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Reply to Community Comment: Tijn Berends 

Dear Reviewer,  

We appreciate your prompt and critical review of our paper. Your thoughtful comments and 

suggestions have greatly improved the quality of our revised manuscript. 

In the following sections, we have addressed your comments point-by-point and changed the 

manuscript accordingly. Please find the tracked changes attached to this letter. Your suggestions are 

highlighted in blue, while our responses are in black and new text italics. All section and line numbers 

mentioned correspond to the revised manuscript. In summary, we have revised aspects of the 

introduction and enhanced the results and discussion sections. 

 

I am glad to see a manuscript like this. With the ever-increasing political and societal demand for new, 
more accurate scientific knowledge about the Earth system, and particularly its future state, the 
complexity of computational models has grown exponentially over the past few decades. The need 
for software engineering skills, on top of the knowledge of the scientific domain, and the wide and 
varying set of skills required of an active research scientist, is now an undeniable reality. New literature 
investigating just exactly what “software engineering skills” entails in the context of research software 
is therefore a valuable addition. 

Thank you for responding to our manuscript and highlighting its timeliness. This really shows the value 
of the community comment functionality. 

Having the luxury of being an uninvited reviewer, I can constrain myself to only pointing out the bits 
that really strike me, and leave the detailed feedback to the invited reviewers. Two points stand out 
to me in this manuscript that I think could do with some improvement. 

Firstly, there is the concept of “self-explanatory code” mentioned in lines 406-413. While I appreciate 
that the authors are merely citing another group’s description of that group’s own work, I believe this 
statement needs a disclaimer. Depending on how you define “self-explanatory”, either all code 
qualifies as such, or none. If, for example, we define code as “self-explanatory” when one 
can eventually arrive at an understanding of its functionality without consulting the original author, 
then all code is self-explanatory – with, of course, the caveat that “eventually” can, in many cases, be 
prohibitively far into the future. On the other hand, if we define code as “self-explanatory” when we 
require no other resources to (again, eventually) understand its functionality, then probably no code 
ever meets this definition, at least in the context of research software, which always requires a 
substantial level of background knowledge on the part of the developer. E.g., is the code that 
calculates the sea-level equivalent volume of an ice sheet truly self-explanatory if it does not explain 
the concept of sea-level equivalent volume? In my view, these considerations illustrate that the phrase 
“self-explanatory code” is so difficult to define as to be practically meaningless. In my experience, it is 
used mainly by people who inherited code from their supervisor that is not as well-commented as 
they’d like it to be, but cannot say so out loud for fear of their career prospects. I’m sure the authors 
can add these considerations, possibly in a rephrased manner, to their revised manuscript. 

We acknowledge that the term “self-explanatory code” can indeed be interpreted in various ways, 
which may render it problematic without further clarification. We have revised the manuscript to 
address the complexities surrounding code readability and the need for comments. The updated text 
now reads. 
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(Section 3, Line 436-444) “MPI-HM has more comments (49%, Fig. 8b) because of its legacy Fortran 

code that limits variable names to a maximum length of 8 characters, so they have to be described in 

comments. Another reason is that the MPI-HM developers kept track of the file history in the header, 

which adds to the comment lines in MPI-HM. This raises a question: Is the comment density threshold 

metric still valid if a code is highly readable and comprehensive? The need for comments can depend 

on the language’s readability (Python vs. Fortran), the complexity of the implemented algorithms and 

concepts, and the coder’s expertise. While a highly readable and well-structured code might require 

fewer explanatory comments, the definition of "readable" itself can be subjective and context-

dependent. Nevertheless, comment density remains a valuable metric, especially for code written by 

novice developers.”  

 

Secondly, there is the first of the authors’ recommended best practices, in lines 470-473, where they 
support the use of Agile as a project management framework. Having briefly worked at a company 
that applied this framework (and much longer as a researcher building my own numerical models), I 
have some small amount of experience with it, and I must say I do not immediately see its value in a 
research setting. The highly individualistic nature of scientific research(ers), the very poorly-defined 
goals, scope, and expected duration of research projects, as well as the high degree of overlap 
between developers, managers, stakeholders, and users, make the use of Agile difficult in a research 
context. Additionally, while I see how Agile working can improve the speed with which a large group 
of people produce output within a certain project, I do not immediately see how Agile affects 
the quality of that output – which is the subject of this manuscript. I.e., agile scientists might produce 
science faster, but not necessarily better. If the authors can provide arguments to the contrary, I’d 
happily read them, but right now nothing of the sort is written in the manuscript – in fact, the concept 
of Agile is only mentioned briefly at one point in the introduction, and then does not appear again 
until it is listed as the first “recommended best practice”. I hope the authors can remedy this lack of 
evidence for their claim of Agile being a “best practice” in the revised version of their manuscript. 

Thank you for the valuable feedback. We agree with the reviewer, particularly regarding the 
limitations of Agile in certain scientific settings, such as those with fixed requirements. However, we 
believe that some principles and practices from Agile can still provide significant value in academic 
software development, particularly in environments where timelines are constrained and 
requirements do change quickly (with newly available data or methods), such as PhD and Postdoc 
positions. Below, we outline some key benefits: 

 Flexibility in Handling Evolving Requirements: While many scientific projects have well-

defined requirements, others benefit from Agile’s adaptability to changing conditions. For 

example, as new research questions arise or additional factors need to be considered (e.g., 

integrating karst regions into hydrological research software for groundwater recharge), 

Agile’s iterative process allows for the efficient incorporation of these updates. This flexibility 

ensures that the software remains responsive to ongoing developments. 

 Transparency and Progress Tracking: Agile’s use of tools like backlogs, task boards, and regular 

progress updates provides clear visibility into the project’s status. This is particularly useful in 

academic settings, where project continuity can be disrupted due to personnel changes, such 

as the arrival or departure of researchers. These tools help ensure smooth transitions by 

clearly indicating completed tasks and those still in progress, thereby minimizing disruptions 

to the workflow. 

 Enhanced Collaboration and Communication: Agile emphasizes frequent communication 

among team members and stakeholders, which can be highly beneficial in academic settings. 
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Regular meetings and updates help ensure alignment among diverse contributors, such as 

students, researchers, and supervisors. This ongoing collaboration helps keep the team 

informed and engaged, and allows for timely input and feedback as the project evolves. 

To be more nuanced about our recommendation we have revised our recommendation on project 

management practices to  

(Section 5, Line 515-522) “Choose project management practices that align with your institutional 

environment, culture, and project requirements: This can help plan, organize, and monitor your 

software development process, as well as improve collaboration and communication within your team 

and with stakeholders. Project management practices also help identify and mitigate risks, manage 

changes, and deliver quality software on time and within budget (Anzt et al., 2021). While traditional 

methods may be better suited for projects with fixed requirements, certain principles from more 

flexible frameworks, such as Agile, can provide benefits in environments where requirements evolve or 

adaptability is critical. For example, Agile’s iterative approach allows for incorporating changing 

research questions and hence software modifications or extensions, improving responsiveness to new 

developments (Turk et al., 2005).”  
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Abstract. Research software for simulating Earth processes enables estimating past, current, and future world states and guides 

policy. However, this modelling software is often developed by scientists with limited training, time, and funding, leading to 

software that is hard to understand, (re)use, modify, and maintain, and is, in this sense, non-sustainable. Here we evaluate the 10 

sustainability of global-scale impact models across ten research fields. We use nine sustainability indicators for our assessment. 

Five of these indicators – documentation, version control, open-source license, provision of software in containers, and the 

number of active developers – are related to best practices in software engineering and characterize overall software 

sustainability. The remaining four – comment density, modularity, automated testing, and adherence to coding standards – 

contribute to code quality, an important factor in software sustainability. We found that 29% (32 out of 112) of the global 15 

impact models (GIMs) participating in the Inter-Sectoral Impact Model Intercomparison Project were accessible without 

contacting the developers. Regarding best practices in software engineering, 75% of the 32 GIMs have some kind of 

documentation, 81% use version control, and 69% have open-source license. Only 16% provide the software in containerized 

form which can potentially limit result reproducibility. Four models had no active development after 2020. Regarding code 

quality, we found that models suffer from low code quality, which impedes model improvement, maintenance, reusability, and 20 

reliability. Key issues include a non-optimal comment density in 75%, insufficient modularity in 88%, and the absence of a 

testing suite in 72% of the GIMs. Furthermore, only 5 out of 10 models for which the source code, either in part or in its 

entirety, is written in Python show good compliance with PEP 8 coding standards, with the rest showing low compliance. To 

improve the sustainability of GIM and other research software, we recommend best practices for sustainable software 

development to the scientific community. As an example of implementing these best practices, we show how reprogramming 25 

a legacy model using best practices has improved software sustainability. 
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1 Introduction 

Simulation models of the Earth system are essential tools for scientists and their outcomes are relevant for decision-makers 30 

(Prinn, 2013). They improve our understanding of complex subsystems of the Earth (Prinn, 2013; Warszawski et al., 2014) 

and enable us to perform numerical experiments that would otherwise be impossible in the real world, e.g., exploring future 

pathways (Kemp et al., 2022; Satoh et al., 2022; Wan et al., 2022). A specific class of simulation models of the Earth called 

While so-called Earth System Models always include the simulation of atmospheric processes and thus compute climate 

variables and how they change due to greenhouse gas emissions, so-called impact models enables us to quantitatively estimate 35 

the potential impacts of climate change on, e.g.,  floods (Sauer et al., 2021), droughts (Satoh et al., 2022), and food security 

(Schmidhuber and Tubiello, 2007). These impact models also quantify the historical development and current situation of key 

environmental issues such as water stress, wildfire hazard, and fish population.  The outputs of these models whether data, 

publications or reports thus provide crucial information for policymakers, scientists, and citizensThese impact models also 

quantify the historical development and current situation of, e.g., water stress, wildfire hazard, and fish population, thus 40 

providing crucial information for policymakers, scientists, and citizens. The central role of impact models can be seen in model 

intercomparison efforts of  ISIMIP (Inter-Sectoral Impact Model Intercomparison Project) (ISIMIP, 2024; Warszawski et al., 

2014) which encompasses more than 130 sectoral models (Frieler and Vega, 2019). ISIMIP uses bias-corrected climate 

forcings to assess the potential impacts of climate change in controlled experiments, and their outputs provide valuable 

contributions to the Intergovernmental Panel on Climate Change reports (Warszawski et al., 2014). 45 

 

Impact models quantify physical processes related to specific components of the Earth system at various spatial and temporal 

scales by using mathematical equations. The complexity of impact models is influenced by the complexity of the included 

physical processes, the choice of the perceptual and mathematical model, the computational effort needed for simulation, as 

well as their spatial-temporal resolution and spatial extent of the simulated domain (Azmi et al., 2021; Wagener et al., 2021). 50 

This complexity can result in models with very large source codes (Alexander and Easterbrook, 2015). 

  

The software for these impact models is categorized as research software, which includes “source code files, algorithms, 

computational workflows, and executables developed during the research process or for a research objective” (Barker et al., 

2022). Impact modelling research software is predominantly developed and maintained by scientists without formal training 55 

in software engineering (Barton et al., 2022; Carver et al., 2022; Hannay et al., 2009; Reinecke et al., 2022). Most of these 

researchers are self-taught software developers (Nangia and Katz, 2017; Reinecke et al., 2022) with little knowledge of 

software requirements (specifications and features of software), industry-standard software design patterns (Gamma et al., 

1994), good coding practices (e.g., using descriptive variable names), version control, software documentation, automated 

testing and project management practice (e.g. agile) (Carver et al., 2013, 2022; Hannay et al., 2009; Reinecke et al., 2022). We 60 

hypothesize that this leads to the creation of source code that is not well-structured, not easily (re)usable, difficult to modify 
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and maintain, has scarce internal documentation (code comments) and external documentation (e.g. manuals, guides, and 

tutorials), and poorly documented workflows. 

 

Research software that suffers from these shortcomings is likely difficult to sustain and has severe drawbacks for scientific 65 

research. For example, it can impede research progress, decrease research efficiency, and hinder scientific progress, as 

implementing new ideas or correcting mistakes in code that is not well-structured is more difficult and time-consuming. In 

addition, it increases the likelihood of erroneous results, thereby reducing reliability and hindering reproducibility (Reinecke 

et al., 2022). We argue that these harmful properties can be averted, to some extent, with sustainable research software. 

 70 

There are various interpretations of the meaning of “sustainable research software”. Anzt et al. (2021) define research software 

as software that is Anzt et al. (2021) describe it as research software that is maintainable, extensible, flexible (adapts to user 

requirements), has a defined software architecture, is testable, has comprehensive in-code and external documentation, and is 

accessible (the software is licensed as Open Source with a digital object identifier (DOI) for proper attribution) (Anzt et al., 

2021). For example, NumPy (https://numpy.org/) is a widely used scientific software package that exemplifies many of these 75 

qualities (Harris et al., 2020). Although NumPy is not an impact model, it is an exceptional exampleexemplar of sustainable 

research software; it is open-source, maintains rigorous version control and testing practices, and is extensively documented, 

making it highly reusable and extensible for the scientific community. 

 Katz views research software sustainability as the process of developing and maintaining software that continues to meet its 

purpose over time (Katz, 2022). This includes adding new capabilities as needed by its users, responding to bugs and other 80 

problems that are discovered, and porting to work with new versions of the underlying layers, including software as well as 

new hardware (Katz, 2022). Both definitions share common aspects like the adaptation to user requirements but differ in scope 

and perspective. Katz’s definition is more user-oriented, focusing on the software’s ability to continue meeting its purpose 

over time. On the other hand, Anzt et al.'s definition is more developer-oriented, aiming to improve the quality and robustness 

of research software. We chose to adopt Anzt et al.'s definition in the following because it provides measurable qualities 85 

relevant to this study. In contrast, Katz’s definition is more challenging to measure and evaluate but is likely closer to the 

reality of software development. For example, one of the models in our analysis is more than 25 years old (Nyenah et al., 2023) 

and thus certainly was sustained during that period, while at the same time, it does not meet some sustainability requirements 

of Anzt et al.'s definition. It is possible that such software can be sustained but requires substantial additional resources. 

  90 

Recent advances in developing sustainable research software have led to a set of community standard principles: FAIR 

(findable, accessible, interoperable, reusable) for research software (FAIR4RS), aimed towards increasing transparency, 

reproducibility, and reusability of research (Barker et al., 2022; Chue Hong et al., 2022). Software quality which impacts 

sustainability overlaps with the FAIR4RS principles, particularly reusability, but is not directly addressed by them (Chue Hong 

et al., 2022). Reusable software here means software can be understood, modified, built upon, or incorporated into other 95 

https://numpy.org/


 

4 
 

software (Chue Hong et al., 2022). A high degree of reusability is therefore important for efficient further development and 

improvement of research software, and thus for scientific progress. However, many models are not FAIR (Barton et al., 2022).  

To our knowledge, research software sustainability in Earth System Sciences has not been evaluated before.  

 

As an example of complex research software in the Earth System Sciences, in this study, we assess the sustainability of the 100 

software of global impact models (GIMs) that participate in the ISIMIP project to investigate factors that contribute to 

sustainable software development. The GIMs belong to the ten research fields (or impact sectors): agriculture, biomes, fire, 

fisheries, health, lakes, water (resources), water quality, gGroundwater, and terrestrial biodiversity. In our assessment, we 

consider nine indicators of research software sustainability, five of them related to best practices in software engineering and 

four related to source code quality. We further provide first-order cost estimates required to develop these GIMs but do not 105 

address the cost of re-implementing or making code reproducible versus the cost of maintaining old code in this study. We 

also demonstrate how reprogramming legacy software using best practices can lead to significant improvements in code quality 

and thus sustainability. Finally, we offer actionable recommendations for developing sustainable research software for the 

scientific community. 

2 Methods 110 

2.1 Accessing GIM Source code  

ISIMIP manages a comprehensive database of participating impact models (available in an Excel file at 

https://www.isimip.org/impactmodels/download/), which provides essential information such as model ownership, name, 

source code links, and simulation rounds. Initially, we identified 375 models across five simulation rounds (fast track, 2a, 2b, 

3a, and 3b). As the focus of our analysis is on global impact models, we sorted the modelsdata by spatial domain and filtered 115 

out models operating at local and regional scales, resulting in a subset of 264 GIMs. We then removed duplicate models, 

prioritizing the most recent versions for inclusion, resulting in 112 unique models. For models with available source links, we 

obtained their source code directly. In instances where source links were not readily available, we conducted manual searches 

for source code by referring to code availability sections in reference papers. Additionally, we searched for source code using 

model names along with keywords such as "GitHub" and "GitLab” using the Google search engine. As of April 2024, 32 out 120 

of the 112 unique model source codes were accessible either through direct links from the ISIMIP database or via manual 

searches on platforms like GitHub and GitLab, as well as in code availability sections of reference papersAs of April 2024, 32 

model source codes out of the 112 unique model source codes were accessible in the described way. However, it’s important 

to note that our sample may suffer from a “survivor bias,” as we are not investigating models that are no longer in use (GIMs 

that couldn’t be sustained over time). This bias could potentially skew our analysis towards models that have survived i.e., 125 

they are still in use and their source code is accessible. Due to time constraints, we refrained from contacting developers for 

models that were not immediately accessible.   
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2.2 Research software sustainability indicators 

We examine nine indicators of research software sustainability, distinguishing five indicators related to the best practice in 130 

software engineering and four indicators of source code quality (Table 1).  

 

 

 

 135 

 

 

Table 1: Indicators used for the assessment of research software sustainability  

No. Indicator  Description  

Best practices in software engineering 

1 Documentation  Enables software use and also makes 

software maintenance easier (Wilson et 

al., 2014). 

2 Version control Provides transparency and traceability 

throughout the software development 

lifecycle and enables collaboration 

between developers as well as user 

communities (Wilson et al., 2014). 

3 Use of an open-source license Allows code copying and reuse. This 

openness fosters a collaborative 

environment where the user community 

can provide valuable feedback and 

support. Users can potentially contribute 

to the software’s development and 

maintenance, enhancing its overall 

quality (Jiménez et al., 2017)., 

4 Number of active developers Prevent single points of failure in the 

development process and make software 
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development as well as maintenance 

easier (Long, 2006). 

5 Containerization Makes the software easy to install  and 

facilitates reproducibility (Nüst et al., 

2020; Wilson et al., 2014). 

 

Source code quality 

6 Public availability of an (automated) testing suite 1 Shows that software functionality can be 

or was tested. 

7 Compliance with coding standards (e.g. PEP 8) 1 Improves code quality, readability and 

makes maintenance easier (Capiluppi et 

al., 2009; Simmons et al., 2020; Wang et 

al., 2008). 

8 Comment density 1 Precursor to software maintainability and 

re-usability (Arafat and Riehle, 2009; He, 

2019; Stamelos et al., 2002). 

9 Modularity 1 Necessary for extensible and flexible 

research software (Sarkar et al., 2008; 

Stamelos et al., 2002).. 

1 Indicators that impact research software quality 

 140 

 

 

 

 

In the following, we describe the indicators and their rationale and how we evaluated the GIMs with respect to each indicator. 145 

 

Documentation. Documentation is crucial for understanding and effectively utilizing software (Wilson et al., 2014). This 

includes various materials such as manuals, guides, tutorials that explain the usage and functionality of the software as well 

reference model description papers. When assessing documentation availability, relying solely on a reference model 

description paper may be insufficient, as it may not provide the level of detail necessary for the effective utilization and 150 

maintenance of the research software.  All GIMs used in this assessment have an associated description or reference paper (see 

supplementary file ISIMIP_models.xlsx). Therefore, in addition to the reference model paper we checked for available 

manuals, guides, readme files, and tutorials. We consider any of these resources, alongside the reference model paper, as 
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documentation for the model. These resources provide essential information such as user, contributor, and troubleshooting 

guides, which are valuable for model usage and maintenance. In our assessment, we searched within the source code and 155 

official websites (if available).  We also utilized the Google search engine to find model documentation by inputting model 

names along with keywords such as 'documentation,' 'manuals,' 'readme,' 'guides,' and 'tutorials'. 

 

Version control. Version control systems such as Git and Mercurial facilitate track changes, and collaborative development, 

and provide a history of software evolution. To assess whether GIMs use version control for development, we focused on 160 

commonly used open-source version control hosting repositories such as GitLab, GitHub, BitBucket, Google Code, and Source 

Forge. The hostname such as “github” or “gitlab” in the source link of models provides clear indications of version control 

adoption in their development process. For other models, we searched within the Google search engine using model names 

and keywords such as “Bitbucket”, “Google Code”, and “Source Forge”. While we focus on identifying the use of version 

control systems, evaluating how version control was implemented during the development process — such as the use of 165 

modular commits, pull requests, discussions, and proper versioning — is a finer analysis that falls beyond the scope of this 

study. However, such practices are crucial for ensuring high-quality software development and collaborative practices. 

 

 

Use of an oOpen- source license. Open-source licenses foster collaboration and transparency by enabling community 170 

contributions and ensuring that software remains freely accessible. We determined the existence of open-source licenses by 

checking license files within repositories or official websites against licenses approved  by the Open Ssource Iinitiative (OSI) 

approved licenses (https://opensource.org/licenses). This means these we selectSpecifically, we looked for licenses whichthat 

conform to the Open Source Definition, which ensures that software can be freely used, modified, and shared (Colazo and 

Fang, 2009; Rashid et al., 2019). There are two major categories of open-source licenses: permissive licenses, such as MIT or 175 

Apache, whichthat allow for minimal restrictions on how the software can be used (e.g., providing attribution), and copyleft 

licenses, like GPL, whichthat require derivatives to maintain the same licensing terms (Colazo and Fang, 2009; Rashid et al., 

2019). Although these licenses differ in their terms, both contribute to collaboration and transparency. In this study, we only 

check if the software is open-source, regardless of the type of open- source license. 

 180 

Number of active developers. The presence of multiple active developers serves as a safeguard against halts within the 

development process. In instances where a sole developer departs or transitions roles, the absence of additional contributors 

developers could lead to disruptions or challenges in maintaining and advancing the software. We measured the number of 

active developers by counting the individuals who made commits or contributions to the projects codebase within the period 

2020-2024. A higher number of developers indicates a greater capacity for bug review (enhancing source code quality) and 185 

code maintenance. It can also lead to more frequent updates to the source code. On the other hand, the absence of active 

developers suggests potential stagnation in software evolution, possibly impacting the relevance and usability of the software. 

Formatted: English (United States)

https://opensource.org/licenses
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Containerization. Containerization provides convenient ways to package and distribute software, facilitating reproducibility 

and deployment. It encapsulates an application along with its environment, ensuring consistent operation across various 190 

platforms (Nüst et al., 2020). Despite these benefits, containerization in high-performance computing systems encounters 

challenges like performance, prompting the proposal of solutions (Zhou et al., 2023). Some popular containerization solutions 

include Docker (https://www.docker.com/) and Apptainer (https://apptainer.org/)Singularity (https://sylabs.io/). There are also 

cloud-supported container solutions such as Binder (https://mybinder.org/) with the capacity to execute a model with the 

computational environment requirements analogous to the concept of analysis-ready data and cloud-optimized formats for 195 

datasets (Abernathey et al., 2021). To evaluate the availability of container solutions, we conducted searches through reference 

papers, official websites, and software documentation for links to container images or image-building files such as 

“Dockerfiles”, and “Apptainer singularity definition file (.def file)”. In addition, we also searched through source code 

repositories to identify the previous stated images or image-building files.  Lastly, we utilize the Google search engine, 

inputting the name of the GIM, the sector, and keywords such as “containerization”, to ascertain if any other containerized 200 

solutions exist.  

 

Public availability of an (automated) testing suite. Test coverage, which verifies the software’s functionality, is the property 

of actual interest. However, research software may have an automatic testing suite but not provide information on test coverage 

or test results. As a practical approach, we consider the availability of a testing suite as a proxy for the ability to test software 205 

functionality. By examining testing suites within repositories, we gain insights into the developers’ commitment to software 

testing, which contributes to enhancing software quality. 

 

Compliance with coding standards. Coding standards are a set of industry-recognized best practices that provide guidelines 

for developing software code (Wang et al., 2008). Analysing the conformance to these standards can be complex, particularly 210 

when the source code is written in multiple languages.. Different languages may have various coding styles or style guides. 

For instance, multiple style guides are available and accepted by the Julia community (JuliaReachDevDocs, 2024).  As an 

example analysis, we focused on GIMs containing Python in their source code as it is one of the most prevalent languages 

used in development.  The tool used, known as Pylint , is designed to analyze Python code for potential errors and adherence 

to coding standards (Molnar et al., 2020; Obermüller et al., 2021).  Pylint evaluates source files for their compliance with PEP8 215 

conventions. To quantify adherence to this coding standard,  it, it assigns a maximum score of 10  as10 as perfect compliance 

but has no lower bound (Molnar et al., 2020). We consider scores below 6 as indicative of weak compliance as code contain 

several violations.  

 

Comment density. Good commenting practice is valuable for code comprehension and debugging. Comment density is an 220 

indicator of maintainable software (Arafat and Riehle, 2009; He, 2019). Comment density is defined as 

https://www.docker.com/
https://apptainer.org/)
https://mybinder.org/
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𝐶𝑜𝑚𝑚𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑐𝑜𝑑𝑒 
        (1) 

Here, the total lines of code (TLOC) include both comments and source lines of code (SLOC) (SLOCCount, 2024). SLOC is 

defined as the physical non-blank, non-comment line in a source file. According to Arafat et al. (2009) and He (2019), ) suggest 

that comment density between 30-60% may be optimalthe optimal comment density is 30-60% (Arafat and Riehle, 2009; He, 225 

2019). For most programming languages, this range is considered to represent a compromise between providing sufficient 

comments for code explanation and having too many comments that may distract from the code logic (Arafat and Riehle, 2009; 

He, 2019).  

 

Modularity.  Researchers typically pursue new knowledge by asking and then attempting to answer new research questions. 230 

When the questions can be answered via computation, this requires either building new software, adding new source code, or 

modifying existing source code. Addition and modification of source code are more easily achieved if the software has a 

modular structure that is implemented as extensible and flexible software (McConnell, 2004). Therefore, modularity is chosen 

as another indicator for research software sustainability. Modular programming is an approach where source codes are 

organised into smaller and well-manageable units (modules) that execute one aspect of the software functionality, such as the 235 

computation of evapotranspiration in a hydrological model (Sarkar et al., 2008; Trisovic et al., 2022). The aim is that each 

module can be easily understood, modified, and reused.  Depending on the programming language, a module can be a single 

file (e.g. Python) or a set of files (e.g. C++).  

To assess the modularity of research software, we use the TLOC per file as a metric. This metric reflects the organization of 

the source code into modules, each performing a specific function (Sarkar et al., 2008; Trisovic et al., 2022). We opted for this 240 

approach over measuring TLOC per function or subroutine due to variations in programming languages and the challenges 

associated with accurately measuring different functions using program-specific tools. For instance, in Python, a module that 

contains significantly more TLOC than usual (here over 1,000 TLOC) likely includes multiple functions. These functions may 

perform more than one aspect of the software’s functionality, such as reading input files and computing other functions (e.g. 

evapotranspiration function), which contradicts the principle of modularity. Keeping the length of code in each file concise 245 

also enhances readability. 

The ideal number of TLOC per file can vary with the language, paradigm (e.g., procedural or object-oriented), and coding 

style used in a software project (Fowler, 2019; McConnell, 2004). However, a common heuristic is to keep the code size per 

file under 1,000 lines to prevent potential performance issues such as crashes or slow program execution with some integrated 

development environments (IDEs) (Fowler, 2019; McConnell, 2004). IDEs are software applications that provide tools like 250 

code editors, debuggers, and build automation tools. As reported by Trisovic et al. (2022), based on interviews with top 

software engineers, a module with a single file should contain at least 10 lines of code, consisting of either functions or 

statements (Trisovic et al., 2022). We used this heuristic as a criterion for good modularity, assuming that 10-1,000 TLOC per 
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file indicates adequate modularity. We also varied the upper bounds of the total lines of code to 5,000 and 500 to investigate 

how modularity changes across models and sectors.  255 

2.3 Source code counter 

To count SLOC, comment lines, and TLOC of computational models, the counting tool developed by Ben Boyter 

(https://github.com/boyter50/scc) was used (Boyter Ben, 2024) (Sloc, Cloc, and Code, 2024). This tool builds on the industrial 

standard source code counter tool called SLOCCount (Source Lines of Code Count) (SLOCCount, 2024).  

2.4 Software cost estimation 260 

The cost of developing research software is mostly unknown and depends on many factors, such as project size, computing 

infrastructure, and developer experience (Boehm, 1981). A model that attempts to estimate the cost of software development 

is the widely used Constructive Cost Model (COCOMO) (Boehm, 1981; Sachan et al., 2016), which computes the cost of 

commercial software by deriving the person-months required for developing the code based on the lines of code. Sachan et al. 

(2016) used the TLOC and effort estimates of 18 very large NASA projects (Average TLOC = 35,000) to optimise the 265 

parameters of the COCOMO regression model (Sachan et al., 2016). Effort in person months is estimated following Eq. (2): 

𝐸𝑓𝑓𝑜𝑟𝑡 =  2.022817(𝑘𝑇𝐿𝑂𝐶)0.897183             (2) 

where total lines of code are expressed in 1,000 TLOC (kTLOC) (Sachan et al., 2016). We use this cost model to estimate the 

cost of GIMs.  

3 Results and Discussion  270 

3.1 GIM programming languages and access points 

The source code of the 32 GIMs is written in 10 programming languages (Fig. 1a). Fortran and Python are the most widely 

used, with 11 and 10 models, respectively. The dominance of Fortran stems from its performance, and the fact that it is one of 

the oldest programming languages designed for scientific computing (Van Snyder, 2007), and was the main such language 

used at the time some of the GIMs were originally built. This specialization makes it particularly suitable for tasks involving 275 

numerical simulations and complex computations. On the other hand, Python enjoys popularity among model developers due 

to readability, large user community, and rich ecosystem of packages, including those supporting parallel computing. R, C++ 

and C follow with 5, 5, and 4 models respectively (Fig. 1a).  GIMs may employ one or more programming languages to target 

specific benefits the programming languages offer, such as readability and performance. For example, one of the studied 

models, HydroPy, written in Python, enhances its runtime performance by integrating a routing scheme built in Fortran (Stacke 280 

and Hagemann, 2021).   
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We find that 24 (75%) of the readily accessible 32 GIMs were hosted on GitHub (Fig. 1b). The rest are made available on 

GitLab (2, or 6%), Zenodo (4, or 12%), or the official website of the model (2, or 6%) (Fig. 1b, see supplementary file 

ISIMIP_models.xlsx).  285 

We note that for one of the GIMs used for analysis, WaterGAP2.2e, only part of the complete model (the global hydrology 

model) was accessed (Müller Schmied et al., 2021). This might be the case for other models as well. 

 

 

 290 

Figure 1: Programming languages for model development and model accessibility. (a) Bar plots showing programming 

languages used for developing 32 global impact models. (b) Bar plot showing open-source hosting platforms where 32 global 

impact models were accessed  

 

3.2 Indicators of Software Sustainability 295 

3.2.1 Software Engineering Practices 

Documentation: 

Our analysis reveals that 75% of the GIMs (24 out of 32) have publicly accessible documentation (Table 2). We observed a 

range of documentation formats across these GIMs. Specifically, 6 GIMs provided readme files, 13 had dedicated webpages 

for documentation, and 5 included comprehensive manuals (see supplementary file ISIMIP_models.xlsx). While README 300 

files tend to be more minimal and sometimes difficult to navigate, we observed that they generally contain essential information 

such as instructions on how to run the research software. Theis prevalence of documentation practices among most models 

underscores the importance of documenting research software. However, a notable portion (25%) of the studied models either 

lack documentation or documentation has not been made publicly available (Table 2).   

 305 
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Table 2: Availability of Documentation, Version Control, Open-Source License, Test Suite, and Container for 32 Global 

Impact Models across 10 Sectors in Earth System Science. ‘+x’, ‘-’,  ‘not valid’ and ‘no info’ represent the availability, 315 

unavailability, not OSI-approved and absence of information, respectively. 

No. Sector Model Year of 

Latest 

Version 

Language Documentation Version 

control 

Open 

Source 

License 

Test 

Suite 

Container  

1 Agriculture CGMS-WOFOST no info Fortran x+ x+ x+ - - 

2 Agriculture DSSAT-Pythia 2024 Python x+ x+ no info x+ x+ 

3 Agriculture EPIC-TAMU 2023 Fortran x+ no info x+ - - 

4 Agriculture LPJmL 2024 C and 

JavaScript 

x+ x+ x+ - - 

5 Agriculture ACEA 2024 Python x+ no info not valid  - - 

6 Agriculture LPJ-GUESS 2021 C++ x+ no info x+ - - 

7 Biomes CLASSIC 2020 Fortran x+ x+ x+ x+ x+ 

8 Biomes MC2-USFS-r87g5c1 2022 C++, 

Fortran 

and C 

x+ x+ x+ - - 

9 Fire SSiB4/TRIFFID-Fire 2021 Fortran  - x+ no info  - - 

10 Fisheries  BOATS no info MATLAB - x+ no info  - - 

11 Fisheries  DBPM no info R - x+ no info  x+ - 

12 Fisheries  EcoTroph no info R x+ x+ no info  - - 

13 Fisheries  FEISTY no info MATLAB - x+ no info  - - 

14 Fisheries  ZooMSS 2020 R and c++ x+ x+ x+ - - 

15 Groundwater G³M 2018 C++ x+ x+ x+ x+ - 

16 Groundwater parflow 2024 C, Tcl, 

python 

x+ x+ x+ x+ x+ 

17 Lakes  ALBM 2024 Fortran x+ x+ x+ - - 

18 Lakes  GOTM 2024 Fortran x+ x+ x+ x+ - 

19 Lakes  SIMSTRAT-UoG 2024 Fortran  x+ x+ x+ x+ x+ 

20 Terrestrial 

biodiversity 

BioScen15-SDM-GAM/GBM no info R - x+ no info  - - 

21 Terrestrial 

biodiversity 

BioScen1.5-MEM-GAM/GBM no info R - x+ x+ - - 

22 Vector-borne 

diseases 

(health) 

VECTRI no info Fortran 

and 

python 

x+ x+ x+ - - 

23 Water  CWatM 2023 Python x+ x+ x+ x+ - 
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24 Water  DBH 2006 Fortran x+ no info not valid - - 

25 Water  HydroPy 2021 Python x+ no info x+ - - 

26 Water  PCR-GLOBWB 2023 Python x+ x+ x+ - - 

27 Water  WBM 2023 Perl x+ x+ x+ - - 

28 Water  WaterGAP2.2e 2023 C++ - no info x+ - - 

29 Water  VIC 2021 C and 

Python 

x+ x+ x+ x+ x+ 

30 Water  H08 2024 Fortran 

and Shell 

x+ x+ x+ - - 

31 Water  WAYS no info Python - x+ x+ - - 

32 Water quality DynQual 2023 Python x+ x+ no info - - 

  Total   24 26 22 9 5 

 

Version control: 

We find that 81% (26 out of 32) of GIMs uses Git as their version control system reflecting the widespread acceptance of Git 

across the sectors (Table 2).  In the remaining cases, GIMs were made available on Zenodo and the models' official websites 320 

(Table 2, Fig. 1b); information about the specific version control system used for these GIMs was unavailable. Developers' 

preference for Git highlights its user-friendly nature and effectiveness in supporting collaborative efforts.  

 

Use of an open source license: 

Most of the research software, 69% (22 out of 32), have open-source licenses (Table 2) with the “GNU General Public License” 325 

being the commonly used license (56%, 18 out of 32) (Fig. 2). However, the remaining 31% (10 out of 32) either have no 

information on the license even though the source code is made publicly available (8 or 25% of GIMs)  or uses license which 

is not OSI-approved (1 GIM each with creative commons license and user agreement)  (Fig. 2).  This ambiguity or absence of 

licensing details can deter potential users and contributors, as it raises uncertainties about the permissions and restrictions 

associated with the software. 330 
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Figure 2:  License distribution for 32 global impact models across 10 sectors. 8 (25%) GIMs lack license information, and 

two (6%) GIMs have licenses that are not OSI-approved. 

 335 

Number of active developers: 

Our results reveal a diverse distribution of active developers across the GIMs. We have excluded GIMs without version control 

information from our results, as without could not be evaluated for this indicator, resulting in data for 26 GIMs. Notably, GIMs 

such as parflow, CWatM, LPJmL, and GOTM have a significant number of active developers, with 28, 12, 11, and 8 developers 

respectively (Fig. 3). These values correlates with the size of GIMs source code, as evidenced by TLOC (282,722 for ParFlow, 340 

33,286 for CWatM, 136,002 for LPJmL, and 29,477 for GOTM.). However, models such as WAYS, VIC, BioScen1.5-MEM, 

and CGMS-WOFOST had no active developers during the considered period of 2020 to 2024 (Fig.  3). 
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Figure 3: Number of active developers within 5 years (2020-2024) for 26 global impact models across 10 sectors.  The 345 

results for the 6 remaining GIMs could not be measured since version control information could not be found. Zero value 

means no active developers within the 5 year period. BarsThe models are sorted within each sector inby decreasingthe 

ordernumber of active developers within each sector. 

 

Containerization: 350 

Only 5 (16%) of the GIMs have implemented containerized solutions (Table 2). Apart fromWhile the CLASSIC model, which 

uses Apptainer, the other four models use Docker as their containerization technology. The CLASSIC container is shared via 

Zenodo, whereas the Docker containers for the remaining models are distributed through GitHub. Despite the recognized 

benefits of containerization in promoting reproducible research, provisioning of the software in containers is not yet a common 

practice in GIM development. 355 

 

 

 3.2.2 Code Quality Indicators 

Public availability of an (automated) testing suite:  
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Our research indicates that 28% (9 out of 32) of the examined GIMs have a testing suite in place to test the software’s 360 

functionality (Table 2). The models with test suites do not use a preferred programming language but have various languages, 

including Python, Fortran, R, and C++ (Table 2). While the choice of programming language can influence the ease of 

implementing test suites (e.g., due to the availability of testing libraries), we observe that for these complex models, which 

often prioritize computational performance, implementing a test suite remains essential regardless of the programming 

language used.  A typical test might involve ensuring that a global hydrological model such as CWatM runs without errors 365 

with different configuration file options (e.g., different resolutions and basins) (Burek et al., 2020). However, this practice is 

not widespread in the development of GIMs, with the majority (72%) lacking a testing suite (Table 2). This absence of testing 

suites in GIM development highlights a deficiency in the developers’ dedication to software testing. The presence of a testing 

suite could lead to more frequent testing, thereby enhancing the overall quality of the software. 

 370 

Compliance with coding standards:  

We restricted our analysis to GIMs that include Python in their source code due to challenges described in section 2.2. Among 

the ten models we examined, we observed varying levels of adherence to the PEP8 style guide for Python. Five models 

(DSSAT-Pythia, parflow, HydroPy, VIC, and WAYS) demonstrated good compliance, each achieving a lint score above 6 out 

of a maximum of 10 (Fig. 4). Good compliance indicates minimal PEP8 code violations. However, the remaining five models 375 

showed lower compliance, with lint scores between 0 and 3 (Fig. 4). This suggests numerous violations leading to potential 

issues like poor code readability and an increased likelihood of bugs, which could hinder code maintenance.  

 

 

Figure 4: Lint scores of GIMs containing Python code. 380 
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Comment density: 385 

Our results indicate that 25% (8 of 32) of the GIMs have well-commented source code, i.e. 30-60% of all source lines of code 

are comment lines (Fig. 5). The remaining 75% (24) of the GIMs have too few comments, which indicates that overall, 

commenting practice is low across the studied research fields.  

 

Figure 5: Comment density per model across 10 sectors. The grey zone denotes the optimal comment density (Arafat and 390 

Riehle, 2009; He, 2019). BarsModels are sorted within each sector inby decreasing order within each sectorcomment 

density. 

 

Modularity: 

The investigated GIMs have TLOC values between 262 and 500,000, distributed over 6-2400 files (Fig. 6). Only 4 out of the 395 

32 (12%) simulation models (EcoTroph, ZooMSS, HydroPy, and BioScen1.5_SDM) meet the criterion of having between 10 

and 1,000 TLOC per file (Fig. 6). The remaining 28 GIMs either had at least one file exceeding 1,000 TLOC, which likely 

could be divided into smaller modules with distinct functionality or had at least one file less than 10 TLOC, which makes 

source code harder to navigate and understand, especially if the files are not well-named or documented. We also performed a 

sensitivity analysis by changing the criterion to 5,000 and 500 TLOC per file with the same lower limit of 10 TLOC. Nine 400 

simulation models (LPJmL, MC2-USFS-r87g5c1, EcoTroph, ZooMSS, BioScen1.5_SDM, BioScen1.5_MEM, H08, 

HydroPy, and DynQual) meet the 5,000-line criterion and two models (EcoTroph, ZooMSS) met the 500-line criterion (Fig. 
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6). Because code comments, which are included in TLOC, aid code comprehension, we also assessed modularity using the 

criterion of 1,000 SLOC instead of 1,000 TLOC with 10 SLOC. Three GIMs (ZooMSS, BioScen1.5_SDM, and Hydropy) 

meet the 10-1,000 SLOC criterion (see supplementary Fig. S1).  405 

 

 

Figure 6: Letter value plot (Hofmann et al., 2017) of total lines of code (TLOC) per file (logarithmic scale) of 32 global impact 

models across 10 sectors. The dotted blue, black, and green lines show upper modularity limits, the dotted red line the lower 

limit. The values (x|y) in the upper section of Fig. 6, show, for each GIM, TLOC | Number of files. 410 
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3.3 Cost of GIM software development 415 

Research software is a valuable and complex research tool that often requires a lot of effort to develop and maintain (Carver 

et al., 2022; Reinecke et al., 2022). Tto provide a rough cost estimate for the software development of the 32 impact models,. 

Here we use the cost estimate model from Sachan et al. (2016) (see section 2.4) in a scenario of “what if we would hire a 

commercial software company to develop the source code of the global impact models?”  to provide a rough cost estimate for 

the software development of the 32 impact models. This cost estimate does not include developing the science (e.g., concepts, 420 

algorithms, and input data) nor costs of documenting, running, and maintaining the software, only the implementation of code. 

We assume that the COCOMO model is transferable to research software as the NASA projects used in cost model contain 

software that is similar to research software. As the TLOC of the impact model codes ranges from 262 to 500,000 TLOC (Fig. 

7), the effort required to produce these models ranges from 1 to 495 person-months (Fig. 7). With a small additive change of 

(±0.1) of thein COCOMO model coefficients, the range of estimated effort changes to ranges from approximately 1 to 255 425 

person-months in the case of  on -0.1 scenario, and to 1 toup to about 960 person-months on thein the case of +0.1 scenario 

(Supplementary Fig. S2). 

 

The results suggest that these complex research software programs are expensive tools that require adequate funding for 

development and maintenance to make them sustainable. This is consistent with previous studies that have highlighted funding 430 

challenges for developing and maintaining sustainable research software in various domains (Carver et al., 2013, 2022; 

Eeuwijk et al., 2021; Merow et al., 2023; Reinecke et al., 2022). Merow et al. (2023) also emphasized that the accuracy and 

reproducibility of scientific results increasingly depend on updating and maintaining software. However, the incentive structure 

in academia for software development — and especially maintenance — is insufficient (Merow et al., 2023). 

Field Code Changed
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 435 

Figure 7 : Effort estimates of 32 global impact models across 10 sectors. Each bar represents one GIM. Darker colours 

represents large TLOC and effort values. . BarsModels are sorted within each sector byin decreasing order within each 

sectoramount of developer’s effort. 

 

3.4 Case Study: Reprogramming legacy simulation models with best practices  440 

Legacy codes often suffer from poor code readability and poor documentation, which hinder their maintenance, extension, and 

reuse. To overcome this problem, some of GIMs such as HydroPy (Stacke and Hagemann, 2021; Stacke, Tobias and 

Hagemann, Stefan, 2021) were reprogrammed, while others (e.g., WaterGAP, Nyenah et al., 2023) are in the process of being 

reprogrammed. We compared the legacy global hydrological model MPI-HM (in Fortran) and its reprogrammed version 

HydroPy (in Python) in terms of the sustainability indicators. The reprogrammed model has improved modularity (Fig. 8a), 445 

which supports source code modification and extensibility. HydroPy has good compliance with the PEP8 coding standard, 

which improves readability and lower the likelihood of bugs in source code (Fig. 4). It  has an open-source license and a 

persistent digital object identifier, which makes it easier to cite (Editorial, 2019). This research software refers to its associated 

publication for information and instructions on Zenodo to setup and run Hydropy. A software testing suite and container are 

not yet available. 450 
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We find that HydroPy has a comment density of 25% (Fig. 8b), which is below the desired 30-60% range, but the developers 

argue that “the code is self-explanatory and comments are added only when necessary” (Stacke, 2023). MPI-HM has more 

comments (49%, Fig. 8b) because of its legacy Fortran code that limits variable names to a maximum length of 8 characters, 

so they have to be described in comments. Another reason is that the MPI-HM developers kept track of the file history in the 

header, which adds to the comment lines in MPI-HM. This raises a question: Is the comment density threshold metric still valid 455 

if a code is highly readable and comprehensiveself-explanatory? The need for comments can depend on the language’s 

readability (Python vs. Fortran), the complexity of the implemented algorithms and concepts, and the coder’s expertise. While 

a highly readable and well-structured code might require fewer explanatory comments, the definition of "readable" itself can 

be subjective and context-dependent. Nevertheless, comment density remains a valuable metric, especially for code written by 

novice developers.  460 

The HydroPy model is a great starting point for sustainable research software development, as it illustrates the application of 

the sustainability indicators. Reprogramming legacy code not only allows developers to use more descriptive variable names, 

which increases code readability and maintainability, but also enables them to share their code and documentation with the 

scientific community through open source platforms and tools. This practice enhances transparency and accountability, as the 

code can be inspected, verified, and reproduced by others. Reprogramming legacy code with best practices always improves 465 

code quality, which makes software more sustainable. 

 

 

 



 

22 
 

 470 

Figure 8: Modularity and commenting practice of a legacy (MPI-HM) and reprogrammed (HydroPy) global simulation 

model. (a) Letter value plot of total lines of code per file (logarithmic scale) of each model. The dotted black (red) line shows 

the upper (lower) modularity limit defined as the maximum of 1000 (minimum of 10) total lines of code per file. The values 

(x|y) shown in the upper section of Fig. 8a correspond to (TLOC | Number of files per model). (b) Comment density per 

model. The grey zone in Fig. 8b denotes the optimal comment density. 475 
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4 Limitations  

Our study has limitations in the following regards. In the interest of timely analysis, we did not contact the developers 

developers were not contacted foofr models that were not readily available. This means that older software, particularly 

thosethat written in less common or outdated programming languages, might be underrepresented. Additionally, software with 480 

higher code quality and better documentation is more likely to be made readily available and thus may have been selected 

more frequently. This selection process could introduce bias in the distribution of models. Specifically, the simulation model 

distribution does not favour certain sectors. For instance, only 2 out of the 18 global biomes impact models were readily 

available and therefore included in our assessment. This may affect the generalizability of our findings across different domains 

of Earth System SciencesOur study has limitations in the following regards. In the interest of timely analysis, developers were 485 

not contacted for models that were not readily available, causing a bias in the distribution of models. Specifically, the 

simulation model distribution does not favour certain sectors. For instance, only 2 out of the 18 global biomes impact models 

were readily available and therefore included in our assessment. This may affect the generalizability of our findings across 

different domains of Earth System Sciences.   

Moreover, our sustainability indicators do not cover other relevant aspects of sustainable research software, such as user base 490 

size, code development activity (e.g. frequency of code contributions, date of last update or version), number of publications 

and citations, coupling and cohesion, information content of comments, software adaptability to user requirement and 

interoperability. A larger user base often results in more reported bugs, which ultimately enhances software reliability. 

However, determining the exact size of the user base presents challenges due to data reliability issues. Additionally, there is 

the question of whether to include model output (data) users as part of the user base. Code development activity, such as the 495 

frequency of code contributions, indicates an ongoing commitment to improving and maintaining the software, but it does not 

necessarily reflect the quality of those contributions. In addition, the date of the last update or version is a useful metric, but it 

can be complex to interpret. For instance, research software might have an old last update date but still be widely used and 

reliable. Hence, these metrics were not evaluated here. The number of publications and citations referencing a model serves 

as an indicator of its impact and relevance within the research community. Yet, collecting and analysing this data is a time-500 

consuming and complex task. We further did not evaluate the interdependence of software modules (coupling) and how 

functions in a module work towards the purpose of the module (cohesion) (Sarkar et al., 2008), as language-specific tools are 

required to evaluate such properties.  

In addition to the previously discussed limitations, the indicator analysed in this study are quantitative metrics that can be 

measured. Factors such as information content of comments, software adaptability to user requirements and interoperability 505 

(Chue Hong et al., 2022) are examples of qualitative metrics that contribute to software sustainability. However, qualitative 

analysis is outside the scope of this study. We focus on measurable metrics that can be easily applied by the scientific 

community and by novice developers.  
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Also, we did not explore the analysis of code compliance to standards for other programming languages used for GIM 

development. Specifically for Python, the Pylint tool provides a lint score for all source code analysed, making it easier to 510 

interpret results. However, the tools for other languages (e.g., lintr for R) does not have this feature, which presents challenges 

in result interpretation.  

Furthermore, future research could compare the sustainability levels of impact models developed by professional software 

design teams with those created in academic settings by non-professional software developers.   

5 Recommendations  515 

Making our research software sustainable requires a combined effort of the modelling community, scientific publishers, 

funders, and academic and research organizations that employ modelling researchers (Barker et al., 2022; Barton et al., 2022; 

McKiernan et al., 2023; Research Software Alliance, 2023). Some scientific publishers, research organizations, funders and 

scientific communities adopted and proposed solutions to this challenge, such as 1) requiring that authors make source code 

and workflows available, 2) implementing FAIR standards, 3) providing training and certification programs in software 520 

engineering and reproducible computational research, 4) providing specific funding for sustainable software development, 5) 

establishing the support of permanently employed research software engineers for disciplinary software developers and 6) 

recognizing the scientific merit of sustainable research software by acknowledging and rewarding the development of high-

quality, sustainable software as valuable scientific output in evaluation, hiring, promotions, etc. (Carver et al., 2022; Döll et 

al., 2023; Editorial, 2018; Eeuwijk et al., 2021; Merow et al., 2023). This software should be treated as a citable academic 525 

contributions, and included, for instance, in PhD theses (Merow et al., 2023). (), andand 6) establishing the support of 

permanently employed research software engineers for disciplinary software developers (Carver et al., 2022; Döll et al., 2023; 

Editorial, 2018; Eeuwijk et al., 2021; Merow et al., 2023). 

 To assess the current state of these practices in eEarth system science, we conducted an analysis of sustainability indicators 

across global impact models. Our findings reveal that while some best practices are widely adopted, others are significantly 530 

lacking. Specifically, we found high implementation rates for documentation, open-source licensing, version control, and 

active developer involvement. However, four out of eight sustainability indicators showed poor implementation: automated 

testing suites, containerization, sufficient comment density, and modularity. Additionally, only 50% of Python-specific models 

adhere to Python-based coding standards. These results highlight the urgent need for improved software development practices 

in eEarth system science. . Based on the results of our study, as well as the findings from existing literature, we propose the 535 

following actionable best practices for researchers developing software In addition, we recommend the following actionable 

best practices for researchers developing software, based on literature and our own experience (summarized in Fig. 9): 
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 Choose a project management practices that aligns with your institutional environment, culture, and project 

requirementsApply project management practices in software development (e.g., Agile):  This can help plan, organize, 540 

and monitor your software development process, as well as improve collaboration and communication within your 

team and with stakeholders. Project management practices can also help  you identify and mitigate risks, manages 

handle changes, and deliver quality software on time and within budget (Anzt et al., 2021). While traditional methods 

may be better suited for projects with fixed requirements, certain principles from more flexible frameworks, such as 

Agile, can provide benefits in environments where requirements evolve or adaptability is critical. For example, 545 

Agile’s iterative approach allows for incorporating changing research questions and hence software modifications or 

extensions, improving responsiveness to new developments (Turk et al., 2005). 

 Consider software architecture (organisation of software components) and requirements (user needs): This will help 

design your software in a way that meets the needs and expectations of your users. Considering software architecture 

(such as Model-Controller-View (Guaman et al., 2021)) and user requirements helps to design a software system that 550 

has a clear and coherent structure, well-defined functionality, and suitable quality (Jay and Haines, 2019). 

 Select an open-source license: Choosing an open-source license will make your software accessible and open to the 

research community, enable collaborations with other developers and contributors, as well as protect your intellectual 

property rights (Anzt et al., 2021; Carver et al., 2022). Accessible software is crucial to reduce reliance on email 

requests (Barton et al., 2022).  555 

 Use version control:  Version control can help you track and manage changes to your source code, which ensures the 

traceability of your software and facilitates reproducibility of scientific results generated by all prior versions of the 

software and ensure your software is reproducible and traceable (Jiménez et al., 2017). Platforms like GitHub and 

GitLab are commonly used for this purpose. However, it’s important to note that these platforms are not archival - 

the code can be removed by the developer at any time.  A current best practice is to use both GitHub and GitLab for 560 

development, and to archive major releases on Zenodo or another archival repository. 

 Use coding standards accepted by your community (e.g., PEP8 for Python), good and consistent variable names, 

design principles, code quality metrics, peer code review, linters and software testing: Coding standards help you 

write clear, consistent, and readable code that follows the best practices of your programming language and domain. 

It is key that developers consistently follow a coding style recognized by the relevant language community. Good 565 

variable names are descriptive and meaningful, reflecting the role and value of the variable. Design principles help 

adhere to the principles of sustainable research software, such as modularity, reusability and interoperability. These 

principles also guide the design of software by determining, for instance, the interaction of classes addressing aspects 

such as separation of concerns, abstraction, and encapsulation (Plösch et al., 2016). 

 . Code quality metrics can help measure and improve the quality of source code in terms of readability, 570 

maintainability, reliability, modularity and reusability. (Stamelos et al., 2002). Peer code review and linters (tools that 

analyse source code for potential errors) can help detect and fix errors, and vulnerabilities in your code, as well as 

Formatted: Indent: Left:  1.27 cm,  No bullets or numbering



 

26 
 

improve your coding skills and knowledge (Jay and Haines, 2019). Software testing verifies if the research software 

performs as intended. 

 Make internal and external documentation comprehensible: This can help you explain the purpose, functionality, 575 

structure, design, usage, installation, deployment, and maintenance of your software to yourself and others. Internal 

documentation refers to the comments and annotations within your code that describe what the code does and how it 

works. External documentation refers to manuals, guides, tutorials and any material that provide information about 

your software to users and developers. Comprehensible documentation can help you make your software more 

understandable, maintainable, and reusable. (Barker et al., 2022; Carver et al., 2022; Jay and Haines, 2019; Reinecke 580 

et al., 2022; Wilson et al., 2014) 

 Engage the research software community in the software development process. This will help you get feedback, 

support, advice, collaboration, contribution and recognition from other researchers and developers who share your 

interests and goals. Engaging the research software community via conferences and workshops can also help you 

disseminate your software to a wider audience, increase its impact and visibility, and foster open science practices 585 

(Anzt et al., 2021). Additionally, consider utilizing containerization technologies, such as Docker, to simplify the 

installation and usage of your software (Nüst et al., 2020). It helps eliminate the “it works on my machine” problem. 

This approach also facilitates easy sharing of your software with software users. Furthermore, implement continuous 

integration and automated testing to maintain the quality and reliability of your code (Ståhl and Bosch, 2014). 

Continuous integration merges code changes from contributing developers frequently and automatically into a shared 590 

repository. 

 Integrate automation in development practices. Automation plays a key role in streamlining software development 

by reducing manual effort and ensuring consistency (Wijendra and Hewagamage, 2021). We encourage developers 

to integrate automation into their workflows to improve efficiency. For instance, using GitHub Actions, developers 

can use GitHub Actions to automate various tasks like running test suites, generating documentation, ensuring 595 

adherence to coding standards, and managing dependencies.  
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 600 

Figure 9: Actionable best practices for sustainable research software. The image summarizes the actions that modelling 

communities and individual developers should take, such as following project management practices, coding standards, 

reviews, documentation and community engagement strategies. These actions can help produce high-quality, robust, and 

reusable software that can be maintained. 

6 Conclusion 605 

The studied Earth system models are valuable and complex research tools that exhibit strengths and weaknesses in the use of 

certain software engineering practices (strengths, for example, in version control, open-source licensing, and documentation). 

However, notable areas remain for improvement, particularly in areas such as containerization and factors affecting code 

quality like comment density, modularity, and the availability of test suites. These shortcomings hinder the sustainability of 

such research software; they limit research reliability, reproducibility, collaboration, and scientific progress. To address this 610 

challenge, we urge all stakeholders, such as scientific publishers, funders, as well as academic and research organizations, to 

facilitate the development and maintenance of sustainable research software. We also propose to use best practices for the 

developers of research software such as using project management and software design techniques, coding reviews, 

documentation, and community engagement strategies. We further suggest reprogramming the legacy code of well-established 

models. These practices can help achieve higher-quality code that is more understandable, reusable, and maintainable.  615 

 

Efficient computational science requires high-quality software. While our study primarily focuses on Earth System Sciences, 

our assessment method and recommendations should be applicable to other scientific domains that employ complex research 

software. Future research could explore additional sustainability indicators, such as user base size, code development activity 
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(e.g. frequency of code contributions), software adaptability and interoperability, as well as code compliance standards for 620 

various programming languages. 

Code Availability 

The Python scripts utilized for analysis can be accessed at https://zenodo.org/doi/10.5281/zenodo.10245636 . Additionally, 

the line counting tool developed by Ben Boyter is available through the GitHub repository: https://github.com/boyter/scc. 

Data Availability 625 

The results obtained from the line count analysis are accessible at https://zenodo.org/doi/10.5281/zenodo.10245636.   

For convenient downloads of global impact models, links to the 32 global impact models, along with the respective dates of 

access, can be found in an Excel sheet named "ISIMIP_models.xlsx." present in the Zenodo repository. 
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