
Exploring a high-level programming model for the NWP
domain using ECMWF microphysics schemes
Stefano Ubbiali1, Christian Kühnlein2, Christoph Schär1, Linda Schlemmer3, Thomas
C. Schulthess4,5, Michael Staneker2, and Heini Wernli1
1Institute for Atmospheric and Climate Science (IAC), ETH Zürich, Switzerland
2European Centre for Medium-Range Weather Forecasts (ECMWF), Bonn, Germany
3Deutscher Wetterdienst (DWD), Offenbach, Germany
4Institute for Theoretical Physics (ITP), ETH Zürich, Switzerland
5Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland

Abstract. We explore the domain-specific Python library GT4Py (GridTools for Python) for implementing a

representative physical parametrization scheme and the related tangent-linear & adjoint algorithms from the

Integrated Forecasting System (IFS) of ECMWF. GT4Py encodes stencil operators in an abstract and hardware-

agnostic fashion, thus enabling more concise, readable and maintainable scientific applications. The library achieves

high performance by translating the application into targeted low-level coding implementations. Here, the main goal5

is to study the correctness and performance-portability of the Python rewrites with GT4Py against the reference

Fortran code and a number of automatically and manually ported variants created by ECMWF. The present work is

part of a larger cross-institutional effort to port weather and climate models to Python with GT4Py. The focus of

the current work is the IFS prognostic cloud microphysics scheme, a core physical parametrization represented by

a comprehensive code that takes a significant share of the total forecast model execution time. In order to verify10

GT4Py for Numerical Weather Prediction (NWP) systems, we put additional emphasis on the implementation and

validation of the tangent-linear and adjoint model versions which are employed in data assimilation. We benchmark

all prototype codes on three European supercomputers characterized by diverse GPU and CPU hardware, node

designs, software stacks and compiler suites. Once the application is ported to Python with GT4Py, we find excellent

portability, competitive
::::
GPU

:
performance, and robust execution in all tested scenarios including with reduced

:::::
single15

precision.

1

1 Introduction

Soon after its first public release in 1957, Fortran has become
::::::
became

:
the language of choice for weather and climate

models (Méndez et al., 2014). On the one hand, its functional
::::::::::
procedural programming style and built-in support

for multi-dimensional arrays has granted Fortran large popularity in the whole scientific computing community. On20

the other, its low-level nature guarantees fast execution of intensive mathematical operations on vector machines

and conventional Central Processing Units (CPUs). In the last decades, these characteristics have permitted to run

weather forecasts several times per day under tight operational schedules on High-Performance Computing (HPC)

systems (Neumann et al., 2019).

In recent years, in response to the simultaneous end of Moore’s law and Dennard scaling, and due to the societal25

challenge to reduce energy consumption, the computer hardware landscape has been undergoing a rapid specialization

to prevent unsustainable growth of the power envelope (Müller et al., 2019). As a result, most supercomputers

nowadays have a heterogeneous node design, where energy-efficient accelerators such as Graphics Processing Units

(GPUs) co-exist with traditional CPUs. Because Fortran has been conceived with CPU-centric machines in mind,

efficient programming of hybrid HPC platforms using the core Fortran language can be challenging (Méndez et al.,30

2014; Lawrence et al., 2018). Indeed, the sustained performance of legacy weather and climate model codes written in

Fortran has decreased over the decades (Schulthess et al., 2018), revealing the urgency for algorithmic and software

adaptations to remain competitive in the medium and long term (Bauer et al., 2021).

Compiler directives (or pragmas) are an attractive solution for parallelization, both to spread a workload across

multiple CPU threads, and to offload data and computations to GPU. The most famous incarnations of this35

programming paradigm are OpenMP (Dagum and Menon, 1998) and OpenACC (Chandrasekaran and Juckeland,

2017). Because compiler directives accommodate incremental porting and enable non-disruptive software development

workflows, they are adopted by many weather and climate modeling groups, who are facing the grand challenge of

accelerating large code-bases with thousands of source files and millions of lines of code, which stem from decades of

scientific discoveries and software developments (Lapillonne et al., 2017, 2020; Randall et al., 2022). In order not to40

threaten the overall readability of the code by exposing low-level instructions, the annotation of Fortran codes with

compiler directives can be automated in the pre-processor step of the compilation process using tools such as the

CLAW compiler (Clement et al., 2019) or the ECMWF source-to-source translation tool Loki1. Although pragma-

based programming models can support intrusive hardware-specific code transformations, additional specialized

1github.com/ecmwf-ifs/loki

2

github.com/ecmwf-ifs/loki

optimizations may still be required, which could finally lead to code duplication and worsen maintainability (Dahm45

et al., 2023). Moreover, performance and portability are much dependent on the level of support and optimization

offered by the compiler stack.

On the contrary, domain-specific languages (DSLs) separate the code describing the science from the code actually

executing on the target hardware, thus enabling performance-portability, namely application codes that achieve

near-optimal performance on a variety of computer architectures (Deakin et al., 2019). Large portions of many50

modeling systems are being rewritten using multiple and diverse DSLs, not necessarily embedded in Fortran. For

instance, the dynamical core of the weather prediction model from the COnsortium for Small-scale MOdeling

(COSMO; Baldauf et al., 2011) has been rewritten in C++ using the GridTools library (Afanasyev et al., 2021) to

port stencil-based operators to GPUs (Fuhrer et al., 2014, 2018). Similarly, HOMMEXX-NH (Bertagna et al., 2020)

is an architecture-portable C++ implementation of the non-hydrostatic dynamical core of the Energy Exascale Earth55

System model (E3SM; Taylor et al., 2020) harnessing the Kokkos library to express on-node parallelism (Edwards

et al., 2014). The GungHo project for a new dynamical core at the UK Met Office
::::::::::::::::::::::::
(Melvin et al., 2019, 2024) blends

the LFRic infrastructure with the PSyclone code generator (Adams et al., 2019). Pace (Ben-Nun et al., 2022; Dahm

et al., 2023) is a Python rewrite of the Finite-Volume Cubed-Sphere Dynamical Core (FV3; Harris and Lin, 2013)

using GT4Py to accomplish performance-portability and productivity. Similarly, various Swiss partners including60

MeteoSwiss, ETH Zurich and CSCS are porting the ICOsahedral Non-hydrostatic modeling framework (ICON; Zängl

et al., 2015) to GT4Py (Luz et al., 2024). In another related project (Kühnlein et al., 2023), a next-generation model

for the IFS at ECMWF is developed in Python with GT4Py building on FVM (Smolarkiewicz et al., 2016; Kühnlein

et al., 2019).

The focus of the portability efforts mentioned above is the model dynamical core - the part of the model solving65

numerically the fundamental nonlinear fluid-dynamics equations. In the present work, we turn the attention to

physical parametrizations - which account for the representation of subgrid-scale processes - and additionally address

the associated tangent-linear and adjoint algorithms. Parametrizations are being commonly ported to accelerators

using OpenACC (e.g., Fuhrer et al., 2014; Yang et al., 2019; Kim et al., 2021). Wrappers around low-level legacy

physics codes might then be designed to facilitate adoption within higher-level workflows (Monteiro et al., 2018;70

McGibbon et al., 2021). Lately, first attempts at refactoring physical parametrizations with respect to portability

have been documented in the literature. For instance, Watkins et al. (2023) presented a rewrite of the MPAS-Albany

Land Ice (MALI) ice-sheet model using Kokkos. Here, we present a Python implementation of the cloud microphysics

3

schemes CLOUDSC
:::::::::::::::::::
(Ubbiali et al., 2024c) and CLOUDSC2

:::::::::::::::::::
(Ubbiali et al., 2024d), which are part of the physics

suite of the IFS at ECMWF2. Details on the formulation and validation of the schemes are discussed in Section 2.75

The proposed Python implementations build upon the GT4Py toolchain, and in the remainder of the paper we use

the term CLOUDSC-GT4Py to refer to the GT4Py rewrite of CLOUDSC, while the GT4Py ports of the nonlinear,

tangent-linear and adjoint formulations of CLOUDSC2 are collectively referred to as CLOUDSC2-GT4Py. The

working principles of the GT4Py framework are illustrated in Section 3, where we also advocate the advantages offered

by domain-specific software approaches. Section 4 sheds some light on the infrastructure code
:::::::::::::::::::
(Ubbiali et al., 2024b),80

and how it can enable composable and reusable model components. In Section 5, we compare the performance of

CLOUDSC-GT4Py and CLOUDSC2-GT4Py, as measured on three leadership-class GPU-equipped supercomputers,

to established implementations in Fortran and C/C++. We conclude the paper with final remarks and future

development paths.

2 Defining the targeted scientific applications85

Several physical and chemical mechanisms occurring in the atmosphere are active on spatial scales that are significantly

smaller than the highest affordable model resolution. It follows that these mechanisms cannot be properly captured

by the resolved model dynamics, but need to be parametrized. Parametrizations express the bulk effect of subgrid-

scale phenomena on the resolved flow in terms of the grid-scale variables. The equations underneath physical

parametrizations are based on theoretical and semi-empirical arguments, and their numerical treatment commonly90

adheres to the single-column abstraction, so that adjustments can only happen within individual columns, with no

data dependencies between columns. The atmospheric module of the IFS includes parametrizations dealing with

the radiative heat transfer, deep and shallow convection, clouds and stratiform precipitation, surface exchange,

turbulent mixing in the planetary boundary layer, subgrid-scale orographic drag, non-orographic gravity wave drag,

and methane oxidation (ECMWF, 2023).95

The focus of this paper is on the cloud microphysics modules of the ECMWF: the CLOUDSC – used in operational

forecasting – and the CLOUDSC2 – employed in the data assimilation. The motivation is three-fold: (i) both schemes

are among the most computationally expensive parametrizations, with the CLOUDSC accounting for up to 10%

of the total execution time of the high-resolution operational forecasts at ECMWF; (ii) they are representative

of the computational patterns ubiquitous in physical parametrizations; and (iii) they already exist in the form of100
2As we mention in Section 2, the versions of CLOUDSC and CLOUDSC2 considered in this study correspond to older release cycles

of the IFS than the one currently used in production.

4

dwarfs. The weather and climate “computational dwarfs”, or simply “dwarfs”, are model components shaped into

stand-alone software packages to serve as archetypes of relevant computational motifs (Müller et al., 2019) and

provide a convenient platform for performance optimizations and portability studies (Bauer et al., 2020). In recent

years, the Performance and Portability Team of ECMWF created the CLOUDSC and CLOUDSC2 dwarfs. The

original Fortran codes for both packages, corresponding respectively to the IFS Cycle 41r2 and 46r1, have been105

pulled out of the IFS codebase, slightly polished3 and finally made available in public code repositories4. Later, the

repositories have been enriched with alternative coding implementations, using different languages and programming

paradigms; the most relevant implementations will be discussed in Section 5.

2.1 CLOUDSC: Cloud microphysics of the forecast model

The CLOUDSC is a single-moment cloud microphysics scheme that parametrizes stratiform clouds and their110

contribution to surface precipitation (ECMWF, 2023). It was implemented in the IFS Cycle 36r4 and has been

operational at ECMWF since November 2010. Compared to the pre-existing scheme, it accounts for five prognostic

variables (cloud fraction, cloud liquid water, cloud ice, rain and snow) and brings substantial enhancements in

different aspects, including treatment of mixed-phase clouds, advection of precipitating hydrometeors (rain and snow),

physical realism, and numerical stability (Nogherotto et al., 2016). For a comprehensive description of the scheme,115

we refer the reader to Forbes et al. (2011) and the references therein. For all the coding versions considered in this

paper, including the novel Python rewrite, the calculations are validated by direct comparison of the output against

serialized language-agnostic reference data provided by ECMWF.

2.2 CLOUDSC2: Cloud microphysics in the context of data assimilation

The CLOUDSC2 scheme represents a streamlined version of CLOUDSC, devised for use in the four-dimensional120

variational assimilation (4D-Var) at ECMWF (Courtier et al., 1994). 4D-Var merges short-term model integrations

with observations over a twelve-hour assimilation window to determine the best possible representation of the current

state of the atmosphere. This then provides the initial conditions for longer-term forecasts (Janisková and Lopez,

2023). The optimal synthesis between model and observational data is found by minimizing a cost function, which

is evaluated using the tangent-linear of the non-linear forecasting model, while the adjoint model is employed to125

compute the gradient of the cost function (Errico, 1997; Janisková et al., 1999). For the sake of computational
3

:::::::
Compared

::
to

:::
the

::::::
original

:::::::::::::
implementations

:::
run

::::::::::
operationally

::
at

::::::::
ECMWF,

::
the

:::::::::
CLOUDSC

::
&

::::::::::
CLOUDSC2

::::
dwarf

:::::
codes

::
do

:::
not

::::::
include

::
(i)

::
all

:::
the

:::::::::
IFS-specific

:::::::::::
infrastructure

::::
code,

:::
(ii)

:::
the

:::::::::
calculation

::
of

:::::
budget

:::::::::
diagnostics,

::::
and

:::
(iii)

::::
dead

::::
code

:::::
paths.

4https://github.com/ecmwf-ifs/dwarf-p-cloudsc and https://github.com/ecmwf-ifs/dwarf-p-cloudsc2-tl-ad

5

https://github.com/ecmwf-ifs/dwarf-p-cloudsc
https://github.com/ecmwf-ifs/dwarf-p-cloudsc2-tl-ad

economy, the tangent-linear and adjoint operators are derived from a simplified and regularized version of the full

non-linear model. The CLOUDSC2 is one of the physical parametrizations included in the ECMWF’s simplified model,

together with radiation, vertical diffusion, orographic wave drag, moist convection, and non-orographic gravity wave

activity (Janisková and Lopez, 2023). In the following, we provide a mathematical and algorithmic representation of130

the tangent-linear and adjoint versions of CLOUDSC2. For the sake of brevity, in the rest of the paper we will refer

to the non-linear, tangent-linear and adjoint formulations of CLOUDSC2 using CLOUDSC2NL, CLOUDSC2TL and

CLOUDSC2AD, respectively.

The Taylor test assessing the formal correctness of the coding implementation of the tangent-linear formulation

of CLOUDSC2, denoted as CLOUDSC2TL. The three-dimensional arrays x and y collect the grid point values for135

all nin input fields and nout output fields of CLOUDSC2, respectively. The corresponding variations are δx and

δy. The grid consists of ncol columns, each containing nlev vertical levels. Note that compared to its functional

counterpart F ′ [x] : δx 7→ δy, CLOUDSC2TL(x, δx) returns both y and δy. The coding implementation of the

non-linear CLOUDSC2 is indicated as CLOUDSC2NL.

total_norm ← 0 total_count ← 0 β ←
∣∣∑nlev

i=1
∑ncol

k=1 δyj (i, k, l)
∣∣ total_norm ← total_norm +

∣∣∑nlev
i=1

∑ncol
k=1 (yj (i, k, l)−y(i, k, l))

∣∣/β140

total_count ← total_count + 1 return total_norm/total_count return 0

δx ← 0.01 ∗x (y, δy) ← CLOUDSC2tl(x, δx) norms ← () jstart ← 1 yj ← CLOUDSC2nl(x + 10−j ∗ δx)

norms ← norms ∪
(
1−TotalNorm(ncol, nlev, nout, y, yj , 10−j ∗ δy)

)
jstart← j

test ← test + 10 negat ← norms(j + 1) < norms(j) test ← 11 test ← test + 7 test ← test + 5 print "The

Taylor test passed." print "The Taylor test failed."145

Let F : x 7→ y be the functional description of CLOUDSC2, connecting the input fields x with the output variables

y. The tangent-linear operator F ′ of F is derived from the Taylor series expansion

F (x + δx) = y + δy = F (x) + F ′ [x] (δx) +O
(
||δx||2

)
, (1)

where δx and δy are variations on x and y, and || · || is a suitable norm. The formal correctness of the coding

implementation of F ′ can be assessed through the Taylor test (also called the “V-shape” test), which ensures that150

the following condition is satisfied up to machine precision:

lim
λ→0

F (x + λδx)−F (x)
F ′ [x] (λδx) = 1 ∀x, δx . (2)

6

The logical steps carried out in the actual implementation of the Taylor test are sketched in Algorithm A1
::::::::::
(Appendix

::
A).

The adjoint operator F ∗ of F ′ is defined such that for the inner product < ·, ·>:155

< δx, F ∗ [y] (δy) > = < δy, F ′ [x] (δx) > ∀x, δx, y, δy . (3)

In particular, (3) must hold for y = F (x) and δy = F ′ [x] (δx):

< δx, F ∗ [F (x)] (F ′ [x] (δx)) > = < F ′ [x] (δx) , F ′ [x] (δx) > ∀x, δx . (4)

The latter condition is at the hearth
:::::
heart of the so-called symmetry test for F ∗ (see Algorithm A2

:
in
::::::::::

Appendix
::
A).

The symmetry test assessing the formal correctness of the coding implementation of the adjoint formulation of160

CLOUDSC2, denoted as CLOUDSC2AD. The machine epsilon is indicated as ε; all other symbols have the same

meaning as in Algorithm A1. Note that compared to its functional counterpart F ∗ [F (x)] : δy 7→ δx∗, CLOUDSC2AD(x, δy)

returns both y and δx∗.

c ← 0 ∈ Rncol c(i) ← c(i) +
∑ncol

k=1 a (i, k, l) ∗b(i, k, l) return c

δx ← 0.01 ∗x (y, δy) ← CLOUDSC2TL(x, δx) cy ← ColumnWiseInnerProduct(ncol, nlev, nout, δy, δy)165

(y, δx∗) ← CLOUDSC2AD(x, δy) cx ← ColumnWiseInnerProduct(ncol, nlev, nin, δx, δx∗)

success ← True c ← |cy(i)| /ε c ← |cy(i)− cx(i)| / |ε ∗ cx(i)| success ← success & c < 103 print "The symmetry

test passed." print "The symmetry test failed."

3 A domain-specific approach to scientific software development

In scientific software development, it is common practice to conceive a first proof-of-concepts implementation of a170

numerical algorithm in a high-level programming environment like MATLAB/Octave (Lindfield and Penny, 2018), or

Python. Because these languages do not require compilation and support dynamic typing, they provide a breeding

ground for fast prototyping. However, the direct adoption of interpreted languages in HPC has historically been

hindered by their intrinsic slowness. To squeeze more performance out of the underlying silicon, the initial proof-

of-concept is translated into either Fortran, C or C++. This leads to the so-called “two-language problem”, where175

the programming language used for the germinal prototyping is abandoned in favor of a faster language that might

be more complicated to use. The lower-level code can be parallelized for shared memory platforms using OpenMP

7

directives, while distributed memory machines can be targeted using Message Passing Interface (MPI) libraries. The

resulting code can later be migrated to GPUs, offering outstanding compute throughput and memory bandwidth

especially for Single Instruction Multiple Data (SIMD) applications. GPU porting is accomplished using either180

OpenACC or OpenMP directives, or via a CUDA5 or HIP6 rewriting, amongst others. To efficiently run the model at

scale on multiple GPUs, a GPU-aware MPI build should be chosen, so to possibly avoid costly memory transfers

between host and device and better overlap computations and communications.

The schematic visualization in Fig. 1a highlights how the above workflow leads to multiple implementations of the

same scientific application utilizing different programming models and coding styles. This unavoidably complicates185

software maintainability: ideally, any modification in the numerical model should be encoded in all implementations,

so to preserve the coherency across the hierarchy. The maintainability problem is exacerbated as the number of lines

of code, the pool of platforms to support, and the user-base increase. This situation has been known as the “software

productivity gap” (Lawrence et al., 2018), and we argue that it cannot be alleviated by relying on general-purpose

programming paradigms and monolithic code designs. Instead, it calls for a more synergistic collaboration between190

domain scientists (which here include model developers, weather forecasters, and weather and climate scientists) and

computer experts. A path forward is provided by DSLs through separation of concerns (Fig. 1b), so that domain

scientists can express the science using syntactic constructs that are aligned with the semantics of the application

domain and hide any architecture-specific detail. The resulting source code is thus hardware-agnostic, more concise,

easier to read, and easier to manipulate. A toolchain developed by software engineers then employs automatic code195

generation techniques to synthesize optimized parallel code for the target computer architecture in a transparent

fashion.

3.1 The GT4Py framework

GT4Py7 is a Python library to generate high-performance implementations of stencil8 kernels as found in weather and

climate applications. The library is developed and maintained by the Swiss National Supercomputing Center (CSCS),200

ETH Zurich, and the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss), and benefits from important

contributions by international partners such as the Paul Allen Institute for Artificial Intelligence (AI2). The choice of

embedding the GT4Py framework in Python has been mainly dictated by the following factors: (i) Python is taught

5https://docs.nvidia.com/cuda/
6https://rocm.docs.amd.com/projects/HIP/en/latest/
7https://github.com/GridTools/gt4py
8A stencil is an operator that computes array elements by accessing a fixed pattern of neighbouring items.

8

https://docs.nvidia.com/cuda/
https://github.com/GridTools/gt4py

Numerical model

Proof-of-concepts and basic prototyping
in MATLAB/Octave or Python

Model change

Performance
engineering

GPU porting via full re-writing (CUDA) or
compiler directives (OpenACC / OpenMP)

Performance
engineering

Multi-threaded implementation
using compiler directives (OpenMP)

Performance
engineering

Fast execution on a single CPU core
with C, C++ or FORTRAN

(a)

...

...

Domain scientists
Computer experts

Science interface
HPC implementation

Numerical model

High-level representation using a
domain specific language (DSL)

High-performance
generated code

High-performance
generated code

Model change

Performance
engineeringBackend #nPerformance

engineering Backend #1

Hierarchy of tree-like code representations
featuring different levels of abstraction

Domain-driven
optimizations

(b)

Figure 1. Diagrams comparing (a) a well-established workflow in scientific software development, and (b) a DSL-based
approach resembling the software engineering strategy advocated in this paper. The red-and-blue dashed line in (b) mark the
separation-of-concerns between the domain scientists and the computer experts.

in many academic courses due its clean, intuitive and expressive syntax, so that a significant fraction of early-career

domain scientists is
:::
are exposed to the language; (ii) it admits a powerful ecosystem of open source packages for205

building end-to-end applications; (iii) it is possible to seamlessly interface Python with lower-level languages with

minimal overhead and virtually no memory copies; (iv) under the thrust of the Artificial Intelligence and Machine

Learning community (AI/ML), the popularity and adoption of Python across the whole scientific community is

constantly growing, as opposed to Fortran (Shipman and Randles, 2023). The proposed Python implementations of

CLOUDSC and CLOUDSC2 are based on the first public release of GT4Py, which only supports Cartesian grids.210

Latest advancements to support unstructured meshes (contained in the sub-package gt4py.next) are not discussed

in this study.

Figure 2 showcases the main steps undertaken by the GT4Py toolchain to translate the high-level definition of the

horizontal Laplacian operator into optimized code, which can be directly called from within Python. The stencil

definition is given as a regular Python function using the GTScript DSL. GTScript abstracts
:::::
spatial

:
for-loops away:215

computations are described for a single point of a three-dimensional Cartesian grid, and can be differentiated for

the vertical boundaries
:::::::::
controlled

::::
with

:::::::
respect

:::
to

:::
the

:::::::
vertical

::::::
index

:::::::
bounds

:
using the interval context manager.

Vertical loops are replaced by computation contexts, which define the iteration order along the vertical axis: either

PARALLEL (meaning no vertical data dependencies between horizontal planes), FORWARD or BACKWARD. Each assignment

statement within a computation block can be thought of as a loop over a horizontal plane; no horizontal data220

9

GTIR

IIR

GridTools
(CPU)

 Frontend

NumPy DaCe
(GPU)

Vectorized
Python

laplacian(phi, lap, origin=(1, 1, 0), domain=(nx-2, ny-2, nz))

 Code generation

Optimized
C++

Optimized
C++

Backends

@gt4py.cartesian.gtscript.stencil(backend="...")
def laplacian(
 in_phi: gt4py.cartesian.gtscript.Field[float],
 out_lap: gt4py.cartesian.gtscript.Field[float]
) -> None:
 with computation(PARALLEL), interval(1, -1):
 out_lap[0, 0, 0] = - 6.0 * in_phi[0, 0, 0] \
 + in_phi[-1, 0, 0] + in_phi[1, 0, 0] \
 + in_phi[0, -1, 0] + in_phi[0, 1, 0] \
 + in_phi[0, 0, -1] + in_phi[0, 0, 1]

DaCe
 (CPU)

Optimized
C++/CUDA

 Optimizations

GridTools
(GPU)

Optimized
C++/CUDA

 Bindings

Figure 2. Simplified view on the internal stages carried out by the GT4Py toolchain to generate a high-performance CPU or
GPU implementation of the horizontal

::::::::::::::
three-dimensional

:
Laplacian stencil starting from its GTScript definition. For the sake

of visualization, only two intermediate representations (IRs) are included: the GridTools IR (GTIR) and the Implementation
IR (IIR).

dependencies are allowed. Neighbouring points are accessed through relative offsets, with the first two offsets being

the horizontal offsets, and the last offset being the vertical offset.

Any function marked with the gt4py.cartesian.gtscript.stencil decorator is translated by the GT4Py

frontend into a hierarchy of tree-like Intermediate Representations (IRs), featuring different levels of abstractions

to accommodate diverse optimizations and transformations (Gysi et al., 2021). The lowest-level IR (denoted as225

Implementation IR, or IIR) is consumed by the backends to generate code that is either optimized for a given

architecture or suited to a specific purpose. The following backends are currently available:

– NumPy (Harris et al., 2020) is the de facto standard for array computing in Python, and can be used for

debugging and fast-prototyping;

– GridTools (Afanasyev et al., 2021) is a set of libraries and utilities to write performance-portable applications230

in the area of weather and climate;

10

– DaCe (Ben-Nun et al., 2019) is a parallel programming framework, which internally uses the Stateful DataFlow

multiGraph (SDFG) data-centric intermediate representation to decouple domain science and performance

engineering.

The generated code is compiled under the hood, and Python bindings for the resulting executable are automatically235

produced, so that the stencil can finally be executed by passing the input and output fields and by specifying the

origin and size of the computation domain. GT4Py provides convenient utilities to allocate arrays with an optimal

memory layout for any given backend, relying on NumPy for CPU storages and CuPy (Nishino and Loomis, 2017)

for GPU storages. Concerning GPU computing, we highlight that GT4Py supports both NVIDIA and AMD GPUs.

A more realistic and pertinent code sample is provided in Listing 1. It is an abridged GT4Py implementation of240

the procedure computing the saturation water vapor pressure as a function of air pressure and temperature. The

code is extracted from the CLOUDSC2-GT4Py dwarf and highlights two additional features of GTScript: functions

and external symbols. Functions can be thought of as macros, and can be used to improve composability, reusability

and readability. External symbols are used to encode those scalar parameters (e.g. physical constants) that are kept

constant throughout a simulation, and might only change between different model setups. External values must245

be provided at stencil compilation time. The functionalities provided by the package ifs_physics_common will be

discussed in the following section.

4 Infrastructure code

All stencils of CLOUDSC-GT4Py and CLOUDSC2-GT4Py are defined, compiled and invoked within classes that

leverage the functionalities provided by the Sympl package (Monteiro et al., 2018). Sympl is a toolset of Python250

utilities to write self-contained and self-documented model components. Because the components share a common

Application Public Interface (API), they favor modularity, composability and inter-operability (Schär et al., 2019).

These aspects are of utter importance, for instance, when it comes to assessing the impact of process coupling on

weather forecasts and climate projections (Ubbiali et al., 2021).

Sympl components interact through dictionaries whose keys are the names of the model variables (fields), and255

whose values are xarray’s DataArrays (Hoyer and Hamman, 2017) collecting the grid point values, the labelled

dimensions, the axis coordinates, and the units for those variables. The most relevant component exposed by Sympl

is TendencyComponent, producing tendencies for prognostic variables and retrieving diagnostics. The class defines a

11

Listing 1 GTScript (the Python-embedded DSL exposed by GT4Py) functions and stencil computing the saturation
water vapor pressure given the air pressure and temperature. Abridged excerpt from the CLOUDSC2-GT4Py dwarf.

@gt4py.cartesian.gtscript.function
def \DIFdelbegin \DIFdel{foealfcu}\DIFdelend \DIFaddbegin \DIFadd{foealfa}\DIFaddend (t):

from __externals__ import \DIFdelbegin \DIFdel{RTICECU}\DIFdelend \DIFaddbegin \DIFadd{RTICE}\DIFaddend , RTWAT, RTWAT_R\DIFdelbegin \DIFdel{TICECU}\DIFdelend \DIFaddbegin \DIFadd{TICE}\DIFaddend _R
return min(1.0, ((max(\DIFdelbegin \DIFdel{RTICECU}\DIFdelend \DIFaddbegin \DIFadd{RTICE}\DIFaddend , min(RTWAT, t)) - \DIFdelbegin \DIFdel{RTICECU}\DIFdelend \DIFaddbegin \DIFadd{RTICE}\DIFaddend) * RTWAT_R\DIFdelbegin \DIFdel{TICECU}\DIFdelend \DIFaddbegin \DIFadd{TICE}\DIFaddend _R) ** \DIFdelbegin \DIFdel{2}\DIFdelend \DIFaddbegin \DIFadd{2.0}\DIFaddend)

@gt4py.cartesian.gtscript.function
def foeewmcu(t):

from __externals__ import R2ES, R3IES, R3LES, R4IES, R4LES, RTT
return R2ES * (

foealfcu(t) * exp(R3LES * (t - RTT) / (t - R4LES))
+ (\DIFdelbegin \DIFdel{1 }\DIFdelend \DIFaddbegin \DIFadd{1.0 }\DIFaddend - foealfcu(t)) * (exp(R3IES * (t - RTT) / (t - R4IES)))

)

@ifs_physics_common.framework.stencil.stencil_collection("saturation")
def saturation(

in_ap: gtscript.Field[float], in_t: gtscript.Field[float], out_qsat: gtscript.Field[float]
):

from __externals__ import LPHYLIN, QMAX, R2ES, R3IES, R3LES, R4IES, R4LES, RETV, RTT
with computation(PARALLEL), interval(...):

if LPHYLIN: # linearized physics
alfa = foealfa(in_t)
foeewl = R2ES * exp(R3LES * (in_t - RTT) / (in_t - R4LES))
foeewi = R2ES * exp(R3IES * (in_t - RTT) / (in_t - R4IES))
foeew = alfa * foeewl + (\DIFdelbegin \DIFdel{1 }\DIFdelend \DIFaddbegin \DIFadd{1.0 }\DIFaddend - alfa) * foeewi
qs = min(foeew / in_ap, QMAX)

else:
ew = foeewmcu(in_t)
qs = min(ew / in_ap, QMAX)

out_qsat[0, 0, 0] = qs / (1.0 - RETV * qs)

minimal interface to declare the list of input and output fields, and initialize and run an instance of the class. This

imposes minor constraints on model developers when writing a new physics package.260

The bespoke infrastructure code for CLOUDSC-GT4Py and CLOUDSC2-GT4Py is bundled as an installable

Python package called ifs_physics_common. Not only it builds
:::
does

::
it
:::::
build

:
upon Sympl, but is also extends it with

:::
the

:::::::
package

::::
also

::::::::
provides

:
grid-aware and stencil-oriented functionalities. Both the CLOUDSC cloud microphysics and

the non-linear, tangent-linear and adjoint formulations of CLOUDSC2 are encoded as stand-alone TendencyComponent

classes settled over a ComputationalGrid. The latter is a collection of index spaces for different grid locations. For265

instance, (I, J, K) corresponds to cell centers, while (I, J, K-1/2) denotes vertically-staggered grid points. For any

input and output field, its name, units and grid location are specified as class properties. When running the component

12

Listing 2 A Python class to compute the saturation water vapor pressure given the air pressure and temperature.
Abridged excerpt from the CLOUDSC2-GT4Py dwarf.

import cupy as cp
from functools import cached_property
import numpy as np
from typing import Optional, Union
from ifs_physics_common.framework.components import DiagnosticComponent
from ifs_physics_common.framework.config import GT4PyConfig
from ifs_physics_common.framework.grid import ComputationalGrid, I, J, K

type alias originally defined in ifs_physics_common.utils.typingx
StorageDict = dict[str, Union[cp.ndarray. np.ndarray]]

class Saturation(DiagnosticComponent):
def __init__(

self,
computational_grid: ComputationalGrid,
lphylin: bool,
yoethf_parameters: Optional[dict[str, float]] = None,
yomcst_parameters: Optional[dict[str, float]] = None,
gt4py_config: GT4PyConfig,

) -> None:
super().__init__(computational_grid, gt4py_config)
externals = {"LPHYLIN": lphylin, "QMAX": 0.5}
externals.update(yoethf_parameters or {})
externals.update(yomcst_parameters or {})
self.saturation = self.compile_stencil("saturation", externals)

@cached_property
def _input_properties(self):

return {"ap": {"grid": (I, J, K), "units": "Pa"}, "t": {"grid": (I, J, K), "units": "K"}}

@cached_property
def _diagnostic_properties(self):

return {"qsat": {"grid": (I, J, K), "units": "g g^-1"}}

def array_call(self, state: StorageDict, out: StorageDict) -> None:
self.saturation(

in_ap=state["ap"],
in_t=state["t"],
out_qsat=out["qsat"],
origin=(0, 0, 0),
domain=self.computational_grid.grids[I, J, K].shape,

)

13

via the dunder method __call__, Sympl transparently extracts the raw data from the input DataArrays according

to the information provided in the class definition. This step may involve units conversion and axis transposition.

The resulting storages are forwarded to the method array_call, which carries out the actual computations, possibly270

by executing GT4Py stencil kernels.

Listing 2 brings a concrete example from CLOUDSC2-GT4Py: a model component leveraging the stencil defined in

Listing 1 to compute the saturation water vapor pressure. The class inherits DiagnosticComponent, a stripped-down

version of TendencyComponent, which only retrieves diagnostic quantities. Within the instance initializer __init__, the

stencil from Listing 1, registered using the decorator ifs_physics_common.framework.stencil.stencil_collection,275

is compiled using the utility method compile_stencil. The options configuring the stencil compilation (e.g. the

GT4Py backend) are fetched from the dataclass GT4PyConfig.

5 Performance analysis

In this section, we highlight the results from a comprehensive performance testing. We compare the developed

CLOUDSC-GT4Py and CLOUDSC2-GT4Py codes against reference Fortran versions and various other programming280

prototypes. The simulations were performed on three different supercomputers:

(i) Piz Daint9, an HPE Cray XC40/XC50 system installed at CSCS in Lugano, Switzerland;

(ii) MeluXina10, an ATOS BullSequana XH2000 machine hosted by LuxConnect in Bissen, Luxembourg, and

procured by the EuroHPC Joint Undertaking (JU) initiative;

(iii) the Cray HPE EX235a supercomputer LUMI11, an EuroHPC pre-exascale machine at the Science Information285

Technology Center (CSC) in Kajaani, Finland.

On each machine, the CLOUDSC and CLOUDSC2 applications are executed on a single hybrid node, that sports one

or multiple GPU accelerators alongside the host CPU. An overview of the node architectures for the three considered

supercomputers can be found in Table 1.

Besides the GT4Py codes, we involve up to four alternative lower-level programming implementations, which will290

be documented in an upcoming publication.

(a) The baseline Fortran version, enriched with OpenMP directives for multi-threading execution on CPU.
9https://www.cscs.ch/computers/piz-daint

10https://docs.lxp.lu/
11https://docs.lumi-supercomputer.eu/

14

https://www.cscs.ch/computers/piz-daint
https://docs.lxp.lu/
https://docs.lumi-supercomputer.eu/

System CPU GPU RAM NUMA domains
Piz Daint 1x Intel Xeon E5-2690v3 12c 1x NVIDIA Tesla P100 16GB 64 GB 1
MeluXina 2x AMD EPYC Rome 7452 32c 4x NVIDIA Tesla A100 40GB 512 GB 4

LUMI 1x AMD EPYC Trento 7A53 64c 4x AMD Instinct MI250X 512 GB 8
Table 1. Overview of the node architecture for the hybrid partition of Piz Daint, MeluXina and LUMI. Only the technical
specifications which are most relevant for the purposes of this paper are reported.

(b) An optimized GPU-enabled version based on OpenACC using the single-column coalesced (SCC) loop layout

in combination with loop fusion and temporary local array demotion (so-called “k-caching”). While the SCC

loop layout yields more efficient access to device memory and increased parallelism, the k-caching technique295

significantly reduces register pressure and memory traffic. This is achieved via loop fusion to eliminate most

loop-carried dependencies and consequently allows to demote temporaries to scalars.

(c) The currently best-performing Loki generated and GPU-enabled variant.

(d) An optimized GPU-enabled version of CLOUDSC including k-caching. The code is written either in CUDA or

HIP, to target both NVIDIA GPUs (shipped with Piz Daint and MeluXina) and AMD GPUs (available on300

LUMI).

Table 2 documents the compiler specifications employed for each of the programming implementations, on Piz Daint,

MeluXina and LUMI. We consistently apply the most aggressive optimization, ensuring that the underlying code

manipulations do not harm validation. For the different algorithms at consideration, validation is carried out as

follows.305

– For CLOUDSC and CLOUDSC2NL, the results from each coding version are directly compared with serialized

reference data produced on the CPU. For each output field, we perform an element-wise comparison using the

NumPy function allclose12. Specifically, the GT4Py rewrites validate on both CPU and GPU with an absolute

and relative tolerance of 10−12 and 10−18 when employing double precision. When reducing the precision to

32-bits, the absolute and relative tolerance levels need to be increased to 10−4 and 10−7 on CPU, and 10−2310

and 10−7 on GPU. In the latter case, we observe that the field representing the enthalpy flux of ice still does

not pass validation. We attribute the larger deviation from the baseline data on the device to the different

instruction sets underneath CPUs and GPUs.

12https://numpy.org/devdocs/reference/generated/numpy.allclose.html

15

https://numpy.org/devdocs/reference/generated/numpy.allclose.html

Implementation CLOUDSC CLOUDSC2: Non-linear CLOUDSC2: Symmetry test

P
iz

D
ai

nt
Fortran: OpenMP (CPU) Intel Fortran 2021.3.0 Intel Fortran 2021.3.0 Intel Fortran 2021.3.0

Fortran: OpenACC (GPU) NVIDIA Fortran 21.3-0 - -
Fortran: Loki (GPU) NVIDIA Fortran 21.3-0 NVIDIA Fortran 21.3-0 -

C: CUDA (GPU) NVIDIA CUDA 11.2.67 - -
GT4Py: CPU k-first g++ (GCC) 10.3.0 g++ (GCC) 10.3.0 g++ (GCC) 10.3.0

GT4Py: DaCe (GPU) NVIDIA CUDA 11.2.67 NVIDIA CUDA 11.2.67 NVIDIA CUDA 11.2.67

M
el

uX
in

a

Fortran: OpenMP (CPU) NVIDIA Fortran 22.7-0 NVIDIA Fortran 22.7-0 -
Fortran: OpenACC (GPU) NVIDIA Fortran 22.7-0 - -

Fortran: Loki (GPU) NVIDIA Fortran 22.7-0 NVIDIA Fortran 22.7-0 -
C: CUDA (GPU) NVIDIA CUDA 11.7.64 - -

GT4Py: CPU k-first g++ (GCC) 11.3.0 g++ (GCC) 11.3.0 g++ (GCC) 11.3.0
GT4Py: DaCe (GPU) NVIDIA CUDA 11.7.64 NVIDIA CUDA 11.7.64 NVIDIA CUDA 11.7.64

L
U

M
I

Fortran: OpenMP (CPU) Cray Fortran 14.0.2 Cray Fortran 14.0.2 Cray Fortran 14.0.2
Fortran: OpenACC (GPU) Cray Fortran 14.0.2 - -

Fortran: Loki (GPU) Cray Fortran 14.0.2 Cray Fortran 14.0.2 -
C: HIP (GPU) Cray C/C++ 15.0.1 - -

GT4Py: CPU k-first Cray C/C++ 15.0.1 Cray C/C++ 15.0.1 Cray C/C++ 15.0.1
GT4Py: DaCe (GPU) Cray C/C++ 15.0.1 Cray C/C++ 15.0.1 Cray C/C++ 15.0.1

Table 2. For each coding version of the CLOUDSC and CLOUDSC2 dwarfs considered in the performance analysis, the table
reports the compiler suite used to compile the codes on Piz Daint, MeluXina and LUMI. The codes are compiled with all
major optimization options enabled. Those implementations which are either not available or not working are marked with a
dash; more details, as well as a high-level description of each coding implementation, are provided in the text.

– All implementations of CLOUDSC2TL and CLOUDSC2AD are validated using the Taylor test (cf. Algorithm

A1) and the symmetry test (cf. Algorithm A2), respectively. However, the
::
In

::::
this

:::::::
respect,

:::
we

:::::::::
emphasize

:::::
that315

:::
the

:::::::
GT4Py

:::::::::::::::
implementations

::::::
satisfy

::::
the conditions of both tests are not satisfied when using single precision

. This is not surprising, since both tests are highly sensitive to round-off errors. Nevertheless, performance

numbers for the execution of the algorithms were taken.
::
on

::
all

::::::::::
considered

::::::::::
computing

::::::::::::
architectures,

::::::::::
regardless

::
of

:::::::
whether

:::::::
double

::
or

::::::
single

::::::::
precision

::
is

:::::::::
employed.

:

The source repositories for CLOUDSC and CLOUDSC2 dwarfs may include multiple variants of each reference320

implementation, varying for the optimization strategies. In our analysis, we always take into account the fastest

variant of each alternative implementation; for the sake of reproducibility, Table 3 contains the strings identifying the

coding versions at consideration and the corresponding NPROMA13 employed in the runs.
::::::::
Similarly,

:::
for

:::
all

:::::::
Python

13
:::::::
NPROMA

:::::::
blocking

::
is

:
a
::::
cache

::::::::::
optimization

::::::::
technique

::::::
adopted

::
in

::
all

::::::
Fortran

:::::
codes

::::::::
considered

::
in

:::
this

:::::
paper.

:::::
Given

:
a
:::::::::::::
two-dimensional

::::
array

::::::
shaped

:::::::::
(K ∗ M, N),

:::
this

::
is
:::::::::
re-arranged

::
as
::

a
::::::::::::::
three-dimensional

::::
array

::::::
shaped

:::::::::
(K, M, N).

:::::::::
Commonly,

:::
the

::::::
leading

::::::::
dimension

::
of

:::
the

:::::::::::::
three-dimensional

::::
array

::
is
:::::
called

::::::::::
“NPROMA”,

::::
with

::
K

::::
being

:::
the

:::::::::
“NPROMA

:::::::
blocking

::::::
factor”.

::::
Here,

:::
we

::::::
indicate

::
K

:::::
simply

::
as

::::::::::
“NPROMA”

16

Implementation CLOUDSC CLOUDSC2: Non-linear CLOUDSC2: Symmetry test

P
iz

D
ai

nt
Fortran: OpenMP (CPU) fortran (32) nl (32) ad (32)

Fortran: OpenACC (GPU) gpu-scc-k-caching (128) - -
Fortran: Loki (GPU) loki-scc-cuf-hoist (128) nl-loki-scc-hoist (64) -

C: CUDA (GPU) cuda-k-caching (128) - -

M
el

uX
in

a Fortran: OpenMP (CPU) fortran (32) nl (32) -
Fortran: OpenACC (GPU) gpu-scc-k-caching (128) - -

Fortran: Loki (GPU) loki-scc-cuf-hoist (128) nl-loki-scc-hoist (128) -
C: CUDA (GPU) cuda-k-caching (128) - -

L
U

M
I

Fortran: OpenMP (CPU) fortran (32) nl (32) ad (32)
Fortran: OpenACC (GPU) gpu-scc-k-caching (256) - -

Fortran: Loki (GPU) loki-scc-hoist (256) nl-loki-scc-hoist (256) -
C: HIP (GPU) hip-k-caching (64) - -

Table 3. For each reference implementation of the CLOUDSC and CLOUDSC2 dwarfs, the table reports the string identifying
the specific variant considered in the performance analysis on Piz Daint, MeluXina and LUMI. The corresponding NPROMA
is provided within parentheses. Those implementations which are either not available or not working are marked with a dash.

::::::::::::::
implementations

:::
we

::::::::
consider

::::
only

::::
the

::::
most

:::::::::::
performant

::::::::
backends

::
of

::::::::
GT4Py:

:::
the

::::::::::
GridTools

:::::
C++

:::::
CPU

:::::::
backend

:::::
with

:::::
k-first

::::::::
memory

:::::::
layout,

:::
and

::::
the

:::::
DaCe

:::::
GPU

:::::::::
backend.325

For the interpretation of the CPU versus GPU performance numbers, we note that host codes are executed on all the

cores available on a single Non-Uniform Memory Access (NUMA) domain of a compute node, while device codes are

launched on the GPU attached to that NUMA domain. In a distributed-memory context, this choice allows to fit the

same number of MPI ranks per node, either on CPU or GPU. Table 1 reports the number of NUMA partitions per

node for Piz Daint, MeluXina and LUMI, with the compute and memory resources being evenly distributed across330

the NUMA domains. Note that the compute nodes of the GPU partition of LUMI have the low-noise mode activated,

which reserves one core per NUMA domain to the operating system, so that only 7 out of 8 cores are available to the

jobs. Moreover,
::
we

::::::::
highlight

::::
that

:
each MI250X GPU is split into two

::::::
consists

:::
of

:::
two

:::::::::
Graphics

::::::::
Compute

:::::
Dies

:::::::
(GCDs)

:::::::::
connected

:::
via

::::
four

::::::
AMD

:::::::
Infinity

::::::
Fabric

:::::
links

::::
but

:::
not

:::::::
sharing

::::::::
physical

::::::::
memory.

:::::
From

::
a
::::::::
software

:::::::::::
perspective,

:::::
each

:::::::
compute

:::::
node

:::
of

:::::
LUMI

::
is
:::::::::
equipped

:::::
with

:
8
:
virtual GPUs (vGPUs), with each vGPU

::::::::::::
corresponding

::
to

::
a
::::::
single

:::::
GCD335

:::
and

:
assigned to a different NUMA domain.

Figures 3-5 visualize the execution times for CLOUDSC (left column), CLOUDSC2NL (center column) and

the symmetry test for CLOUDSC2TL and CLOUDSCAD (right column) for Piz Daint, MeluXina and LUMI,

::
for

:::
the

:::
sake

::
of

::::::
brevity.

:::
For

::::::
further

:::::::
discussion

::
of
:::
the

::::::::
NPROMA

:::::::
blocking,

:::
we

:::
refer

:::
the

:::::
reader

::
to

::::::::::::::::
Müller et al. (2019)

::
and

:::::::::::::::
Bauer et al. (2020)

.

17

0

180

360

540

720

900
Ru

nt
im

e
[m

s]

500.68

42.00 68.02 33.00

772.18

55.53

(a) CLOUDSC (FP64)

0

80

160

240

320

400

163.94

18.00

356.34

11.95

(b) CLOUDSC2: Non-linear (FP64)

0

400

800

1200

1600

2000

1040.18

1718.10

92.14

(c) CLOUDSC2: Symmetry test (FP64)

0

180

360

540

720

900

Ru
nt

im
e

[m
s]

327.24

22.00 37.00

622.12

31.59

(d) CLOUDSC (FP32)

0

80

160

240

320

400

278.95

7.83

(e) CLOUDSC2: Non-linear (FP32)

0

400

800

1200

1600

2000

1443.65

55.44

(f) CLOUDSC2: Symmetry test (FP32)

Fortran: OpenMP (CPU)
Fortran: OpenACC (GPU)

Fortran: Loki (GPU)
C: CUDA

GT4Py: CPU k-first
GT4Py: DaCe (GPU)

Figure 3. Execution time on a single NUMA domain of a hybrid node of the Piz Daint supercomputer for CLOUDSC (left
column), CLOUDSC2NL (center column) and the symmetry test for CLOUDSC2TL and CLOUDSC2AD (right column)
using either double precision (top row) or single precision (bottom row) floating point arithmetic. The computational domain
consists of 65536 columns and 137 vertical levels. Displayed are the multi-threaded Fortran baseline using OpenMP (grey); two
GPU-accelerated Fortran implementations, either using OpenACC directives (lime) or the source-to-source translation tool
Loki (yellow); an optimized CUDA C version (green); and the GT4Py rewrite, either using the GridTools C++ CPU backend
with k-first data ordering (blue) or the DaCe GPU backend (orange). All numbers should be interpreted as an average over 50
realizations. The panels only show the code versions available and validating at the time of writing.

respectively14. All performance numbers refer to a grid size of 65536 columns, with each column featuring 137

vertical levels. In each figure, execution times are provided for simulations running either entirely in double precision340

(
::::::::::::
corresponding

::
to

::::
the

::::::
64-bit

:::::
IEEE

:::::::
format

::::
and

:::::::
denoted

:::
as FP64; top row) or in single precision (

::::::::::::
corresponding

:::
to

:::
the

::::::
32-bit

:::::
IEEE

::::::
format

::::
and

::::::::
denoted

::
as

:
FP32; bottom row). Within each panel, the plotted bars reflect the execution

time of the various codes, with a missing bar indicating the corresponding code (non-GT4Py) is either not available

or not working properly. Specifically,

– the Fortran version of CLOUDSC2AD can only run on a single OpenMP thread on MeluXina (the issue is still345

under investigation);

14
::::
When

::::::::
measuring

:::
the

::::::::::
performance

::
of

:::
the

::::::::
symmetry

:::
test,

:::
the

::::::::
validation

::::::::
procedure

:
–
:::::::::::

corresponding
::
to
::::

lines
:::::
11-23

::
of

::::::::
Algorithm

:::
A2

:
–

:
is
:::::::
switched

:::
off.

18

0

140

280

420

560

700
Ru

nt
im

e
[m

s]

266.16

20.70 29.08 15.32

594.71

20.62

(a) CLOUDSC (FP64)

0

40

80

120

160

200

106.80

9.32

153.54

5.77

(b) CLOUDSC2: Non-linear (FP64)

0

240

480

720

960

1200
1060.11

40.99

(c) CLOUDSC2: Symmetry test (FP64)

0

140

280

420

560

700

Ru
nt

im
e

[m
s]

205.14

8.74 16.94

495.61

11.43

(d) CLOUDSC (FP32)

0

40

80

120

160

200

108.57

3.27

(e) CLOUDSC2: Non-linear (FP32)

0

240

480

720

960

1200

740.35

23.54

(f) CLOUDSC2: Symmetry test (FP32)

Fortran: OpenMP (CPU)
Fortran: OpenACC (GPU)

Fortran: Loki (GPU)
C: CUDA

GT4Py: CPU k-first
GT4Py: DaCe (GPU)

Figure 4. As Fig. 3 but for the MeluXina supercomputer.

– a native GPU-enabled version of CLOUDSC using 32-bit floating point arithmetic does not exist at the time of

writing, and no CUDA/HIP implementations are available for CLOUDSC2;

– all Fortran-based implementations of the three formulations of CLOUDSC2 can only use double precision

computations;350

– a Loki version of CLOUDSC2TL and CLOUDSC2AD is not available at the time of writing.

Notably, we find the GT4Py rewrite of both CLOUDSC and CLOUDSC2 to be very robust, as the codes execute on

every CPU and GPU architecture included in the study, and can always employ either double or single precision

floating point arithmetic. With GT4Py, changing the backend with the respective target architecture, or changing the

precision of computations, is as easy as setting a namelist parameter. Moreover, at the time of writing the GT4Py355

implementations of the more complex tangent-linear and adjoint formulations of CLOUDSC2 were the first codes

enabling GPU execution, again both in double or single precision.

The performance of the high-level Python with GT4Py compares well against Fortran with OpenACC. The

runtimes for GT4Py with its DaCe backend versus OpenACC are similar on Piz Daint, MeluXina and LUMI. One

outlier is the double precision result on LUMI, for which the OpenACC code appears relatively slow. We suppose360

19

0

240

480

720

960

1200
Ru

nt
im

e
[m

s]

324.80

95.72142.08
29.58

971.11

40.59

(a) CLOUDSC (FP64)

0

70

140

210

280

350

140.84

15.42

288.53

5.88

(b) CLOUDSC2: Non-linear (FP64)

0

360

720

1080

1440

1800

595.92

1532.75

89.50

(c) CLOUDSC2: Symmetry test (FP64)

0

240

480

720

960

1200

Ru
nt

im
e

[m
s]

221.24

25.00
113.84

936.69

18.44

(d) CLOUDSC (FP32)

0

70

140

210

280

350

239.81

3.71

(e) CLOUDSC2: Non-linear (FP32)

0

360

720

1080

1440

1800

1325.73

48.85

(f) CLOUDSC2: Symmetry test (FP32)

Fortran: OpenMP (CPU)
Fortran: OpenACC (GPU)

Fortran: Loki (GPU)
C: HIP

GT4Py: CPU k-first
GT4Py: DaCe (GPU)

Figure 5. As Fig. 3 but for the LUMI supercomputer.

this behaviour is associated with the insufficient OpenACC support for the HPE Cray compiler. Only the HPE Cray

compiler implements GPU offloading capabilities for OpenACC directives on AMD GPUs, meaning that Fortran

OpenACC codes require an HPE Cray platform to run on AMD GPUs. In contrast, GT4Py relies on the HIPCC

compiler driver developed by AMD to compile device code for AMD accelerators, and this guarantees a proper

functioning irrespective of the machine vendor. We further note that the DaCe backend of GT4Py executes roughly365

two times faster on MeluXina’s NVIDIA A100 GPUs than on LUMI’s AMD Instinct MI250X GPUs. As mentioned

above, from a software perspective, each physical GPU module on LUMI is considered as two virtual GPUs, so that

the code is actually executed on half of a physical GPU card. We can therefore speculate that if using both dies of an

AMD Instinct MI250X GPU performance would be on par with the NVIDIA A100 GPU.

Another interesting result is that both CLOUDSC-GT4Py and CLOUDSC2-GT4Py are consistently faster than370

the implementations generated with Loki. Loki allows to build bespoke transformation recipes to apply changes to

programming models and coding styles in an automated fashion. Therefore, GPU-enabled code can be produced

starting from the original Fortran by e.g., automatically adding OpenACC directives. However, because not all

optimizations are yet encoded in the transformations, the Loki-generated device code cannot achieve optimal

20

performance. Notwithstanding, source-to-source translators such as Loki are of high relevance for enabling GPU375

execution with large legacy Fortran code bases.

As used in this paper, GT4Py cannot yet attain the performance achieved by manually optimized native imple-

mentations with either Fortran on CPU or CUDA/HIP on GPU. Multi-threaded Fortran can be up to three times

faster than the GridTools CPU backend of GT4Py using the k-first (C-like) memory layout, while the DaCe GPU

backend of GT4Py can be up to a factor of two slower than CUDA/HIP. On the one hand, so far the development380

of GT4Py has been focused on GPU execution (see e.g. Dahm et al. (2023)), because this will be the dominant

hardware for time-critical applications in the years to come. On the other hand, we stress that the k-caching CUDA

and HIP variants of CLOUDSC were semi-automatically generated by performance engineering experts, starting

from an automatic Fortran-to-C transpilation of the SCC variants and manually applying additional optimizations

that require knowledge about the specific compute patterns in the application. This process is not scalable to the full385

weather model and not a sustainable code adaptation method. In contrast, no significant performance engineering

:::
(by,

:::::
e.g.,

::::
loop

::::::
fusing

::::
and

::::::::
reducing

::::
the

:::::::
number

::
of

::::::::::
temporary

::::::
fields)

:
has been applied yet with CLOUDSC-GT4Py

and CLOUDSC2-GT4Py.

To rule out the possibility that the performance gap between the Python DSL and lower-level codes is associated

with overhead originating from Python, Fig. 6 displays the fraction of runtime spent within the stencil code generated390

by GT4Py and the high-level Python code of the application (infrastructure and framework code; see Section 4).

Across the three supercomputers, the Python overhead decreases as (i) the complexity and length of computations

increase, (ii) the peak throughput and bandwidth delivered by the hardware underneath decrease, and (iii) the

floating point precision increases. On average, the Python overhead accounts for 5.4% of the total runtime on GPU

and 0.4% on CPU
:
;
:::
the

::::::
latter

:::::::::::
corresponds

::
to

:::::
0.7%

:::::::
relative

:::
to

:::
the

:::::::
Fortran

:::::::::
execution

:::::
time.395

Finally, we observe a significant sensitivity of the GPU performance with respect to the thread block size15: for

values smaller than 128, performance is degraded across all implementations, with the gap between CUDA/HIP and

GT4Py+DaCe being smaller. This shows that some tuning and toolchain optimizations can be performed to improve

performance with the DSL approach.

15In the Fortran code, the thread block size corresponds to the NPROMA.

21

Piz Daint MeluXina LUMI0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 ru
nt

im
e

[-]
(a) CLOUDSC (FP64)

Piz Daint MeluXina LUMI

(b) CLOUDSC2: Non-linear (FP64)

Piz Daint MeluXina LUMI

(c) CLOUDSC2: Symmetry test (FP64)

Piz Daint MeluXina LUMI0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 ru

nt
im

e
[-]

(d) CLOUDSC (FP32)

Piz Daint MeluXina LUMI

(e) CLOUDSC2: Non-linear (FP32)

Piz Daint MeluXina LUMI

(f) CLOUDSC2: Symmetry test (FP32)

CPU k-first
DaCe (GPU)

Stencil computations (generated code)
Python overhead (infrastructure and framework code)

Figure 6. For the GT4Py rewrites of CLOUDSC (left column), CLOUDSC2NL (center column) and the symmetry test for
CLOUDSC2TL and CLOUDSC2AD (right column), fraction of the total execution time spent within the stencil computations
(full bars) and the Python side of the application (hatched bars) on Piz Daint, MeluXina and LUMI. Results are shown for the
GridTools C++ CPU backend with k-first data ordering (blue) and the DaCe GPU backend (orange), either using double
precision (top row) or single precision (bottom row) floating point arithmetic.

6 Conclusions400

The CLOUDSC and CLOUDSC2 cloud microphysics schemes of the IFS at ECMWF have served as demonstrators

to show the benefits of a high-level domain-specific implementation approach to physical parametrizations. We

presented two Python implementations based on the GT4Py framework, in which the scientific code is insulated from

hardware-specific aspects. The resulting application provides a productive user interface with enhanced readability

and maintainability, and can run efficiently and in a very robust manner across a wide spectrum of compute405

architectures/systems. The approach can be powerful in the light of the increasingly complex HPC technology

landscape, where general-purpose CPUs are increasingly complemented by domain-specific architectures (DSAs) such

as GPUs, Tensor Processor Units (TPUs), Field Programmable Gate Arrays (FPGAs), and Application-Specific

Integrated Circuits (ASICS). In addition to the CLOUDSC scheme used in the IFS forecast model, we have presented

results with the GT4Py rewrites of the nonlinear, tangent-linear and adjoint formulations of CLOUDSC2 used in410

data assimilation.

22

In both CLOUDSC-GT4Py and CLOUDSC2-GT4Py, the stencil kernels are encapsulated within model components

sharing a minimal and clear interface. By avoiding any assumption on the host model, the interface aims to provide

interoperable and plug-and-play physical packages, which can be transferred more easily between different modeling

systems with virtually no performance penalty.415

We carried out a comprehensive study to assess the portability of the Python codes across three major supercom-

puters, differing in terms of the vendor, the node architecture, the software stack and the compiler suites. We showed

that the GPU performance of GT4Py codes are competitive against optimized Fortran OpenACC implementations

and perform particularly well when compared to the available codes generated with the Loki source-to-source

translation tool. Low-level implementations written either in Fortran for CPUs or CUDA/HIP for GPUs, with420

additional optimizations that possibly require knowledge about the specific compute patterns, can provide better

performance, but are extremely challenging to create and maintain for entire models. The CPU performance of

GT4Py is currently suboptimal, but this is an expected result given the focus on GPUs in the DSL development so

far and we clearly expect this to improve significantly with upcoming and future GT4Py versions.
::::::
Indeed,

:::::
since

::::
the

::::
DSL

:::
can

:::::::::::::
accommodate

::::
any

:::::::
specific

::::::::
low-level

::::::::::::
optimization,

::::::::
attaining

::::
the

::::
same

::::::::::::
performance

::
as

:::::::
native,

:::::::::::::
expert-written425

:::::::
Fortran

:::
and

::::::::::::
CUDA/HIP

::::::
models

::
is
:::::::
feasible

::::
and

::::
will

:::
be

:::
the

::::::
target

::
of
::::

our
::::::
future

:::::::
efforts.

The presented results, based on a representative physical parametrization and considering tangent-linear and

adjoint versions, add to the notion that weather and climate model codes can execute significantly faster on GPUs

(Fuhrer et al., 2018), and the number of HPC systems with accelerators is steadily increasing16. Therefore, we envision

that CPUs will be increasingly relegated to tasks that are not time-critical.430

The current study supports our ongoing efforts and plans to port other physical parametrizations to Python with

GT4Py. However, we note that GT4Py has been originally devised to express the computational motifs of dynamical

cores based on grid-point methods, so not all patterns found in the parametrizations are natively supported by the

DSL. These cases may be addressed by new features added to
::
In

::::
this

::::::::
respect,

:::::::
current

::::::::::
limitations

::
of

:::
the

:::::
DSL

:::::
exist

::
for

::::::::::::::::::
higher-dimensional

:::::
fields

:::::
(e.g.,

::::::
arrays

::::::
storing

::
a
::::::
tensor

::
at

:::::
each

::::
grid

:::::::
point),

:::
but

::::::
again

:::
we

::::::
expect

:::::
these

:::
to

::
be

:::::
fully435

:::::::::
supported

:::
for

:::::
HPC

::::
with

::::::
future

::::::::::
extensions

::
of

:
GT4Pyor by resorting to other Python libraries

:
.
::
In

:::::::::
addition,

:::::::
Python

:::::
offers

:
a
:::::::
variety

::
of

::::::::::
alternative

::::::::
libraries

:::::
that

:::
can

:::
be

:::::::::
employed

::
in

:::::::::::
conjunction

:::::
with

:::::::
GT4Py

:
to generate fast machine

code.

16In the 62nd edition of the TOP500 list published in November 2023, 186 out of the 500 most powerful supercomputers in the world
use graphics accelerator technology (https://www.top500.org/lists/top500/2023/11/highs/).

23

https://www.top500.org/lists/top500/2023/11/highs/

Appendix A:
::::::::::::
Algorithmic

::::::::::::
description

:::
of

::::
the

:::::::
Taylor

::::
test

:::::
and

:::::::::::
symmetry

::::
test

::::
for

:::::::::::::
CLOUDSC2

::
In

:::::::
Section

:::
2.2,

:::
we

::::::
briefly

:::::::::
described

:::
the

::::
aim

::::
and

::::::::::
functioning

::
of

:::
the

:::::::
Taylor

:::
test

::::
and

:::
the

::::::::::
symmetry

:::
test

:::
for

::::::::::::
CLOUDSC2.440

:::::
Here,

::
we

::::::
detail

:::
the

::::::
logical

:::::
steps

:::::::::
performed

:::
by

:::
the

::::
two

:::::
tests

::::
with

:::
the

::::
help

:::
of

::::::::::::
pseudo-codes

:::::::::::
encapsulated

::
in

:::::::::::
Algorithms

:::
A1

:::
and

::::
A2.

:

24

Algorithm A1
::::
The

::::::
Taylor

::::
test

::::::::
assessing

::::
the

::::::
formal

::::::::::
correctness

::
of

::::
the

::::::
coding

::::::::::::::
implementation

:::
of

:::
the

:::::::::::::
tangent-linear

::::::::::
formulation

::
of

::::::::::::
CLOUDSC2,

:::::::
denoted

:::
as

:::::::::::::::
CLOUDSC2TL

:
.
::::
The

:::::::::::::::
three-dimensional

::::::
arrays

::
x
::::
and

:
y
:::::::
collect

:::
the

::::
grid

:::::
point

:::::
values

:::
for

:::
all

:::
nin

::::::
input

:::::
fields

:::
and

:::::
nout

::::::
output

:::::
fields

::
of

::::::::::::
CLOUDSC2,

:::::::::::
respectively.

::::
The

:::::::::::::
corresponding

:::::::::
variations

:::
are

:::
δx

:::
and

::::
δy.

::::
The

::::
grid

:::::::
consists

::
of

::::
ncol

:::::::::
columns,

::::
each

::::::::::
containing

::::
nlev

:::::::
vertical

::::::
levels.

:::::
Note

::::
that

:::::::::
compared

:::
to

::
its

::::::::::
functional

::::::::::
counterpart

:::::::::::::::
F ′ [x] : δx 7→ δy,

::::::::::::::::::::::
CLOUDSC2TL(x, δx)

::::::
returns

:::::
both

::
y
::::

and
::::

δy.
::::
The

:::::::
coding

:::::::::::::::
implementation

::
of

::::
the

:::::::::
non-linear

:::::::::::
CLOUDSC2

::
is
:::::::::
indicated

::
as

::::::::::::::::
CLOUDSC2NL.

1: function TotalNorm(ncol, nlev, nout, y, yj , δyj) ▷ y, yj , δyj ∈ Rncol×nlev×nout

2:
::::::::::::::::
total_norm ← 0

3:
::::::::::::::::
total_count ← 0

4: for l← 1 to nout do
5:

:::::::::::::::::::::::::::
β ←

∣∣∑nlev
i=1

∑ncol
k=1 δyj (i, k, l)

∣∣
:

6: if β > 0 then
7:

::
total_norm ← total_norm +

∣∣∑nlev
i=1

∑ncol
k=1 (yj (i, k, l)−y(i, k, l))

∣∣/β
:

8:
::::::::::::::::::::::::::::
total_count ← total_count + 1

:

9: if total_count > 0 then
10:

::::::
return

:::::::::::::::::::::::
total_norm/total_count

11: else
12:

::::::
return

:
0
:

13: procedure TaylorTest(ncol, nlev, nin, nout, x) ▷ x ∈ Rncol×nlev×nin

14:
:::::::::::::
δx ← 0.01 ∗x

:

15:
::::::::::::::::::::::::::::::
(y, δy) ← CLOUDSC2tl(x, δx)

:
▷ y, δy ∈ Rncol×nlev×nout

16:
::::::::::::
norms ← ()

17:
:::::::::::
jstart ← 1

18: for j← 1 to 10 do
19:

:::::::::::::::::::::::::::::::::
yj ← CLOUDSC2nl(x + 10−j ∗ δx)

:

20:
:::
norms ← norms ∪

(
1−TotalNorm(ncol, nlev, nout, y, yj , 10−j ∗ δy)

)
:

21: if jstart = 1 & norms(j) < 0.5 then
22:

:::::::::
jstart← j

:

23: test ← −10
24: negat ← True
25: for j← jstart to 9 do
26: if negat & norms(j + 1)≥ norms(j) then
27:

:::::::::::::::
test ← test + 10

:

28:
:::::::::::::::::::::::::::::::
negat ← norms(j + 1) < norms(j)

:

29: if test =−10 then
30:

::::::::::
test ← 11

31: if minjstart≤j≤10 (norms(j)) > 10−5 then
32:

::::::::::::::
test ← test + 7

:

33: if minjstart≤j≤10 (norms(j)) > 10−6 then
34:

::::::::::::::
test ← test + 5

:

35: if test≤ 5 then
36:

:::::
print

::::
"The

::::::
Taylor

::::
test

::::::::
passed."

37: else
38:

:::::
print

::::
"The

::::::
Taylor

::::
test

:::::::
failed."

25

Algorithm A2
::::
The

:::::::::
symmetry

::::
test

:::::::::
assessing

:::
the

:::::::
formal

::::::::::
correctness

::
of
::::

the
:::::::
coding

::::::::::::::
implementation

::
of

::::
the

:::::::
adjoint

::::::::::
formulation

::
of
:::::::::::::
CLOUDSC2,

:::::::
denoted

:::
as

:::::::::::::::
CLOUDSC2AD

:
.
::::
The

::::::::
machine

:::::::
epsilon

::
is

::::::::
indicated

:::
as

::
ε;

:::
all

:::::
other

::::::::
symbols

::::
have

:::
the

:::::
same

::::::::
meaning

:::
as

::
in

::::::::::
Algorithm

:::
A1.

:::::
Note

::::
that

:::::::::
compared

:::
to

::
its

::::::::::
functional

:::::::::::
counterpart

:::::::::::::::::::
F ∗ [F (x)] : δy 7→ δx∗,

:::::::::::::::::::::
CLOUDSC2AD(x, δy)

::::::
returns

:::::
both

::
y

::::
and

::::
δx∗.

1: function ColumnWiseInnerProduct(ncol, nlev, ndim, a, b) ▷ a, b ∈ Rncol×nlev×ndim

2:
:::::::::::::
c ← 0 ∈ Rncol

:

3: for l← 1 to ndim do
4: for i← 1 to ncol do
5:

:::::::::::::::::::::::::::::::::::
c(i) ← c(i) +

∑ncol
k=1 a (i, k, l) ∗b(i, k, l)

:

6:
::::::
return

:
c
:

7: procedure SymmetryTest(ncol, nlev, nin, nout, x,ε) ▷ x ∈ Rncol×nlev×nin

8:
:::::::::::::
δx ← 0.01 ∗x

:

9:
:::::::::::::::::::::::::::::::
(y, δy) ← CLOUDSC2TL(x, δx)

:
▷ y, δy ∈ Rncol×nlev×nout

10:
::::::::::::::::::::::::::::::::
(y, δx∗) ← CLOUDSC2AD(x, δy)

:
▷ x∗, δx∗ ∈ Rncol×nlev×nin

11:
:::
cy ← ColumnWiseInnerProduct(ncol, nlev, nout, δy, δy)

12:
:::
cx ← ColumnWiseInnerProduct(ncol, nlev, nin, δx, δx∗)

13:
:::::::::::::::
success ← True

:

14: for i← 1 to ncol do
15: if cx(i) = 0 then
16:

:::::::::::::
c ← |cy(i)| /ε

:

17: else
18:

:::::::::::::::::::::::::::
c ← |cy(i)− cx(i)| / |ε ∗ cx(i)|

:

19:
:::::::::::::::::::::::::::
success ← success & c < 103

:

20: if success then
21:

:::::
print

::::
"The

:::::::::
symmetry

::::
test

:::::::
passed."

22: else
23:

:::::
print

::::
"The

:::::::::
symmetry

::::
test

:::::::
failed."

Code and data availability. The source codes for ifs-physics-common (Ubbiali et al., 2024b, https://github.com/stubbiali/

ifs-physics-common), CLOUDSC-GT4Py (Ubbiali et al., 2024c, https://github.com/stubbiali/gt4py-dwarf-p-cloudsc) and

CLOUDSC2-GT4Py (Ubbiali et al., 2024d, https://github.com/stubbiali/gt4py-dwarf-p-cloudsc2-tl-ad), as well as the data445

and scripts to produce all the figures of the paper (Ubbiali et al., 2024a, https://github.com/stubbiali/cloudsc-paper), are

available on Github and archived on Zenodo.

Author contributions. SU ported the CLOUDSC and CLOUDSC2 dwarfs to Python using GT4Py and ran all the numerical

experiments presented in the paper, under the supervision of CK and HW. SU further contributed to the development of the

infrastructure code illustrated in Section 4, under the supervision of CS, LS and TCS. MS made relevant contributions to the450

26

https://github.com/stubbiali/ifs-physics-common
https://github.com/stubbiali/ifs-physics-common
https://github.com/stubbiali/ifs-physics-common
https://github.com/stubbiali/gt4py-dwarf-p-cloudsc
https://github.com/stubbiali/gt4py-dwarf-p-cloudsc2-tl-ad
https://github.com/stubbiali/cloudsc-paper

Fortran and C reference implementations of the ECMWF microphysics schemes. SU and CK wrote the paper, with feedback

from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements.
:::
We

::::::
would

:::
like

::
to

::::::
thank

::::
three

::::::::::
anonymous

:::::::
referees

:::
for

:::::::
carefully

:::::::::
reviewing

:::
the

::::::::::
manuscript

:::
and

:::::::::
providing

::::
many

:::::::::::
constructive

:::::::::
comments.

:
This study was conducted as part of the Platform for Advanced Scientific Computing (PASC)455

funded project KILOS (“Kilometer-scale non-hydrostatic global weather forecasting with IFS-FVM”), which also provided

us with computing resources on the Piz Daint supercomputer at CSCS. We
:::
CK

:::::::::::
acknowledges

:::::::
support

:::::
from

:::
the

::::::::::
ESiWACE3

::::::
project

::::::
funded

::
by

::::
the

::::::::
European

:::::
High

::::::::::
Performance

::::::::::
Computing

:::::
Joint

:::::::::::
Undertaking

:::::::::
(EuroHPC

::::
JU)

:::
and

::::
the

::::::::
European

::::::
Union

::::
(EU)

:::::
under

:::::
grant

:::::::::
agreement

:::
No

::::::::::
101093054.

:::
We

::::::::::
additionally

:
acknowledge EuroHPC JU for awarding the project ID 200177

access to the MeluXina supercomputer at LuxConnect and the project ID 465000527 access to the LUMI system at CSC, and460

thank Thomas Geenen and Nils Wedi from Destination Earth for their help. We are grateful to Michael Lange and Balthasar

Reuter for discussions and support regarding IFS codes.

27

References

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J., Kavčič, I., Maynard, C. M., Melvin, T., Müller, E. H., Mullerworth, S.,

Porter, A., et al.: LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models,465

Journal of Parallel and Distributed Computing, 132, 383–396, https://doi.org/10.1016/j.jpdc.2019.02.007, 2019.

Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and

Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, SoftwareX, 15, 100 707,

https://doi.org/10.1016/j.softx.2021.100707, 2021.

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale470

numerical weather prediction with the COSMO model: Description and sensitivities, Monthly Weather Review, 139,

3887–3905, https://doi.org/10.1175/mwr-d-10-05013.1, 2011.

Bauer, P., Quintino, T., Wedi, N., Bonanni, A., Chrust, M., Deconinck, W., Diamantakis, M., Düben, P., English, S., Flemming,

J., et al.: The ECMWF scalability programme: Progress and plans, ECMWF Technical Memo No. 857, 2020.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system475

science, Nature Computational Science, 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021.

Ben-Nun, T., de Fine Licht, J., Ziogas, A. N., Schneider, T., and Hoefler, T.: Stateful Dataflow Multigraphs: A Data-Centric

Model for Performance Portability on Heterogeneous Architectures, in: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’19, https://doi.org/10.1145/3295500.3356173, 2019.

Ben-Nun, T., Groner, L., Deconinck, F., Wicky, T., Davis, E., Dahm, J., Elbert, O. D., George, R., McGibbon, J.,480

Trümper, L., et al.: Productive performance engineering for weather and climate modeling with Python, in: SC22:

International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14, IEEE,

https://doi.org/10.1109/sc41404.2022.00078, 2022.

Bertagna, L., Guba, O., Taylor, M. A., Foucar, J. G., Larkin, J., Bradley, A. M., Rajamanickam, S., and Salinger, A. G.:

A performance-portable nonhydrostatic atmospheric dycore for the Energy Exascale Earth System Model running at485

cloud-resolving resolutions, in: SC20: International Conference for High Performance Computing, Networking, Storage and

Analysis, pp. 1–14, IEEE, https://doi.org/10.2172/1830973, 2020.

Chandrasekaran, S. and Juckeland, G.: OpenACC for Programmers: Concepts and Strategies, Addison-Wesley Professional,

2017.

Clement, V., Marti, P., Lapillonne, X., Fuhrer, O., and Sawyer, W.: Automatic Port to OpenACC/OpenMP for Physical490

Parameterization in Climate and Weather Code Using the CLAW Compiler, Supercomputing Frontiers and Innovations, 6,

51–63, https://doi.org/10.14529/jsfi190303, 2019.

28

https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1016/j.softx.2021.100707
https://doi.org/10.1175/mwr-d-10-05013.1
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1109/sc41404.2022.00078
https://doi.org/10.2172/1830973
https://doi.org/10.14529/jsfi190303

Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for operational implementation of 4D-Var, using an incremental

approach, Quarterly Journal of the Royal Meteorological Society, 120, 1367–1387, https://doi.org/10.1256/smsqj.51911,

1994.495

Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE Computional Science

and Engineering, 5, 46–55, https://doi.org/10.1109/99.660313, 1998.

Dahm, J., Davis, E., Deconinck, F., Elbert, O., George, R., McGibbon, J., Wicky, T., Wu, E., Kung, C., Ben-Nun, T., et al.:

Pace v0. 2: a Python-based performance-portable atmospheric model, Geoscientific Model Development, 16, 2719–2736,

https://doi.org/10.5194/gmd-16-2719-2023, 2023.500

Deakin, T., McIntosh-Smith, S., Price, J., Poenaru, A., Atkinson, P., Popa, C., and Salmon, J.: Performance portability across

diverse computer architectures, in: 2019 IEEE/ACM International Workshop on Performance, Portability and Productivity

in HPC (P3HPC), pp. 1–13, IEEE, https://doi.org/10.1109/p3hpc49587.2019.00006, 2019.

ECMWF: IFS Documentation CY48R1 - Part IV: Physical Processes, ECMWF, 2023.

Edwards, H. C., Trott, C. R., and Sunderland, D.: Kokkos: Enabling manycore performance portability505

through polymorphic memory access patterns, Journal of Parallel Distributed Computing, 74, 3202–3216,

https://doi.org/10.1016/j.jpdc.2014.07.003, 2014.

Errico, R. M.: What is an adjoint model?, Bulletin of the American Meteorological Society, 78, 2577–2592,

https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2, 1997.

Forbes, R. M., Tompkins, A. M., and Untch, A.: A new prognostic bulk microphysics scheme for the IFS, ECMWF Techical510

Memo. No. 649, 2011.

Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M., Arteaga, A., and Schulthess, T. C.: Towards a

performance portable, architecture agnostic implementation strategy for weather and climate models, Supercomputing

Frontiers and Innovations, 1, 45–62, https://doi.org/10.14529/jsfi140103, 2014.

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess,515

T. C., et al.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with

COSMO 5.0, Geoscientific Model Development, 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018.

Gysi, T., Müller, C., Zinenko, O., Herhut, S., Davis, E., Wicky, T., Fuhrer, O., Hoefler, T., and Grosser, T.: Domain-specific

multi-level IR rewriting for GPU: The Open Earth compiler for GPU-accelerated climate simulation, ACM Transactions on

Architecture and Code Optimization (TACO), 18, 1–23, https://doi.org/10.1145/3469030, 2021.520

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,

Smith, N. J., et al.: Array programming with NumPy, Nature, 585, 357–362, 2020.

Harris, L. M. and Lin, S.-J.: A two-way nested global-regional dynamical core on the cubed-sphere grid, Monthly Weather

Review, 141, 283–306, https://doi.org/10.1175/mwr-d-11-00201.1, 2013.

29

https://doi.org/10.1256/smsqj.51911
https://doi.org/10.1109/99.660313
https://doi.org/10.5194/gmd-16-2719-2023
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1175/1520-0477(1997)078%3C2577:WIAAM%3E2.0.CO;2
https://doi.org/10.14529/jsfi140103
https://doi.org/10.5194/gmd-11-1665-2018
https://doi.org/10.1145/3469030
https://doi.org/10.1175/mwr-d-11-00201.1

Hoyer, S. and Hamman, J.: xarray: ND labeled arrays and datasets in Python, Journal of Open Research Software, 5,525

https://doi.org/10.5334/jors.148, 2017.

Janisková, M. and Lopez, P.: Linearised physics: the heart of ECMWF’s 4D-Var, ECMWF Newsletter No. 175, pp. 20–26,

2023.

Janisková, M., Thépaut, J.-N., and Geleyn, J.-F.: Simplified and regular physical parameterizations for incremen-

tal four-dimensional variational assimilation, Monthly Weather Review, 127, 26–45, https://doi.org/10.1175/1520-530

0493(1999)127<0026:sarppf>2.0.co;2, 1999.

Kim, J. Y., Kang, J.-S., and Joh, M.: GPU acceleration of MPAS microphysics WSM6 using OpenACC directives: Performance

and verification, Computers & Geosciences, 146, 104 627, https://doi.org/10.1016/j.cageo.2020.104627, 2021.

Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z. P., Smolarkiewicz, P. K., Szmelter, J., and Wedi, N. P.:

FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS, Geoscientific Model Development, 12, 651–676,535

https://doi.org/10.5194/gmd-12-651-2019, 2019.

Kühnlein, C., Ehrengruber, T., Ubbiali, S., Krieger, N., Papritz, L., Calotoiu, A., and Wernli, H.: ECMWF collaborates with

Swiss partners on GPU porting of FVM dynamical core, ECMWF Newsletter No. 175, 175, 11–12, 2023.

Lapillonne, X., Osterried, K., and Fuhrer, O.: Using OpenACC to port large legacy climate and weather modeling code to

GPUs, in: Parallel Programming with OpenACC, pp. 267–290, Elsevier, https://doi.org/0.1016/b978-0-12-410397-9.00013-5,540

2017.

Lapillonne, X., Sawyer, W., Marti, P., Clement, V., Dietlicher, R., Kornblueh, L., Rast, S., Schnur, R., Esch, M., Giorgetta,

M., et al.: Global climate simulations at 2.8 km on GPU with the ICON model, in: EGU General Assembly Conference

Abstracts, p. 10306, https://doi.org/10.5194/egusphere-egu2020-10306, 2020.

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, W., Ford, R., Maynard, C., Mullerworth,545

S., et al.: Crossing the chasm: how to develop weather and climate models for next generation computers?, Geoscientific

Model Development, 11, 1799–1821, https://doi.org/10.5194/gmd-11-1799-2018, 2018.

Lindfield, G. and Penny, J.: Numerical Methods: Using MATLAB, Academic Press, 2018.

Luz, M., Gopal, A., Ong, C. R., Müller, C., Hupp, D., Burgdorfer, N., Farabullini, N., Bösch, F., Dipankar, A., Bianco,

M., et al.: A GT4Py-Based Multi-Node Standalone Python Implementation of the ICON Dynamical Core, Platform for550

Advanced Scientific Computing (PASC) Conference, Zurich, Switzerland, 3-5 June, 2024, 2024.

McGibbon, J., Brenowitz, N. D., Cheeseman, M., Clark, S. K., Dahm, J. P., Davis, E. C., Elbert, O. D., George, R. C.,

Harris, L. M., Henn, B., et al.: fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model, Geoscientific Model

Development, 14, 4401–4409, https://doi.org/10.5194/gmd-14-4401-2021, 2021.

30

https://doi.org/10.5334/jors.148
https://doi.org/10.1175/1520-0493(1999)127%3C0026:sarppf%3E2.0.co;2
https://doi.org/10.1175/1520-0493(1999)127%3C0026:sarppf%3E2.0.co;2
https://doi.org/10.1175/1520-0493(1999)127%3C0026:sarppf%3E2.0.co;2
https://doi.org/10.1016/j.cageo.2020.104627
https://doi.org/10.5194/gmd-12-651-2019
https://doi.org/0.1016/b978-0-12-410397-9.00013-5
https://doi.org/10.5194/egusphere-egu2020-10306
https://doi.org/10.5194/gmd-11-1799-2018
https://doi.org/10.5194/gmd-14-4401-2021

::::::
Melvin,

:::
T.,

::::::::::
Benacchio,

:::
T.,

::::::::
Shipway,

::::
B.,

::::::
Wood,

:::
N.,

:::::::::
Thuburn,

:::
J.,

:::
and

:::::::
Cotter,

:::
C.:

:::
A

::::::
mixed

::::::::::::
finite-element,

::::::::::::
finite-volume,555

::::::::::
semi-implicit

::::::::::::
discretization

:::
for

::::::::::
atmospheric

:::::::::
dynamics:

::::::::
Cartesian

::::::::
geometry

:
,
::::::::
Quarterly

:::::::
Journal

::
of

:::
the

:::::
Royal

:::::::::::::
Meteorological

::::::
Society,

::::
145,

::::::::::
2835–2853,

::::
2019.

:

::::::
Melvin,

:::
T.,

::::::::
Shipway,

:::
B.,

:::::
Wood,

::::
N.,

:::::::::
Benacchio,

:::
T.,

:::::::
Bendall,

:::
T.,

::::::
Boutle,

:::
I.,

::::::
Brown,

:::
A.,

::::::::
Johnson,

:::
C.,

:::::
Kent,

:::
J.,

:::::
Pring,

:::
S.,

::
et

:::
al.:

:
A
::::::
mixed

::::::::::::
finite-element,

:::::::::::
finite-volume,

:::::::::::
semi-implicit

:::::::::::
discretisation

:::
for

::::::::::
atmospheric

:::::::::
dynamics:

::::::::
Spherical

::::::::
geometry,

:::::::::
Quarterly

::::::
Journal

::
of

:::
the

::::::
Royal

::::::::::::
Meteorological

:::::::
Society,

:::::
2024.560

Méndez, M., Tinetti, F. G., and Overbey, J. L.: Climate models: challenges for Fortran development tools, in: 2014 Second

International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering,

pp. 6–12, IEEE, https://doi.org/10.1109/se-hpccse.2014.7, 2014.

Monteiro, J. M., McGibbon, J., and Caballero, R.: sympl (v. 0.4.0) and climt (v. 0.15.3) – Towards a flexible framework for

building model hierarchies in Python, Geoscientific Model Development, 11, 3781–3794, https://doi.org/10.5194/gmd-11-565

3781-2018, 2018.

Müller, A., Deconinck, W., Kühnlein, C., Mengaldo, G., Lange, M., Wedi, N., Bauer, P., Smolarkiewicz, P. K., Diamantakis, M.,

Lock, S.-J., et al.: The ESCAPE project: energy-efficient scalable algorithms for weather prediction at exascale, Geoscientific

Model Development, 12, 4425–4441, https://doi.org/10.5194/gmd-12-4425-2019, 2019.

Neumann, P., Düben, P., Adamidis, P., Bauer, P., Brück, M., Kornblueh, L., Klocke, D., Stevens, B., Wedi, N., and Biercamp,570

J.: Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?, Philosophical Transactions

of the Royal Society A, 377, 20180 148, https://doi.org/10.1098/rsta.2018.0148, 2019.

Nishino, R. and Loomis, S. H. C.: CuPy: A NumPy-compatible library for NVIDIA GPU calculations, 31st conference on

neural information processing systems, p. 151, 2017.

Nogherotto, R., Tompkins, A. M., Giuliani, G., Coppola, E., and Giorgi, F.: Numerical framework and performance of the575

new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects,

Geoscientific Model Development, 9, 2533–2547, https://doi.org/10.5194/gmd-9-2533-2016, 2016.

Randall, D. A., Hurrell, J. W., Gettelman, A., Loft, R., Skamarock, W. C., Hauser, T., Dazlich, D. A., and Sun, L.: Simulations

With EarthWorks, in: AGU Fall Meeting Abstracts, vol. 2022, pp. A33E–02, 2022.

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler,580

D., et al.: Kilometer-scale climate models: Prospects and challenges, Bulletin of the American Meteorological Society,

https://doi.org/10.1175/bams-d-18-0167.1, 2019.

Schulthess, T. C., Bauer, P., Wedi, N., Fuhrer, O., Hoefler, T., and Schär, C.: Reflecting on the goal and baseline for

exascale computing: A roadmap based on weather and climate simulations, Computing in Science & Engineering, 21, 30–41,

https://doi.org/10.1109/mcse.2018.2888788, 2018.585

31

https://doi.org/10.1109/se-hpccse.2014.7
https://doi.org/10.5194/gmd-11-3781-2018
https://doi.org/10.5194/gmd-11-3781-2018
https://doi.org/10.5194/gmd-11-3781-2018
https://doi.org/10.5194/gmd-12-4425-2019
https://doi.org/10.1098/rsta.2018.0148
https://doi.org/10.5194/gmd-9-2533-2016
https://doi.org/10.1175/bams-d-18-0167.1
https://doi.org/10.1109/mcse.2018.2888788

Shipman, G. M. and Randles, T. C.: An evaluation of risks associated with relying on Fortran for mission critical codes for the

next 15 years, https://doi.org/10.2172/1970284, 2023.

Smolarkiewicz, P. K., Deconinck, W., Hamrud, M., Kühnlein, C., Mozdzynski, G., Szmelter, J., and Wedi, N. P.: A

finite-volume module for simulating global all-scale atmospheric flows, Journal of Computational Physics, 314, 287–304,

https://doi.org/10.1016/j.jcp.2016.03.015, 2016.590

Taylor, M. A., Guba, O., Steyer, A., Ullrich, P. A., Hall, D. M., and Eldred, C.: An energy consistent discretization of the

nonhydrostatic equations in primitive variables, Journal of Advances in Modeling Earth Systems, 12, e2019MS001 783,

https://doi.org/10.1029/2019ms001783, 2020.

Ubbiali, S., Schär, C., Schlemmer, L., and Schulthess, T. C.: A numerical analysis of six physics-dynamics cou-

pling schemes for atmospheric models, Journal of Advances in Modeling Earth Systems, 13, e2020MS002 377,595

https://doi.org/10.1029/2020ms002377, 2021.

Ubbiali, S., Kühnlein, C., Schär, C., Schlemmer, L., Schulthess, T. C., Staneker, M., and Wernli, H.: Data and scripts for

the manuscript “Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes”

(v0.1.0), Zenodo, https://doi.org/10.5281/zenodo.11155353, 2024a.

Ubbiali, S., Kühnlein, C., Schär, C., Schlemmer, L., Schulthess, T. C., and Wernli, H.: ifs-physics-common: v0.1.0, Zenodo,600

https://doi.org/10.5281/zenodo.11153742, 2024b.

Ubbiali, S., Kühnlein, C., and Wernli, H.: gt4py-dwarf-p-cloudsc: v0.1.0, Zenodo, https://doi.org/10.5281/zenodo.11155001,

2024c.

Ubbiali, S., Kühnlein, C., and Wernli, H.: gt4py-dwarf-p-cloudsc2-tl-ad: v0.1.0, Zenodo,

https://doi.org/10.5281/zenodo.11155036, 2024d.605

Watkins, J., Carlson, M., Shan, K., Tezaur, I., Perego, M., Bertagna, L., Kao, C., Hoffman, M. J., and Price, S. F.: Performance

portable ice-sheet modeling with MALI, The International Journal of High Performance Computing Applications, 37,

600–625, https://doi.org/10.1177/10943420231183688, 2023.

Yang, Z., Halem, M., Loft, R., and Suresh, S.: Accelerating MPAS-A model radiation schemes on GPUs using OpenACC, in:

AGU Fall Meeting Abstracts, vol. 2019, pp. A11A–06, 2019.610

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD

and MPI-M: Description of the non-hydrostatic dynamical core, Quarterly Journal of the Royal Meteorological Society, 141,

563–579, https://doi.org/10.1002/qj.2378, 2015.

32

https://doi.org/10.2172/1970284
https://doi.org/10.1016/j.jcp.2016.03.015
https://doi.org/10.1029/2019ms001783
https://doi.org/10.1029/2020ms002377
https://doi.org/10.5281/zenodo.11155353
https://doi.org/10.5281/zenodo.11153742
https://doi.org/10.5281/zenodo.11155001
https://doi.org/10.5281/zenodo.11155036
https://doi.org/10.1177/10943420231183688
https://doi.org/10.1002/qj.2378

