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Abstract. The development of high-resolution mapping models for forest attributes based on remote sensing data combined

with machine or deep learning techniques, has become a prominent topic in the field of forest observation and monitoring. This

has resulted in an extensive availability of multiple sources of information, which can either lead to a potential confusion, or to

the possibility to learn both about models and about forest attributes through the joint interpretation of multiple models. This

article seeks to endorse the latter, by relying on the Bayesian model averaging (BMA) approach, which can be used to diagnose5

and interpret differences among predictions of different models. The predictions in our case are the forest canopy height

estimations for the metropolitan France coming from five different models (Lang et al., 2023; Liu et al., 2023; Morin et al.,

2022; Potapov et al., 2021; Schwartz et al., 2024). An independent reference dataset, containing four different definitions of

the forest height (dominant, mean, maximum and Lorey’s), comes from the French National Forest Inventory (NFI) providing

some 5500 plots used in the study, distributed across the entire area of interest. In this contribution, we line up the evoked10

models with respect to their probabilities to be the ones generating measurements/estimations at the NFI plots. Stratifying the

probabilities based on French sylvo-ecological regions reveals spatial variation in the respective model probabilities across the

area of interest. Furthermore, we observe significant variability in these probabilities depending on the forest height definition

used. This leads us to infer that the different models inadvertently exhibit dominant predictions for different types of canopy

height. We also present the respective inter-model and intra-model variance estimations, allowing us to come to understand15

where the employed models have comparable weights but contrasted predictions. We show that the mountainous terrain has an

important impact on the models spread. Moreover, we observe that the forest stand vertical structure, the dominant tree species

and the type of forest ownership systematically appear to be statistically significant factors influencing the models divergence.

Finally, we demonstrate that the derived mixture models exhibit higher R2 scores and lower RMSE values compared to

individual models, although they may not necessarily exhibit lower biases.20
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1 Introduction

The interest in forest observation and monitoring has particularly surged in the last couple of decades due to the essential role

occupied by forests in the energy and ecological transition our societies are undergoing. Namely, as important carbon sinks and

renewable energy sources, forests represent indispensable levers in mitigating the climate crisis, but also very vulnerable ones,

along with all the biodiversity they harbor (IPCC, 2021). Being as well challenging distributed targets, relatively inaccessible25

for in situ measurements at some parts of the globe, their observation and monitoring mobilized quite a bit of attention from

the remote sensing community (Fassnacht et al., 2023).

As in other domains of remote sensing applications (Li et al., 2022), the forest remote sensing research community has

witnessed a rapid increase in the utilization of machine learning and deep learning techniques in recent years, also referred

throughout the manuscript as artificial intelligence (AI). This has notably led to numerous developments of remote sensing30

and AI based models for high resolution mapping of the forest canopy height (Potapov et al., 2021; Morin et al., 2022; Ge

et al., 2022; Lang et al., 2023; Liu et al., 2023; Schwartz et al., 2024; Tolan et al., 2024; Fayad et al., 2024). Many of these

approaches involve utilizing spatial or airborne lidar measurements, such as the Global Ecosystem Dynamics Investigation

(GEDI) (Dubayah et al., 2020, 2022) or Airborne Laser Scanning (ALS) data. These are often complemented by imaging

multi-spectral (Sentinel-2, Landsat, Planet) and sometimes radar (Sentinel-1, Alos) data in order to achieve a wider and/or35

denser coverage (Coops et al., 2021).

Lidar measurements provide three-dimensional scattering information allowing generally either to reconstruct to a degree

the forest stand structure or at least to estimate its average shape over a certain footprint. They have an outstanding potential

for inferring numerous forest attributes (canopy height, wood volume, above-ground biomass etc.) even in cases of relatively

complex forest environments (Evans et al., 2006). However, they either often do not have a recurrent acquisition character (e.g.40

the development of diachronic acquisitions at regional to national scales is at its early ages), or, as it is the case with the GEDI

mission, do not provide a continuous spatial coverage, while having a limited lifespan.

Multi-spectral and radar imagers typically offer wide, recurrent, and spatially continuous coverage of forests. Yet, except for

the particular acquisition configurations, as the photogrammetry (Irulappa-Pillai-Vijayakumar et al., 2019) or the polarimetric

Synthetic Aperture Radar interferometry - PolInSAR (Brigot et al., 2019), they generally do not provide vertically resolved45

information about the forest stand. Aside from that, they are also prone to a series of non-negligible issues, as for example: the

optical signal saturation (Mutanga et al., 2023) or the multiplicity of forest stand factors simultaneously influencing the radar

backscattering signal causing its apparent saturation (Joshi et al., 2017).

There have been numerous attempts within the forest observation community to reconcile the benefits of lidar and imaging

measurements, while also mitigating their respective limitations. AI methods have played a significant role in achieving this,50

showing often impressive performances in constructing links between the lidar derived forest attributes, such as canopy height,

and broad coverage images. Nevertheless, these remain models and are therefore obviously not faultless. Namely, there is

in the first place the basic fact that electromagnetic interactions constituting remote sensing data could not even in theory

explain all the variability of forest attributes. And even if this were the case, they would still be susceptible to imperfections
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in remote sensing input data, whether from lidar sources (Roy et al., 2021; Schleich et al., 2023; Tang et al., 2023; Yu et al.,55

2024) or imaging sources (Teillet et al., 1982; Joshi et al., 2017; Mutanga et al., 2023), as well as to various modeling choices

and parameterizations. Therefore it makes sense that all of these factors combined induce models to fail to spatio-temporally

reproduce a substantial part of the variability of the forest attributes. The similar effects were also observed in other kinds

of spatial modeling, either when it comes to resources (Wadoux and Heuvelink, 2023) or ecological modeling (Ploton et al.,

2020).60

One way to attenuate these effects would be to combine different models in a way which might optimize their joint per-

formances (Hu et al., 2015; Dormann et al., 2018). This can be done in various ways, depending first and foremost on the

availability of validation/reference data. If there is no reference data, the most intuitive way to proceed is the simple average or

median of models (e.g. Simple Model Averaging), aiming respectively at smoothing predictions among models or at removing

dissident predictions. If reference data are available one could think of a more sophisticated way to construct an average, such65

as weighted model averaging. This could be based on analyzing the model variables (inputs) dynamics i.e. how well it matches

with the observed one (Besic et al., 2024), or as it is far more frequently the case, on evaluating models predictions (output).

In the latter case, at least in the environmental sciences, we often recur to the Bayesian model averaging (BMA) (Wintle et al.,

2003; Li et al., 2008; Gibbons et al., 2008; Picard et al., 2012). The BMA can be perceived as a weighted mean of various

predictions, with weights reflecting the predictive performances of different models. Alternatively, it can be viewed as a finite70

mixture model, estimating the probability that each observation from an independent validation dataset has been generated by

one of the models belonging to an ensemble (Raftery et al., 1997; Hoeting et al., 1999; Raftery et al., 2005).

In this article we apply the BMA on five selected AI based models aiming at spatializing the GEDI or ALS estimated canopy

height across the metropolitan France, using optical multi-spectral and contingently radar data (Lang et al., 2023; Liu et al.,

2023; Morin et al., 2022; Potapov et al., 2021; Schwartz et al., 2024). In order to do so we use in situ measurements and75

estimations from the French National Forest Inventory (NFI) plots as an independent validation dataset. These approximately

5500 plots enable us to estimate both overall and local weights of selected models based on four different variants of height

measurements/estimations: dominant height, mean height, maximum height, and Lorey’s height. By involving auxiliary data

related to the topography, the dominant tree species, the forest stand vertical structure and the type of the forest ownership, we

as well investigate factors influencing the models spread, i.e. where the models have similar weights but contrasted predictions.80

Finally, we evaluate the performance of the obtained mixture models compared to the individual ones.

The article is organized as follows: in Sec. 2 we present the five employed models, while Sec. 3 introduces the NFI reference

datasets. Sec 4 contains the detailed description of the used BMA approach. In Sec. 5 we present the results as well as the

corresponding discussion, whereas Sec. 6 finally concluding the article.

2 Models’ descriptions85

The selected remote sensing and AI based models differ in terms of the remote sensing data used, but also in the way these

data are processed, and in terms of employed AI method. While not the sole commonality among them, a particularly relevant

3

https://doi.org/10.5194/gmd-2024-95
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Schematic representation of the Bayesian averaging of the remote sensing based models for the high resolution mapping of the

forest canopy height. NOTE: All the maps are projected in the RGF93 geodetic system with the Lambert-93 projection (EPSG 2154).

aspect for this study is that they all encompass metropolitan France, where we have access to the reference NFI data. In this

section we therefore briefly present their principal characteristics which are partly illustrated in Fig. 1 and will be recalled in

Sec. 5 while interpreting their mutual differences highlighted by the BMA.90

2.1 M1 (Lang)

The model proposed by Lang et al. (2023) uses Sentinel-2 multi-spectral optical data as input, and aims to spatialize the

canopy height estimated from spatially sparse GEDI relative height (RH) profiles. These profiles are derived by averaging lidar

returns across 25 m footprints, depicting the disparity between the elevations of detected ground returns and the n% cumulative

waveform energy, as described in (Dubayah et al., 2020). This model uses the 98th percentile of the latter (n = 98 - RH98) as95

a proxy for the canopy height.

The AI method employed is a deep convolutional neural network (CNN) (Lang et al., 2019), taking as input Sentinel-2

spectral bands and geographical coordinates, and producing the canopy height estimate and the associated variance, thanks to
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the sparse supervision based on the GEDI data. The produced estimates and corresponding variance are spatially resolved at

10 m, refer to the year 2020 (acquisition of GEDI data used as the reference), and cover the entire planet (except for the Arctic100

and Antarctica).

2.2 M2 (Liu)

The model crafted by Liu et al. (2023) stands apart in this research as it doesn’t directly utilize GEDI data like the other

models. Instead, it obtains its reference data from a range of ALS datasets sourced from different European countries, excluding

France. However it indirectly includes the GEDI information through ingesting the previously described Lang et al. (2023)105

model. The principal modality of this model is the PlanetScope imagery, acquired in the time-frame corresponding to the

European late summertime during the year 2019. The 3 m resolution images together with the auxiliary inputs are related to

the ALS-derived canopy height using the U-net architecture with an EfficientNet-B4 backbone (Ronneberger et al., 2015; Tan

and Le, 2020). The resulting output comprises a map depicting tree cover and canopy height (for areas identified as tree cover),

with spatial resolution set at an impressive 3 m, spanning the entirety of the European continent. The publicly available product110

used in this study was however resampled to the spatial resolution of 30 m.

2.3 M3 (Morin)

Morin et al. (2022) developed a model which uses as predictive variables Sentinel-2 datasets together with Synthetic Aperture

Radar (SAR) Sentinel-1 C-band and ALOS-2 PALSAR-2 L-band images. The reference dataset is the canopy height derived

from the GEDI data and corresponding to the RH98 metric, adopted as the height reference following a comparison with115

ALS data. The link between the predictive variables and the reference estimations is built using a Linear Forest Regression

technique, which therefore allows to project the GEDI RH98 measurements onto the 10 m grid covering the metropolitan

France, for the year 2020.

2.4 M4 (Potapov)

The Potapov’s model (Potapov et al., 2021) depends on the multitemporal metrics derived from Landsat multi-spectral120

images and reflecting the land surface phenological properties (Potapov et al., 2020). These are used to aliment the bagged

regression trees ensemble method (Breiman, 1996), which integrates as well the GEDI RH95 metric-based canopy height

estimates. The model output is a global canopy height map for the year 2019, spatially resolved at 30 m.

2.5 M5 (Schwartz)

The model proposed by Schwartz et al. (2024) is based on using Sentinel-2 multi-spectral and Sentinel-1 SAR C-band data.125

They are integrated, together with the canopy height estimate corresponding to the GEDI RH95 metric, into a U-net model

(Ronneberger et al., 2015). The model produces a 10 m resolution canopy height map covering the metropolitan France for the

year 2020.
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3 Reference data description

National Forest Inventory (NFI) is a census of the forest resources over a certain territory (Tomppo et al., 2010). The French130

NFI is based on a systematic stratified sampling design, which takes place in two phases: photo-interpretation of around 100k

points per year for assessment of forest area, and field observations and measurements at up to 7000 of these points for

assessing forest resources in a per hectare basis (Robert et al., 2010; Hervé et al., 2014).

For each visited point, i.e. plot with a diameter of 25 m, numerous attributes are accessible, including various measurements

or estimations of forest canopy height. In this study, we focus on four particular variants among these options:135

– Hdom – the average tree height of the seven largest dominant trees per plot,

– Hmean - the mean tree height,

– Hmax – the maximum tree height.

– Hlor – the Lorey’s mean tree height - the mean tree height weighted by basal area.

Given that the tree height is measured at the plot only for a sample of trees (one measurement per diameter class and140

species), complementary values were imputed using a random forest MissForest approach (Stekhoven and Bühlmann, 2012).

The method was applied per species and sylvo-ecological region, using the diameter at breast height, the height and the

plot level variables (the stem density, the basal area and the wood volume). Validation was done using data acquired during

2005-2009 for which all height measurements were done. To do so, the current protocol was simulated and imputations were

compared with measurements, leading to a mean error of −0.1 m (±0.1 m).145

This allows us to have a sample big enough to obtain a potentially better estimate of the height (notably the mean and the

dominant one), which are in this case annotated across the manuscript with the superscript i, i.e. Hi
dom, Hi

mean, Hi
max and Hi

lor.

In this study, we utilize canopy height estimates from the four variants, sourced from 5475 NFI plots dispersed throughout

metropolitan France for the year 2020. All analyses presented in Sec. 5 are based on the supplemented version (estimation -

including imputations), except for the overall weights analysis in Subsec. 5.1, which encompasses both the original version150

(measurements - without imputations) and the supplemented version.

4 Method description - a "Bayesian-flavored approach"

Now that we have introduced the five different models and the reference data set, the obvious question would be: which one

should we select? The one which compares the best with the reference data? We know that every model, as asserted in the

introduction, has its own intrinsic uncertainty. By relying on only one selected model, when many are available, we somehow155

potentially misjudge the total uncertainty, given that other models could have different predictions with different uncertainties.

By applying the BMA method, introduced in this section, on all models that are available, we aim at overcoming at least to a

degree the evoked issue (Raftery et al., 2003; Picard et al., 2012). The persistent limitation is that all these uncertainties are
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assessed at (almost) randomly selected points, namely the NFI plots, leaving the behavior of uncertainty between these points

somewhat unpredictable.160

The important thing to note here is that we propose the BMA which assumes combining model outputs without affecting

their internal structure (called "the BMA of deterministic models" by Picard et al. (2012)). Alternatively, one could employ the

BMA, which not only combines models but also optimizes some of their parameters simultaneously (known as ’the BMA of

statistical models’ by Picard et al. (2012)). While this approach could be relevant for the type of models used in this study, it

would require significant computational resources.165

Let therefore H be the forest canopy height, predicted using the input data x, by one of the K = 5 considered models,

introduced in Sec. 2, denoted as M1, . . . ,MK . Similarly, let H denote the reference dataset, introduced in Sec. 3, contain-

ing N = 5475 NFI estimates (referred to as well as the observations across the manuscript). According to the law of total

probability we can decompose the posterior distribution of the forest canopy height as:

f (H|H) =
K∑

k=1

f (H|Mk,H) ·Pr(Mk|H), (1)170

with f (H|Mk,H) being the posterior distribution of the canopy height under model Mk, and Pr(Mk|H) being the poste-

rior probability of model Mk. The latter sum up to one, and can therefore be somehow interpreted as "importance" weights

(Pr(Mk|H)≡ wk), implying that the posterior distribution of the forest canopy height f (H|H) represents a weighted average

of the distributions under participating individual models.

We make an assumption that the posterior distribution of the canopy height under model Mk can be approximated by a175

Gaussian distribution centered at Mk(x):

H(x)|Mk,H∼N
(
Mk(x),σ2

k

)
, (2)

with σ2
k being the variance of kth model, describing therefore its uncertainty with respect to the H NFI observation data. Eq. 1

therefore takes the following form:

f (H(x)|H) =
K∑

k=1

wk ·ϕ(H;Mk(x),σk), (3)180

where ϕ(·) denotes the Gaussian probability density function. The conditional mathematical expectation of the canopy height

can thus be expressed:

E(H(x)|H) =
K∑

k=1

wk ·Mk(x), (4)

representing essentially the weighted sum of the canopy height predictions of individual models. While it is not necessarily

guaranteed (Zhou, 2012), under the stated assumption of Gaussianity, this weighted sum should better fit the reference data185

than any individual model. This hypothesis will be assessed in Subsection 5.5.
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Perhaps even more interesting than the mathematical expectation is the variance estimation (Raftery, 1993):

Var(H(x)|H) =
K∑

k=1

wk ·
(

Mk(x)−
K∑

l=1

wl ·Ml(x)

)2

+
K∑

k=1

wk ·σ2
k, (5)

which is decomposed into the between-equation variance (first term of Eq. 5) and the within-equation variance (second term190

of Eq. 5). The former quantifies the models spread i.e. indicates when models have similar weights but contrasted predictions.

The latter denotes the weighted average of the individual model uncertainties, reflecting the uncertainty of the ensemble, or the

total uncertainty outlined at the outset of this section. This implies that the overall uncertainty could be misestimated if only a

single model is chosen, even if it performs best in comparison with the reference data.

4.1 E-M algorithm195

To compute the expectation (Eq. 4) and the two variances (Eq. 5), we need to derive the weights (wk) and the standard

deviations of the individual models (σk). These parameters are estimated from the reference data, which, in this specific

context, can be referred to as the training dataset.

If we define the vector of unknown values as:

θ = (w1, · · ·wK ,σ1, · · ·σK) , (6)200

we can formulate the log-likelihood function, allowing to estimate θ by maximum likelihood:

l (θ) =
N∑

i=1

ln

(
K∑

k=1

wk ·ϕ(Hi;Mk(xi),σk)

)
, (7)

where Hi is the ith observation of dataset H, and xi are the input data corresponding to the ith reference height observation.

This cannot be done in closed form, but rather has to be addressed numerically - with the "Expectation-Maximization" (EM)

iterative method (Dempster et al., 1977; McLachlan and Krishnan, 2008). This method addresses the problem by introducing205

the "missing data" zki which represent the posterior probability that the model k is the one that "fits" the best the observation i.

Acknowledging the Bayesian framework underlying this method, which also exhibits some degree of frequentist characteristics

(as suggested by Dormann et al. (2018)), we refer to it as the "Bayesian-flavored approach".

Starting from the initial guess for θ (w1 = w2 = · · ·= wK = 1/K, σ1 = σ2 = · · ·= σK = 1), in the first - expectation step

we compute the missing values for the next step (j) based on the current estimate of the standard deviations (σ(j−1)
k ), and210

evidently by including the models height estimates (Mk(xi)) and the reference NFI observations (Hi):

ẑ
(j)
ki =

ϕ
(
Hi;Mk(xi),σ

(j−1)
k

)

∑K
l=1 ϕ

(
Hi;Ml(xi),σ

(j−1)
l

) . (8)

It is perhaps relevant to note that Picard et al. (2012) provide a version of Eq. 8 containing the weight values (wk) both in

the numerator and denominator, and that the one we finally opted for (without weights) comes from Raftery et al. (2003).
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Once we are done with the expectation step, in the second - maximization step, we can "update" the overall weights:215

w
(j)
k =

1
N

N∑

i=1

ẑ
(j)
ki , (9)

as well as the standard deviations:

σ
(j)
k =

√√√√
∑N

i=1 ẑ
(j)
ki (Hi−Mk(xi))

2

∑N
i=1 ẑ

(j)
ki

. (10)

The iteration continues until the following condition is satisfied:

∥θ(j)−θ(j−1)∥1 < 10−6, (11)220

in which case we have reached the convergence.

5 Results and discussion

Once applied on the models and the NFI data from Sec. 2 and 3, the method introduced in the previous section gives therefore

the overall weights of each model across the entire territory of interest (wk), as well as the local weights at every observation

site i - corresponding to the converged "final" value of the "missing data" (zki). The former is analyzed in Subsec. 5.1, while the225

latter is being addressed in Subsec. 5.2. The variances estimations (Var(H(x)|H)) can as well be expressed in the overall or

local fashion, the latter being the subject of the remaining subsections of this section. The local estimation of the Var(H(x)|H),

at the point i, is obtained by substituting the weights wk and wl in Eq. 5 with the respective "missing data" (zki and zli).

Since not all models share the same spatial resolution (M1, M3 and M5 at 10 m, while M2 and M4 at 30 m), instead of

upscaling M1, M3 and M5 to 30 m, we opted to downscale M2 and M4 to 10 m. This was achieved by subdividing a 30 m230

pixel into nine identical ones.

5.1 Overall weights

Illustrated in Fig. 2, the overall weights allow deducing the following:

– All the models contribute to the finite mixtures at the scale of the metropolitan France, with the individual weights

(wk) differing relatively significantly from 0.2, which would be the weight of every model in case of the Simple Model235

Averaging (SMA).

– The distribution of contributions changes importantly as a function of the employed height reference (Hdom, Hmean,

Hmax or Hlor). We can for instance see that the model developed by Schwartz et al. (2024) (M5) is the most likely to

have generated the dominant height measurements/estimations as well as the Lorey’s mean height estimations at the NFI

plots. We can also notice that the model of Lang et al. (2023) (M1) slightly outperforms the one of Morin et al. (2022)240

(M3) and the model proposed by Schwartz et al. (2024) (M5) when it comes to the probability to have generated the

9
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Figure 2. BMA overall weights of M1 (Lang), M2 (Liu), M3 (Morin), M4 (Potapov) and M5 (Schwartz) with respect to: (a) the NFI

dominant height, (b) the NFI mean height, (c) the NFI maximum height, (d) the NFI mean Lorey’s height. As suggested in the legend,

different patterns correspond to the presence or the absence of the imputations complementing the NFI measurements, except for the mean

Loray’s height whose calculation was only possible with the imputations.

maximum height measurements/estimations at the NFI plots. This appears to be probably related to the fact that Lang

et al. (2023) and Morin et al. (2022) have chosen the GEDI RH98 metric as an input modality, as opposed to the GEDI

RH95 metric retained by M4 and M5.

– The inclusion or exclusion of external MissForest imputations in the reference observations significantly influences245

the distribution of weights. This effect is particularly evident when analyzing dominant and mean height, where the

introduction of imputations alters the dominant model, i.e., the one with the highest probability of generating the mean

height observations, from the model proposed by Liu et al. (2023) to M5.

The findings outlined in this subsection indicate that the various models inadvertently tend to predominantly predict different

types of forest canopy height. This could indeed be a significant finding for the community, as describing forests with high250

spatial precision in terms of four canopy height definitions instead of just one could have positive implications for allometric

estimations of wood volume or aboveground biomass. Namely, instead of relying on only one allometric relation, one could

simultaneously rely on four of them, not differing only in terms of parametrisations (Picard et al., 2012) but also in terms of

input variables (a type of height).

This very first portion of the results demonstrates the relatively strong impact of complementing the NFI height measure-255

ments/estimations by the missForest imputations, which may prompt consideration of the potential benefits of incorporating

this approach into the NFI sampling design, prior to stratified inference.

5.2 Local (regional) weights

The local weights, originally derived at the 5475 NFI plots, are further averaged by sylvo-ecological regions (SER). Namely,

the metropolitan France is split into 91 of these regions, out of which the 86 non-alluvial, representing a certain homogeneity260

in terms of sylvo-ecological indicators. This makes such a territorial organization pretty suitable both for the interpretation of

our local weights, and for their illustration.
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Figure 3. BMA local (regional) weights of M1 (Lang), M2 (Liu), M3 (Morin), M4 (Potapov) and M5 (Schwartz) with respect to: (a) the

NFI Hi
dom, (b) the NFI Hi

mean, (c) the NFI Hi
max, (d) the NFI Hi

lor. Different shades of colors represent variations of regional weights averaged

by sylvo-eco region, ranging from 0 to the maximum value of the regional weight indicated in the panel title (wmax
SER ).
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Illustrated in Fig. 3, the local weights allow the following observations:

– The weights of each model exhibit significant variation across the studied territory, regardless of the variant of reference

observations (dominant, mean, maximum, or Lorey’s height).265

– Though the dominance of different models as a function of the observation height type stated in the previous section

remains obvious even after the scale-decomposition (M5 for Hi
dom, Hi

mean and Hi
lor, while M1 for Hi

max), they are not

prevalent in all SERs. That is to say, the model proposed by Potapov et al. (2021), which does not prevail at the over-

all scale for any of the reference datasets employed, appears nevertheless to be very performing in perhaps the most

challenging SERs in terms of topography (the Alps and the Pyrenees mountain chains), for Hi
dom and Hi

mean. This can270

potentially be explained by the spatial resolution of this model based on the Landsat data (30m), which somehow smooths

the disturbing effects that mountainous terrain has on most of imaging remote sensing sensors. We can as well notice

that despite the dominance of M1, models M3 and M5 prevail in a pretty important part of the studied territory when

it comes to predicting the maximum height. While it’s not unexpected for M3 to exhibit this behavior, as it utilizes the

GEDI RH98 metric, it’s intriguing to note the same trend in M5, which employs the GEDI RH95 metric. This obser-275

vation possibly underscores the influence of C-band SAR data, which, owing to its limited canopy penetration, may be

more sensitive to maximum height rather than other height references.

The findings outlined in this subsection imply that the fusion of remote sensing-based observational models may need to

be scale-dependent, indicating that the contributions of different models vary depending on the focal spatial scale. This aligns

closely with a similar message conveyed by Besic et al. (2024) regarding predictive forest species distribution models.280

5.3 Influence of topography on the spread

As indicated in the previous section, perhaps the most interesting output of the BMA algorithm in terms of analysis is the

variance Var(H(x)|H), which is in this subsection decomposed locally into the within-equation (within-variance) and the

between-equation (between-variance) one, and averaged by sylvo-ecological regions in the equivalent manner as the local

weights in the previous subsection.285

Figure 4, particularly its left part illustrating locally varying within and between variances for different types of reference

observations, enables us to infer the following:

– The within variance exhibits reasonably consistent values across space, without dramatic spatial variations. The mixtures

derived based on Hi
dom and Hi

lor, where M5 predominates, display the lowest within variance. Notably, this variance is

also the least spatially variable among all the considered variants.290

– The between variance shows unmistakable patterns - high values in the high-mountainous regions: the Alps and the

Pyrenees. It is the case for all variants. This inference is further supported by the analysis presented in the right part of

Figure 4, which includes the comparison of between-variance and averaged elevation and slope across sylvo-ecological
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regions. These values are derived by sampling the 5 m Digital Terrain Model (DTM) (Institut national de l’information

géographique et forestière, 2024a) at the locations of reference observations. The Pearson coefficient of correlation295

reaches up to 0.69 for the average elevation (Hi
max) and up to 0.68 for the average slope (Hi

max).

– The within variance consistently exceeds the between variance, indicating that the obtained prediction could be deemed

reliable, particularly when considering ensemble learning principles (Mo et al., 2023).

This subsection findings primordially point out that the models considered in this study diverge, i.e. have similar weights but

contrasted predictions in high-mountainous regions. Even though the between-variance remains below the level of the within300

one, and the mixture is therefore nevertheless reliable even in the mountains, this observation implies worse performances of

the models in these challenging environments (Stage and Salas, 2007). The hypothesis we formulate is that this comes mostly

from the quality of employed remote sensing data, which is compromised in mountainous regions, whether we are referring to

lidar sensors, multi-spectral imagers, or radar sensors. The list of reasons for the latter is long, with the most prominent effects

being:305

– Mountainous terrain typically introduces distortions in remote sensing images, particularly due to shadows and slope

effects, a phenomenon accentuated in radar data by shadows, layovers, and foreshortenings (Teillet et al., 1982; Moreira

et al., 2013). The GEDI data, in particular, are significantly impacted by steep areas, as the distortions of backscattered

waveforms within a 25 m footprint introduce additional uncertainty into derived RH profiles (Fayad et al., 2021; Quirós

et al., 2021).310

– Atmospheric Disturbances - atmospheric conditions such as cloud cover, hydrometeors, and aerosols can affect the

quality of remote sensing data, particularly in mountainous regions characterized by variable weather patterns and a

higher probability of convection events.

– The heterogeneity - mountainous areas often exhibit diverse vegetation types and land cover classes, which can compli-

cate the job for both remote-sensing based classification and estimation methods.315

Thus, we pinpoint (high) mountainous regions as the primary challenge for ongoing model advancements, particularly

since studies like Waser et al. (2021) demonstrate that a combination of Sentinel-1/Sentinel-2, along with Digital Terrain

Models (DTMs), can enhance performance in mountainous areas, at least concerning tree type classification (broad-leaved vs.

coniferous).

5.4 Influene of categorical variables on the spread320

In this subsection, we utilize the following categorical variables available at the NFI observation locations (obtained from

the NFI database or the vector forest cover map (Institut national de l’information géographique et forestière, 2018)):

– the tree type - broad-leaved vs. coniferous,
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Figure 4. The within variance, the between variance and the comparison between the latter and the DTM mean elevation and slope (e), with

the reference being: (a) the NFI Hi
dom, (b) the NFI Hi

mean, (c) the NFI Hi
max, (d) the NFI Hi

lor.
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Variable Dom. tree type Dom. tree species Vertical structure Type of forest own. Residual

Degrees of freedom 1 50 4 3 5302

Hi
dom

Sum of sq. 0.74 3029.0 2329.1 188.94 122212.5

F value 0.03 2.63 25.26 2.73 /

PR(> F) 0.86 < 0.001 < 0.001 < 0.05 /

Hi
mean

Sum of sq. 0 8844.6 4466.3 873.7 255092.9

F value 0 3.68 23.2 6.1 /

PR(> F) 0.99 < 0.001 < 0.001 < 0.001 /

Hi
max

Sum of sq. 146.4 6079.5 6336.6 520.7 147335.4

F value 5.27 4.38 57.01 6.25 /

PR(> F) < 0.05 < 0.001 < 0.001 < 0.001 /

Hi
lor

Sum of sq. 50.3 2754.2 1280.7 242.0 79967.6

F value 3.33 3.65 21.23 5.35 /

PR(> F) 0.07 < 0.001 < 0.001 < 0.05 /

Table 1. ANOVA: Investigating if the dominant tree type (broad-leaved or coniferous), the dominant tree species, the vertical structure and

the type of forest ownership represent statistical significant factors influencing the BMA between variance across different variants of NFI

reference.

– the dominant tree species - selected among some 70 species,

– the forest stand vertical structure - a qualitative observation distinguishing between: temporarily cleared, regular low for-325

est, other regular low stands, irregular vertical structure, regular high with understorey, regular high without understorey,

and open woodland structure.

– and the type of forest ownership - having four classes: managed private forest, unmanaged private forest, national (public)

forest or any other public forest.

We investigate if these categorical variables influence the between-variance i.e. the models spread, by applying the analysis330

of variance (ANOVA) (Kaufmann and Schering, 2014). Table 1 contain the outputs of the ANOVA experiment and allow us to

deduce the following:
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– The dominant tree type does not consistently emerge as a significant factor influencing the models spread, despite reports

from both (Morin et al., 2022) and Schwartz et al. (2024) indicating better performance over coniferous forests than

broad-leaved ones. While it appears to be a significant factor at the α = 0.05 significance level for Hi
max, this significance335

is not observed for the other variants.

– The dominant tree species consistently emerges as a significant factor influencing the spread of the models at the α = 0.05

significance level. Upon examining Fig. A1, we observe that classes such as "other native broad-leaved," European hop-

hornbeam (Ostrya carpinifolia), or European larch (Larix decidua) tend to dominate in causing variations between the

models across different reference variants.340

– The vertical structure of the forest stand also significantly influences the spread (at the α = 0.05 significance level) for

all reference observation variants. Fig. A1 indicates that classes such as regular low forest, other regular low stands, and

irregular vertical structures tend to display higher between-variance values compared to classes like regular high with

understorey and regular high without understorey.

– Lastly, the type of forest ownership also has a statistically significant impact on whether the considered models diverge345

or not. According to the statistics shown in Fig. A1, unmanaged private forests are characterized by the highest between-

variance values.

These findings suggest that any information about the last three categorical variables could potentially be a useful modality

for the remote-sensing based models for the high resolution mapping of the forest canopy height. The tree species and the

topography impacts (Subsec. 5.3) are undoubtedly mixed, due to the altitudinal zonation. An interesting influence of the forest350

stand vertical structure on the estimation of the canopy height can be explained by the remote sensing signal sensitivity on

the entirety of the forest stand scanned. This is obviously the case for the lidar, but appears to be also the case for the radar

(Imhoff, 1995), as well as for the optical sensors which can be used to detect and are therefore sensitive to the understory

presence/composition (Yang et al., 2023). However, perhaps the most intriguing result pertains to the impact of forest ownership

type. This finding may not be surprising considering that there are no pristine forests in metropolitan France. In a landscape355

where all forests are managed to some extent, ownership type emerges as an excellent proxy for forest stand complexity

(Ehbrecht et al., 2017).

5.5 Mixture model performances

In this subsection, we begin by examining the properties of the BMA finite mixture models compared to the individual ones,

focusing on standard statistical metrics such as coefficient of determination (R2), mean bias estimates (MBE), and root mean360

square error (RMSE).

The results depicted in Fig. 6 illustrate that regardless of the variant of the reference observations, R2 consistently and

significantly increases after Bayesian averaging of the individual models. Similarly, RMSE consistently and significantly

decreases following the averaging process. On the contrary, except for the Hi
lor variant (Fig. 6d), the mean bias estimates
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(MBE) of the mixtures are not lower than those of any of the individual models involved. This aligns with the conclusions365

reported by Bao et al. (2010) and Erickson et al. (2012), suggesting that while BMA effectively addresses variance, it may

need to be supplemented with bias correction methods to ensure that the finite mixture not only exhibits significantly reduced

variance compared to the participating models but also lower bias.

Finally, we as well compare the variance results of the applied BMA to those obtained by the SMA. The latter are obtained

if we substitute in Eq. 5 the weights wk and wl by the w = 1/K = 0.2, and keep the numerical estimations for the standard370

deviations σk.

Figure 6 depicts the comparison between BMA and SMA in terms of the differences in within and between variances (within

- between) for the various variants of reference observations. The results indicate that unlike BMA, where the within-between

variance, as observed in Subsection 5.3, consistently remains positive, in the case of SMA, the spread exceeds the variance of

the mixture in mountainous regions. This indicates that unlike SMA, BMA effectively mixes the considered models (Mo et al.,375

2023), making it suitable for constructing "super" French models for high-resolution mapping of canopy dominant height,

canopy mean height, canopy maximum height, and Loray’s mean height.

6 Conclusions

In this study we jointly interpret the performances of five different remote sensing and AI based models for the high resolu-

tion mapping of the forest canopy height by combining them using the Bayesian model averaging framework and NFI in situ380

measurements. We observe that the participation of the different models varies depending on the height reference employed -

maximum, mean, dominant or Lorey’s, which can be directly linked to the different remote sensing input data. We also observe

significant variations in terms of the local weights averaged by sylvo-ecological regions, indicating that any attempt at model

fusion should be tailored to the scale and ecology of the region. A much more pronounced spread (comparable weights but

contrasted predictions) of the analyzed models is observed in the regions with a pronounced topography, clearly indicating385

that the real challenge is to do better in the mountains, by means of a better remote sensing data correction as well as a better

modeling. The observed spread is also significantly impacted by the dominant tree species observed, the forest stand vertical

structure, and the forest ownership type, the last-mentioned being a very good proxy for the forest stand complexity. The latter

suggests that including these as modalities when possible could potentially improve the performances of the analyzed models.

Nevertheless, the spread observed when using the BMA remains inferior to the within-variance, which is not the case when390

relying on the simple model average. This suggests that the response to the paraphrased George Box’s aphorism posed in the

title — "some models are useful, but might they be even more if combined?" — indeed appears to be affirmative in our context,

particularly when employing BMA. This assertion is supported by the consistently higher R2 values and lower RMSE values

of BMA-based mixture models compared to the individual models involved. However, it is important to note that these mod-

els should be complemented by a bias correction method to address bias, which is not addressed by the BMA methodology395

employed.

17

https://doi.org/10.5194/gmd-2024-95
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 5. Kernel density estimate (KDE) plots comparing individual models and their BMAs with the four employed NFI references: (a)

Hi
dom, (b) Hi

mean, (c) Hi
max, (d) Hi

lor.
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Figure 6. Within − between variance for the BMA and the SMA, with the reference being: (a) the NFI Hi
dom, (b) the NFI Hi

mean, (c) the NFI

Hi
max, (d) the NFI Hi

lor. Top panel is the BMA computation, bottom panel is the SMA computation.

From an analytical standpoint, the most apparent direction for the presented work would be to move towards establishing

a well-defined framework for evaluating models, possibly incorporating a denser network of references using GEDI measure-

ments or Lidar HD data (Institut national de l’information géographique et forestière, 2024b). The advantage of using the

GEDI measurements would be the possibility to more easily relate the evaluated differences to the employed AI method or400

the choice of the complementary non-lidar measurements. Another perspective, particularly applicable when relying on GEDI

measurements, would involve adapting the method for evaluating tree cover maps. This adaptation would necessitate a change

in the probability distribution assumption (Eq. 2) from Gaussian to Bernoulli.

From a synthesis standpoint, the most compelling perspective of the presented work would be to effectively utilize the four

finite mixtures we produced, corresponding to dominant height, mean height, maximum height, and Loray’s mean height.405

These mixtures can be obtained either at the national scale (using the overall weights) or, even more intriguingly, at the sylvo-

ecological scale (using the aggregated local weights). This approach should facilitate the creation of an ensemble for allometric

wood volume or aboveground biomass (AGB) modeling.

Code and data availability. The datasets corresponding to the five employed models are publicly available:

– M1: https://doi.org/10.3929/ethz-b-000609802410

– M2: https://zenodo.org/records/8154445
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– M3: https://zenodo.org/records/8071004

– M4: https://glad.umd.edu/dataset/gedi/

– M5: https://zenodo.org/records/7840108

The python code used in the study, allowing to reproduce all the presented results, is provided without restrictions at https://zenodo.org/415

records/11209336 (from the moment the manuscript is published as a preprint under review for GMD).

Due to legal restrictions (statistical confidentiality), the exact locations of the reference NFI plots used in the study cannot be disclosed.

Therefore, the file (denoted as Input_data_table.csv in the provided code) containing extracts from the five employed models at the reference

NFI plots, along with the NFI plots variables such as the four variants of reference height and other variables used in the study, is not directly

available. However, a confidential access could be provided for the editor and reviewers if necessary to enable peer review.420

Links for downloading all the other auxiliary datasets used in the study, such as the contours of French sylvo-ecological regions, are

provided in the code.

Appendix A: Appendix A

This appendix contains a figure which supplements Sec. 5.4.
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Figure A1. Boxplots illustrating the descriptive statistics of between variance for different levels of categorical variables, which have been shown to be

statistically significant in terms of their influence on model spread, include the vertical structure (V), the type of forest ownership (O), and the dominant tree

species (S). These are presented with references: (a) Hi
dom, (b) Hi

mean, (c) Hi
max, and (d) Hi

lor. V2 - regular low forest, V3 - other regular low stands, V4 -

irregular vertical structure, V5 - regular high with understorey, V6 - regular high without understorey. O1 - managed private forest, O2 - unmanaged private

forest, O3 - national (public) forest, O4 - any other public forest. S2 - Quercus pedunculata, S3 - Quercus sessiliflora, S4 - Quercus rubra, S5 - Quercus

lanuginosa, S6 - Quercus ilex, S7 - Quercus toza, S8 - Quercus suber, S9 - Fagus sylvatica, S10 - Castanea sativa, S11 - Carpinus betulus, S12 - Betula

pubescens, S13 - Alnus glutinosa, S14 - Robinia pseudoacacia, S15 - Acer pseudoplatanus, S17 - Fraxinus excelsior, S18 - Ulmus campestris, S19 - Populus

deltoides, S20 - Tilia cordata, S21 - Acer campestre, S22 - Prunus avium, S23 - diverse fruit trees, S24 - Populus tremula, S25 - Salix, S27 - Juglans regia, S28

- Olea europea, S29 - other exotic broad-leaved, S31 - Corylus avellana, S32 - Ostrya carpinifolia, S33 - Populus alba, S34 - Quercus cerris, S40 - Arbutus

unedo, S49 - other native broad-leaved, S51 - Pinus pinaster, S52 - Pinus sylvestris, S53 - Pinus salzmannii, S54 - Pinus nigra, S55 - Pinus pinea, S57 - Pinus

halepensis, S58 - Pinus uncinata, S59 - Pinus cembra, S61 - Abies alba, S62 - Picea abies, S63 - Larix decidua, S64 - Pseudotsuga menziesii, S65 - Cedrus

atlantica, S68 - other exotic coniferous, S69 - Juniperus thurifera, S72 - Abies grandis, S73 - Picea sitchensis, S74 - Larix leptolepis, S77 - Pinus taeda.
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