” as columns to this figure. 

In Figure 2, there is no column labelled 'not OSI license.' Instead, we present research software 

categorized by its licensing information: 25% of the software lacks any license information, 

while 6% use licenses that are not OSI-approved. This means these licenses do not conform to 

the Open Source Definition, which ensures that software can be freely used, modified, and 

shared.  We also now refine our methodology section which clarifies the meaning of OSI-

approved licenses.  

 

(Section 2, Line 164-167) “We determined the existence of open-source licenses by checking 

license files within repositories or official websites against licenses approved by the Open 

Source Initiative (OSI) (https://opensource.org/licenses). Specifically, we looked for licenses 

that conform to the Open Source Definition, which ensures that software can be freely used, 

modified, and shared (Colazo and Fang, 2009; Rashid et al., 2019).”  

 

- Figure 5 and figure 6: is it somehow possible to indicate which of these models are in which 

programming language? For example sort along the x-axis by programing language such that 

all the python models are next to each other? 

Thank you for the suggestion, however sorting the models by programming language would 

disrupt the ability to compare performance across sectors, which is the main focus of Figures 

5 and 6. To address the need for information about programming languages, we have updated 

Table 2 to include all relevant programming languages for each model. 

 

 

Reply to Reviewer 2:  Facundo Fabián Sapienza 

The manuscript contributes to the scientific literature by quantifying the level of software 

sustainability of different climate change impact models. This is done by first defining a series of nine 

indicators that evaluate factors such as automation, documentation, testing, and good coding 

practices present in the model.  

I recommend the publication of the manuscript in GMD after the revisions and comments here 

presented are addressed. I believe this work brings light into the robustness, reproducibility and 

overall health of the software that we scientist develop. I personally enjoyed the reading of the 

manuscript, and I would be glad of seeing this work published. However, before publication I strongly 

suggest the authors to review and address the following major and minor points. If well overall the 

manuscript is easy to read and follow, some parts are a bit vague and required more explanations 

and/or more bibliographical references. 

https://www.docker.com/
https://apptainer.org/)
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We appreciate the positive feedback on our work and have addressed the raised points in the 

following. 

All comments, both major and minors, are aimed to improve the quality of the paper or to dilucidated 

some of my doubts or questions as I was reading the manuscript. 

Major Comments 

- It will help to the discussion the early introduction of one or more examples of software that 

follows the guidelines of “sustainable research software”. I suggest using standard examples 

for this, for example a major library in Python (numpy, pandas, sklearn) with a link to their 

respective source code would help the reader to have an idea of how good software looks 

like. 

Thank you for your valuable feedback. We have revised our introduction to include your 

suggestion. 

  

(Section 1, Line 68-74) “There are various interpretations of the meaning of “sustainable 

research software”. Anzt et al. (2021) define research software as software that is 

maintainable, extensible, flexible (adapts to user requirements), has a defined software 

architecture, is testable, has comprehensive in-code and external documentation, and is 

accessible (the software is licensed as Open Source with a digital object identifier (DOI) for 

proper attribution) (Anzt et al., 2021). For example, NumPy (https://numpy.org/) is a widely 

used scientific software package that exemplifies many of these qualities (Harris et al., 2020). 

Although NumPy is not an impact model, it is an exemplar of sustainable research software; it 

is open-source, maintains rigorous version control and testing practices, and is extensively 

documented, making it highly reusable and extensible for the scientific community.”  

 

- [146] Version control. My understanding is that in the manuscript the authors assess whether 

the models use or use not git or a similar version control system. However, I think it is also 

important to evaluate how version control has been used during the development of the 

different versions of the model. Did the contributors follow good version control practices 

(modular commits, push requests, discussions, versioning, etc), or simply put the final version 

of the software in GitHub or similar? I understand this is a finer analysis which I don’t think is 

necessary to perform in the manuscript, but I would suggest mentioning this in the Version 

Control section since it is an important point. 

Thank you for your thoughtful comment. We agree that evaluating the implementation of 

version control practices, such as modular commits, pull requests, discussions, and versioning 

would provide valuable insights and would be interesting for follow-up studies. In line with 

your suggestion, we have mentioned these practices in the revised section. The updated 

version now reads: 

 

(Section 2, Line 153-161) “Version control. Version control systems such as Git and Mercurial 

facilitate track changes, and collaborative development, and provide a history of software 

evolution. To assess whether GIMs use version control for development, we focused on 

commonly used open-source version control hosting repositories such as GitLab, GitHub, 

BitBucket, Google Code, and Source Forge. The hostname such as “github” or “gitlab” in the 

source link of models provides clear indications of version control adoption in their 

development process. For other models, we searched within the Google search engine using 

model names and keywords such as “Bitbucket”, “Google Code”, and “Source Forge”. While 
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we focus on identifying the use of version control systems, evaluating how version control was 

implemented during the development process — such as the use of modular commits, pull 

requests, discussions, and proper versioning — is a finer analysis that falls beyond the scope 

of this study. However, such practices are crucial for ensuring high-quality software 

development and collaborative practices.”  

 

- [154] Use of open source license. I think this section requires more discussion or at least a 

few references supporting the statement “Open-source licenses foster collaboration and 

transparency by enabling community contributions and ensuring that software remains freely 

accessible”. I partially agree with this statement, but I would like to see the why of this. 

Furthermore, I think is also important to mention the difference between different types of 

major licenses (copyleft or permissive), since I think this also has an impact in the meaning of 

the sentence. This point pops up every time the topic of licenses is addressed in the paper, so 

I strongly suggest the authors to address what do they mean by open-source licenses and how 

they relate to copyleft/permissive licenses. 

Thank you for your insightful feedback. We have removed the statement regarding open-

source licenses fostering collaboration and transparency, as we agree that it requires more 

discussion and supporting references. Additionally, we have expanded the section to include 

a detailed explanation of the key differences between copyleft and permissive licenses, the 

two major categories of open-source licenses. In our study, we focus solely on the presence 

of an open-source license regardless of the type of open source license.  The revised section 

now reads:  

 

(Section 2, Line 164-172) “Use of an open-source license. We determined the existence of open-

source licenses by checking license files within repositories or official websites against licenses 

approved by the Open Source Initiative (OSI) (https://opensource.org/licenses). Specifically, we 

looked for licenses that conform to the Open Source Definition, which ensures that software 

can be freely used, modified, and shared (Colazo and Fang, 2009; Rashid et al., 2019). There 

are two major categories of open-source licenses: permissive licenses, such as MIT or Apache, 

that allow for minimal restrictions on how the software can be used (e.g., providing 

attribution), and copyleft licenses, like GPL, that require derivatives to maintain the same 

licensing terms (Colazo and Fang, 2009; Rashid et al., 2019). Although these licenses differ in 

their terms, both contribute to collaboration and transparency. In this study, we only check if 

the software is open-source, regardless of the type of open-source license.” 

 

 

- [159] Number of active developers. I think the number of active developers is a good proxy 

for evaluating how robust is the development of the software, but I don’t think is the only 

one. I think with the same philosophy one can evaluate the number of commits, push 

requests, open and closed issues, etc. I suggest mentioning this in the manuscript, and maybe 

changing the “number of active developments” tag to something more generic that includes 

these other proxies or a more general concept (e.g., “software robustness”). Furthermore, it 

may be important to emphasize the distinction between developers and contributors: one can 

contribute to a project without writing source code, but for example opening issues, managing 

a project, writing the documentation, etc. In this sense, contributors help to improve the 

robustness of the software, even when they don’t directly write any line of code. 

We agree that the number of active developers is not the only indicator if the goal is to 

measure the project’s robustness, and we appreciate your suggestion to consider additional 
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factors such as commits, pull requests, and open/closed issues. Our measure of active 

developers serves as an indicator of ongoing maintenance and the prevention of software 

stagnation, rather than a definitive measure of a project’s robustness (see Section 2, Line 174). 

Therefore, we prefer to keep the term “number of active developers”.  Also, to avoid 

confusion between the terms “contributor” and “developer,” we use “developer” exclusively, 

as contributors also write lines of code according to the definition from the Mozilla Public 

License (https://www.mozilla.org/en-US/MPL/2.0/). 

 

- [166] Containerization. I will suggest here making also a reference to cloud supported 

containers, such as Binder or GoogleColab, that allow the re-execution of the software. Under 

the hood, this also work as a container, but I think the deeper concept here is the capacity of 

re-executing an model with the computational environment requirements. This further 

resonates with the concept of analysis-ready data, cloud-optimized formats (see “Cloud-

Native Repositories for Big Scientific Data” by Abernathey et. al, 2021) in the case of datasets. 

I think the same ideas apply here for models. 

Thank you for your thoughtful comment. We have incorporated your suggestions into the 

section and it now reads.  

 

(Section 2, Line 185-189) “Some popular containerization solutions include Docker 

(https://www.docker.com/) and Apptainer (https://apptainer.org/). There are also cloud-

supported container solutions such as Binder (https://mybinder.org/) with the capacity to 

execute a model with the computational environment requirements analogous to the concept 

of analysis-ready data and cloud-optimized formats for datasets (Abernathey et al., 2021).”  

 

- [178] Public availability of an (automated) testing suite. I really like this point. I this is a good 

idea to look for automation of the tests. However, I would like to point out here that the 

concept of “automation” is in principle independent and complementary to the existence of 

the testing suite. Furthermore, the concept of automation applies also to some other 

indicators. For example, one can automate the creation of documentation using GitHub Pages, 

using GitHub actions to ensure the containerization of the software (even create all the 

ingredients for a docker file), and even ensure the compliance with coding standards of the 

software (see for example the Julia code formatter action: https://github.com/julia-

actions/julia-format and I imagine there must be a way to automate the use of Pylint with 

Python). 

Thank you for your feedback. We agree that the concept of automation is both independent 

and complementary to the existence of a testing suite. Since this section only accesses the 

availability of an (automated) testing suite, we have expanded our recommendations to 

include automation not only for testing but also for other aspects such as documentation 

creation, containerization, and coding standards compliance. 

 

(Section 5, Line 567-571) “Integrate automation in development practices. Automation plays 

a key role in streamlining software development by reducing manual effort and ensuring 

consistency (Wijendra and Hewagamage, 2021). We encourage developers to integrate 

automation into their workflows to improve efficiency. For instance, developers can use GitHub 

Actions to automate various tasks like running test suites, generating documentation, ensuring 

adherence to coding standards, and managing dependencies.”  
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- [269] How well documented are the models that just have a README file? In my experience, 

README documentations tend to be very plain and difficult to navigate. I think it is important 

to mention something about the quality of the documentation, at least as an observation. 

Thank you for the comment. We have incorporated your suggestions and the full text now 

reads: 

 

(Section 3, Line 288-294) “Our analysis reveals that 75% of the GIMs (24 out of 32) have 

publicly accessible documentation (Table 2). We observed a range of documentation formats 

across these GIMs. Specifically, 6 GIMs provided readme files, 13 had dedicated webpages for 

documentation, and 5 included comprehensive manuals (see supplementary file 

ISIMIP_models.xlsx). While README files tend to be more minimal and sometimes difficult to 

navigate, we observed that they generally contain essential information such as instructions 

on how to run the research software. The prevalence of documentation practices among most 

models underscores the importance of documenting research software. However, a notable 

portion (25%) of the studied models either lack documentation or documentation has not been 

made publicly available (Table 2). ”  

 

 

- [295] Following my previous comment, I think it is important to state why licensing is 

important and the difference between licenses. References or further support here is needed. 

Copyleft and permissive licenses are very different. I would also suggest pointing which one 

of the licenses in Figure 2 are copyleft of permissive. 

Thank you for your valuable comment. We refer you to our response to [154] regarding the 

discussion of open-source licenses, where we expanded on the importance of licensing and 

the key differences between copyleft and permissive licenses, including references for further 

support. As the focus of our study is on the general use of open-source licenses rather than 

the specific restrictions associated with each type, we believe that distinguishing between 

copyleft and permissive licenses in Figure 2 would be outside the scope of this analysis. 

 

- [378] I don’t understand the purpose of this section. The effort here is calculated using 

equation 1, which (besides being based in many assumptions that the authors do take care 

of) already suggested that more lines of code mean more effort, which is an expected 

concussion. With this point in mind, I don’t fully understand what new conclusion are made 

in Section 3.3. There is a chance that here I am missing an important point, and in that case, I 

would like the authors to clarify. I think here it would be interesting to see how the effort 

correlated with the number of satisfied indicators. Without further analysis, I would suggest 

removing or perform a different analysis in this section. 

Thank you for your insightful feedback however the primary goal of Section 3.3 is not to draw 

new conclusions about the relationship between lines of code and effort, but rather to provide 

a rough effort estimate involved in developing these complex research software tools. This 

estimate aims to give developers and funders a sense of the scale of effort required, 

encouraging developers to invest in best practices for code development once funded, and 

making funders aware of the necessary support. 

 

We have removed the first line of the paragraph, which we believe is confusing. We hope this 

clarification addresses your concerns. The revised now reads: 
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(Section 3, Line 404-419) “To provide a rough cost estimate for the software development of 

the 32 impact models, we use the cost estimate model from Sachan et al. (2016) (see section 

2.4) in a scenario of “what if we would hire a commercial software company to develop the 

source code of the global impact models?”  This cost estimate does not include developing the 

science (e.g., concepts, algorithms, and input data) nor costs of documenting, running, and 

maintaining the software, only the implementation of code. We assume that the COCOMO 

model is transferable to research software as the NASA projects used in cost model contain 

software that is similar to research software. As the TLOC of the impact model codes ranges 

from 262 to 500,000 TLOC (Fig. 7), the effort required to produce these models ranges from 1 

to 495 person-months (Fig. 7). With a small additive change of ±0.1 of the COCOMO model 

coefficients, the range of estimated effort changes to  1 to 255 person-months in the case of  -

0.1 , and to 1 to 960 person-months in the case of +0.1 (Supplementary Fig. S2). 

 

The results suggest that these complex research software programs are expensive tools that 

require adequate funding for development and maintenance to make them sustainable. This 

is consistent with previous studies that have highlighted funding challenges for developing and 

maintaining sustainable research software in various domains (Carver et al., 2013, 2022; 

Eeuwijk et al., 2021; Merow et al., 2023; Reinecke et al., 2022). Merow et al. (2023) also 

emphasized that the accuracy and reproducibility of scientific results increasingly depend on 

updating and maintaining software. However, the incentive structure in academia for software 

development — and especially maintenance — is insufficient (Merow et al., 2023).”  

 

 

- [410] I think this is a very important question and should be first raised in lines 197-200, and 

maybe postponing the discussion until later. It is not clear for me that 30-60% is the desired 

number, since most of the time other heuristics are used for determining the number of 

comments. In a nutshell, better code requires minimal commenting and clarity in the code. 

(See book “Beautiful Code” for a nice collection of essays around this precise point.) 

Furthermore, I think is important to mention the entanglement between writing good 

documentation and commenting, since many software documentations are generated 

automatically based on the comments in the code (e.g., based on the docstrings in Python and 

Julia). 

Thank you for your valuable feedback. Regarding minimal commenting on high-quality code, 

we agree that well-written code often requires fewer comments. However, it's important to 

note that the need for comments can vary depending on factors such as the programming 

language used, the complexity of the algorithms, and the expertise of the developers. Our 

paper specifically focuses on novice developers, particularly PhD students and postdocs in 

academic settings, who may not be expert programmers. In these environments, frequent 

turnover of personnel can result in new researchers inheriting poorly documented code, 

which can pose significant challenges. Therefore, while minimal commenting may be 

appropriate for highly experienced developers, the context of academic research and novice 

coders often requires more explicit comments for clarity and maintainability. 

 

Regarding the comment density recommendation, we acknowledge that our initial phrasing 

around the 30-60% comment density may have come across as too prescriptive. Our intention 

was to reference this range as it is commonly cited in the literature, not to imply it as a strict 

rule. We have revised our text to clarify this, now stating:  
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(Section 2, Line 216-219) " . Arafat et al. (2009) and He (2019) suggest that comment density 

between 30-60% may be optimal. For most programming languages, this range is considered 

to represent a compromise between providing sufficient comments for code explanation and 

having too many comments that may distract from the code logic (Arafat and Riehle, 2009; 

He, 2019). "  

 

 

We recognize that not all programming languages natively support automatic generation of 

documentation from comments. Our discussion of this feature now intends to highlight its 

potential benefits where available, rather than suggest it as a universal solution (see Section 

5, line 567 on automation). 

 

- [490] Here it is mentioned a very important point: design principles, or design patterns. More 

than writing code that follows certain standards, it is important to think about the overall 

software architecture of the model. E.g., if I am working in Python, what are going to be my 

classes? How do they interact with each other? How data will be processed? Etc. None of the 

indicators really address this aspect of software development (which I think is fine for the 

scope of the manuscript), but I think the authors should emphasize this point in the 

recommendation section. 

Thank you for your comment. We now emphasise the points suggested. The section now reads 

 

(Section 5, Line 541-544) “Design principles help adhere to the principles of sustainable 

research software, such as modularity, reusability and interoperability. These principles also 

guide the design of software by determining, for instance, the interaction of classes addressing 

aspects such as separation of concerns, abstraction, and encapsulation (Plösch et al., 2016).”  

 

 

- [496] As it was already mentioned, I think is important to remark that what here is referred as 

internal and external documentation sometimes are the same. Documentation can be created 

from comments in the code, specially docstrings, and this is actually a great documentation 

practice, to make the internal and external documentation to be the same so there is no 

repetition nor contradiction between the two.  

Thank you for your feedback. While we recognize external documentation can be generated 

from code comments, we respectfully disagree that internal and external documentation 

should always be the same. Not all programming languages support this feature, and external 

documentation often includes additional resources such as videos, publications, tutorials (as 

discussed in section 5, lines 550) that go beyond what is covered in docstrings. 

 

- Since automation is mentioned as playing an important role, I would suggest including 

automation in a more general sense in the recommendation section. This includes using 

GitHub Actions to run the test suite, automate the creation of the documentation (static or 

dynamic), check for code style, check packages dependencies, etc. Another interesting tool 

the authors may want to consider mentioning is Makefile. 

We refer you to our response to [178] regarding the discussion of automation.  

 

- Since the paper addresses the important aspect or sustainable software, I would strongly 

suggest that the code used to generate the analysis, and the figures of the manuscript are 
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presented in the same standard that the nine indicators dictate. I think this will really improve 

the quality of the work, and it can serve as an example in the manuscript itself of “how things 

should be done”. I think readers would like to see that, and I think it is part of the philosophy 

of the manuscript to promote these good practices. Furthermore, I would make the point that 

the same tools that had been used in this manuscript can be used for analyzing other source 

code models, so the code used in the manuscript can be re-usable by other users. 

Thank you for the suggestion. While we understand the desire to showcase our analysis code 

as an example, the scripts (although developed with the best practices) used for data 

processing and visualization differ significantly from the complex research software models 

the nine indicators are designed for. These simpler scripts don't require the same architectural 

planning or extensive documentation, nor do they fully embody indicators like testing or 

licensing. However, for those interested in sustainable research software, models like HydroPy 

(see section 3.4) are a great starting point. This can serve as a better example of how to apply 

the indicators discussed in the manuscript. 

We now state that in the revised manuscript (Section 3, Line 445-446) 

 

“The HydroPy model is great starting point for sustainable research software development as 

it illustrate the application of the sustainability indicators.” 

Minor Comments 

- [30] I am a bit confused by what Earth system modelling entitles. When presenting the models, 

we are talking about models in agriculture, biomes, fire, etc. In line 33, it says that “While so-

called Earth System Models always include the simulation of atmospheric processes and thus 

compute climate variables and how they change due to greenhouse gas emissions […]”. 

However, this excludes many “Earth system models”, including all those not based in 

atmospheric processes. I think the phrasing of Earth system model should be narrowed to 

what the models are for. For example, all the models in the ISIMIP are about the impact of 

climate change. 

Thank you for your comment. We have now revised the line 33 for clarity which now reads: 

 

(Section 1, Line 33-35) “A specific class of simulation models of the Earth called impact models 

enables us to quantitatively estimate the potential impacts of climate change on, e.g., floods 

(Sauer et al., 2021), droughts (Satoh et al., 2022), and food security (Schmidhuber and Tubiello, 

2007).”  

 

- [66-70] Repeats reference Anzt et. al. (2021) 

We have revised this section for clarity, referring to the definition by the authors: Anzt et al. 

(2021), which now reads: 

  

(Section 1, Line 68-71) “Anzt et al. (2021) define research software as software that is 

maintainable, extensible, flexible (adapts to user requirements), has a defined software 

architecture, is testable, has comprehensive in-code and external documentation, and is 

accessible (the software is licensed as Open Source with a digital object identifier (DOI) for 

proper attribution) (Anzt et al., 2021).”  

 

- [83-99] I suggest splitting this paragraph into two, with the second stating what is done 

specifically in this work (maybe just break before “In this study, we assess…”). 
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We have split the paragraph into two as suggested. The paragraph with “In this study, we 

assess…” snow starts from Section 1 Lines 96. 

 

- [105] Data in this line means “model”? I will suggest not to use “data” to refer to the models 

in the ISIMIP database, since it is a bit confusing. If this is referring to another type of data, 

maybe explain. 

Thank you for the comment. We have revised the section accordingly:   

 

(Section 2, Line 111-112) “As the focus of our analysis is on global impact models, we sorted 

the models by spatial domain and filtered out models operating at local and regional scales, 

resulting in a subset of 264 GIMs.”  

 

- [110-111] This sentence requires rephasing, since it is ambiguous what it means by “in the 

described way” (meaning GitHub/GitLab or also including source code in reference papers). 

We have rephrased this section to remove ambiguity.  This section now reads.  

 

(Section 2, Line 116-118) “As of April 2024, 32 out of the 112 unique model source codes were 

accessible either through direct links from the ISIMIP database or via manual searches on 

platforms like GitHub and GitLab, as well as in code availability sections of reference papers.”  

 

 

- [189] Is PEP8 the de-facto coding style in Python? I think there used to be some alternatives 

and may be important to mention something like this. Furthermore, in other programming 

languages there are more than one coding style that are accepted by the community (e.g., in 

Julia), so it may be important to mention that the important aspect of this is that the 

developers of one model stick with one style, rather that sticking with one single style. 

PEP8 is widely regarded as the standard style guide for Python 

(https://arxiv.org/pdf/2408.14566), although some organizations, such as Google, have their 

own internal versions. In Line 189, which focuses solely on the methods, we only discuss the 

process of accessing coding standards and, for simplicity, concentrate on PEP8 in Python, as 

there are tools for measuring compliance to PEP8 standard. As suggested, we now note that 

there can be more than one coding style that is accepted by the language community (e.g., 

Julia). The revised section now reads:  

(Section 2, Line 202-204)  “Analysing the conformance to these standards can be complex, 

particularly when the source code is written in multiple languages. Different languages may 

have various coding styles or style guides. For instance, multiple style guides are available and 

accepted by the Julia community (JuliaReachDevDocs, 2024).”   

We agree that developers consistently follow one coding style for their project hence we 

revise or recommendation section to clearly state this. 

(Section 5, Line 537-540)  “Use coding standards accepted by your community (e.g., PEP8 for 

Python), good and consistent variable names, design principles, code quality metrics, peer code 

review, linters and software testing: Coding standards help you write clear, consistent, and 

readable code that follows the best practices of your programming language and domain. It is 

key that developers consistently follow a coding style recognized by the relevant language 

community. …”  
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- Table 1. Following the logic in the text, I will suggest making the division in the table between 

best practice in software engineering and source code quality (e.g., adding this information in 

the table, dividing them with a horizontal line). I think this will make the conceptual difference 

clearer than using the footnote. Check punctuation at the end of the descriptions. Some of 

the items end with dot, not dot, or comma. 

Thank you very much for the feedback. Table 1 has been revised as suggested.  

 

- [245] These are the 32 models mentioned in line 110, right? I would mention this again for 

clarity. 

Thank you for your comment. We have already clarified this in the relevant section. 

Specifically, we mention:  

(Section 3, Lines 263-264) “The source code of the 32 GIMs is written in 10 programming 

languages (Fig. 1a). Fortran and Python are the most widely used, with 11 and 10 models, 

respectively.”  

 

 

- Figure 1. I will suggest sorting the bars in increasing/decreasing order. This is a comment I had 

with all the rest of the tables of the paper, where I would order the bars for clarity. 

We have revised Figures 1, 2, 3, 4, 5, 7 to sort the bars in decreasing order for clarity. Note 

that for Figures 3, 5 and 7, we have sorted the data by decreasing values within each sector. 

 

 

- [255] I will suggest not starting the sentence with a numeral since this is uncommon and non 

recommended in formal English. 

We have revised the sentence accordingly.  

 

(Section 3, Line 274) “We find that 24 (75%) of the readily accessible 32 GIMs were hosted on 

GitHub (Fig. 1b).”  

 

 

 

- [289] There is some repetition between what is said here and the paragraph in line 255 and 

Figure 1. I think mentioning git and the corresponding platform (GitHub, …) should be made 

once in the same section for clarity in the text. 

We have revised the section accordingly.  This now reads:  

 

(Section 3, Line 309-311) “We find that 81% (26 out of 32) of GIMs uses Git as their version 

control system reflecting the widespread acceptance of Git across the sectors (Table 2).  In the 

remaining cases, information about the specific version control system used for these GIMs 

was unavailable.”  

 

 

- Consider introducing Table 2 before Figure 1, since it contains the overall information of the 

model. 

Thank you for your suggestion, however, we prefer to keep the current order, with Figure 1 

introduced before Table 2, as it aligns better with the overall flow and structure of the paper. 
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- It would be great to add an extra column to Table 2 with the year of the model (last version) 

and sort by this. I think it would be interesting to see if the availability of documentation, 

version control, etc, had improved over the years. Also interesting to see programming 

language used and how this changed over the years. 

Thank you for your valuable suggestion. We have added an extra column to Table 2 to include 

the year of the model’s last version. However, we found that sorting the models by year 

resulted in poor readability. Therefore, we have maintained the sorting by sectors, as it aligns 

better with the logic of most figures. 

 

- [291] I don’t agree with the statement that “Developers' preference for Git highlights its user-

friendly nature and effectiveness in supporting collaborative efforts”. I think there may be 

other reasons for this, since there were and are other version control systems that are as user-

friendly as git but didn’t became that popular. One reason for this is that GitHub naturally uses 

git, and that many developers use VSCode with also supports git and GitHub. If the authors 

want to keep this sentence as it is, the statement should be supported by references. 

Thank you for your feedback. We have considered your comments and have decided to 

remove the statement regarding “developers’ preference for Git…”. (Section 3, Line 308) 

 

- [306] It is important to start saying what is a good number of contributors, or what is expected 

to see here. It is unclear to me that ~10 contributors is robust enough. 

Thank you for your comment. We do not specify a required number of developers for a project 

to be considered robust, as this can vary significantly depending on the project’s size and 

complexity. While a larger number of active developers may indicate a robust and well-

maintained project, it is not a strict requirement for all GIMs. Smaller or less complex projects 

can be effectively maintained by even a single experienced developer. 

Our measure of active developers serves as an indicator of ongoing maintenance and the 

prevention of software stagnation, rather than a definitive measure of a project’s robustness. 

We have stated the goal of using this indicator in the method section (Section 2, Line 174) 

 

- [320] Mention which container platform these 5 models used. Did all used Docker? If so, how 

do they share it? 

Thank you for the suggestion. Apart from the CLASSIC model, which uses Apptainer, the 

remaining four models utilize Docker as their containerization technology. The CLASSIC 

container is shared via Zenodo, whereas the Docker containers for the other four models are 

distributed through GitHub. We have updated our text to reflect these details: 

 

 (Section 3, Line 340-344) "Only 5 (16%) of the GIMs have implemented containerized solutions 

(Table 2). While the CLASSIC model uses Apptainer, the other four models use Docker as their 

containerization technology. The CLASSIC container is shared via Zenodo, whereas the Docker 

containers for the remaining models are distributed through GitHub. Despite the recognized 

benefits of containerization in promoting reproducible research, provisioning of the software 

in containers is not yet a common practice in GIM development."  

 

- [326] I am curious: do the models with test suite use a preferred programming language? Does 

the programming language plays a role in how easy is to implement the test suite? Maybe the 

authors want to answer to this question in the manuscript, I think it will make an interesting 

point. 

Thank you for the suggestion. We now answer both questions in the manuscript.  
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 (Section 3, Line 349-354) “Our research indicates that 28% (9 out of 32) of the examined GIMs 

have a testing suite in place to test the software’s functionality (Table 2). The models with test 

suites do not use a preferred programming language but have various languages, including 

Python, Fortran, R, and C++ (Table 2). While the choice of programming language can influence 

the ease of implementing test suites (e.g., due to the availability of testing libraries), we 

observe that for these complex models, which often prioritize computational performance, 

implementing a test suite remains essential regardless of the programming language used."  

 

- [249] I will suggest not starting the sentence with a numeral.  

Thank you for your comment. The actual line is 349. We have revised the sentence accordingly 

and all other occurrences in the paper.  

 

(Section 3, Line 375-376) “Our results indicate that 25% (8 of 32) of the GIMs have well-

commented source code, i.e. 30-60% of all source lines of code are comment lines (Fig. 5).”  

 

- [429] I really enjoyed this section, and I think it will improve to the communication of the 

paper to put this section earlier in the manuscript, maybe between the introduction of the 

indicators and the analysis and the results. 

Thank you for your positive feedback on this section. We appreciate your suggestion to move 

it earlier in the manuscript. However, we believe that its current placement aligns with the 

overall logic and structure of the paper. 

 

- [478] Same point about permissive and copyleft licenses. What do the authors mean by open-

source licenses? Do you mean permissive? 

Thank you for your valuable comment. We refer you to our response to [154] regarding the 

discussion of open-source licenses 

 

- [482] I am not sure that version control ensures software reproducibility, not with other 

important tools (environment or containerization, testing suite, etc). 

Thank you for your feedback. We agree with the reviewer that version control alone does not 

guarantee software reproducibility. As noted by Jiménez et al. (2017), version control 

facilitates the reproducibility of scientific results generated by all prior versions of the 

software. Therefore, we have revised our statement as follows: 

 

(Section 5, Line 531-533) “Version control can help you track and manage changes to your 

source code, which ensures the traceability of your software and facilitates reproducibility of 

scientific results generated by all prior versions of the software (Jiménez et al., 2017).” 

General comments 

- I strongly suggest sorting all the tables in decreasing or increasing order for readability. 

Thank you for the comment. All relevant tables including figures have been sorted accordingly.  

- I suggest the authors to do a English style revision of the manuscript since there are different 

styles in the manuscript. This includes the starting of the sentences with numerals and the use 

or not use of contractions. 
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We have revised relevant sentences that occur in the paper.  

- In the same style that Figure 9, I think a figure at the beginning of the manuscript summarizing 

the indicators and what are good software practices will improve the manuscript. 

Thank you for the suggestion, however, we believe that Table 1 already effectively 

summarizes the indicators and good software practices. 

 

Reply to Community Comment: Tijn Berends 

I am glad to see a manuscript like this. With the ever-increasing political and societal demand for new, 
more accurate scientific knowledge about the Earth system, and particularly its future state, the 
complexity of computational models has grown exponentially over the past few decades. The need 
for software engineering skills, on top of the knowledge of the scientific domain, and the wide and 
varying set of skills required of an active research scientist, is now an undeniable reality. New literature 
investigating just exactly what “software engineering skills” entails in the context of research software 
is therefore a valuable addition. 

Thank you for responding to our manuscript and highlighting its timeliness. This really shows the value 
of the community comment functionality. 

Having the luxury of being an uninvited reviewer, I can constrain myself to only pointing out the bits 
that really strike me, and leave the detailed feedback to the invited reviewers. Two points stand out 
to me in this manuscript that I think could do with some improvement. 

Firstly, there is the concept of “self-explanatory code” mentioned in lines 406-413. While I appreciate 
that the authors are merely citing another group’s description of that group’s own work, I believe this 
statement needs a disclaimer. Depending on how you define “self-explanatory”, either all code 
qualifies as such, or none. If, for example, we define code as “self-explanatory” when one 
can eventually arrive at an understanding of its functionality without consulting the original author, 
then all code is self-explanatory – with, of course, the caveat that “eventually” can, in many cases, be 
prohibitively far into the future. On the other hand, if we define code as “self-explanatory” when we 
require no other resources to (again, eventually) understand its functionality, then probably no code 
ever meets this definition, at least in the context of research software, which always requires a 
substantial level of background knowledge on the part of the developer. E.g., is the code that 
calculates the sea-level equivalent volume of an ice sheet truly self-explanatory if it does not explain 
the concept of sea-level equivalent volume? In my view, these considerations illustrate that the phrase 
“self-explanatory code” is so difficult to define as to be practically meaningless. In my experience, it is 
used mainly by people who inherited code from their supervisor that is not as well-commented as 
they’d like it to be, but cannot say so out loud for fear of their career prospects. I’m sure the authors 
can add these considerations, possibly in a rephrased manner, to their revised manuscript. 

We acknowledge that the term “self-explanatory code” can indeed be interpreted in various ways, 
which may render it problematic without further clarification. We have revised the manuscript to 
address the complexities surrounding code readability and the need for comments. The updated text 
now reads. 

(Section 3, Line 436-444) “MPI-HM has more comments (49%, Fig. 8b) because of its legacy Fortran 

code that limits variable names to a maximum length of 8 characters, so they have to be described in 

comments. Another reason is that the MPI-HM developers kept track of the file history in the header, 

which adds to the comment lines in MPI-HM. This raises a question: Is the comment density threshold 

metric still valid if a code is highly readable and comprehensive? The need for comments can depend 
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on the language’s readability (Python vs. Fortran), the complexity of the implemented algorithms and 

concepts, and the coder’s expertise. While a highly readable and well-structured code might require 

fewer explanatory comments, the definition of "readable" itself can be subjective and context-

dependent. Nevertheless, comment density remains a valuable metric, especially for code written by 

novice developers.”  

 

Secondly, there is the first of the authors’ recommended best practices, in lines 470-473, where they 
support the use of Agile as a project management framework. Having briefly worked at a company 
that applied this framework (and much longer as a researcher building my own numerical models), I 
have some small amount of experience with it, and I must say I do not immediately see its value in a 
research setting. The highly individualistic nature of scientific research(ers), the very poorly-defined 
goals, scope, and expected duration of research projects, as well as the high degree of overlap 
between developers, managers, stakeholders, and users, make the use of Agile difficult in a research 
context. Additionally, while I see how Agile working can improve the speed with which a large group 
of people produce output within a certain project, I do not immediately see how Agile affects 
the quality of that output – which is the subject of this manuscript. I.e., agile scientists might produce 
science faster, but not necessarily better. If the authors can provide arguments to the contrary, I’d 
happily read them, but right now nothing of the sort is written in the manuscript – in fact, the concept 
of Agile is only mentioned briefly at one point in the introduction, and then does not appear again 
until it is listed as the first “recommended best practice”. I hope the authors can remedy this lack of 
evidence for their claim of Agile being a “best practice” in the revised version of their manuscript. 

Thank you for the valuable feedback, please see our response to “on agile” on page 5 (major points 
from reviewer 1). 

 

 

 

 


