
gmd-2024-92

Exploring a high-level programming model for the NWP domain
using ECMWF microphysics schemes

by S. Ubbiali et al.

We thank the three reviewers for their constructive comments, which helped
us to further improve the manuscript. Below we provide a one-to-one
response to all points raised by the reviewers. The reviewers’ comments are
in gray italics, our replies in black roman, and changes to the manuscript are
highlighted in blue roman at the end of each reply. In case a comment did not
lead to any modification in the text, this is stated in red roman. Additional
modifications to the text, not driven by any specific reviewers’ comment, are
reported at the end of the document. Please note that line numbers in our
replies always refer to the revised version of the manuscript.



RC1 (posted by Anonymous Referee #1 on 25.06.2024)

As a developer who is using GT4Py to port parameterized physics, I am
encouraged by these performance results as well as the portability across
multiple GPU architectures. Overall, I think this is an excellent paper that
highlights the potential of DSLs as a forward-looking development platform. I
have several questions and comments.

We are grateful to the Referee for the overall positive feedback and many
valuable comments. We find it particularly rewarding that another GT4Py user
appreciates our work. In the following, we address each of the points raised by
the Referee individually.

1. Line 191 : This line mentions that "can be differentiated for the vertical
boundaries using the interval context manager". As a GT4Py user, it's
clear what is being written, but given that "differentiated" has
mathematical meanings, it may be better to reword this to avoid
confusion.

The term “differentiated” is indeed overloaded, and we avoid its use in
the revised manuscript.

L194-195: Replace “differentiated for the vertical boundaries” with “can
be controlled with respect to the vertical index bounds”.

2. List 1 and 2 : I realized later that the "Code and data availability" section
lists the repositories that contain the codes in List 1 and 2. Originally, I
had mistakenly searched the ECMWF-iFS Github site for the
CLOUDSC and CLOUDSC2 dwarf codes and was wondering why I
couldn't find the codes from the list. One suggestion is to mention that
the repos for the codes are mentioned later in the "Code and data
availability" section.

To help readers find the correct code repositories, in the revised
manuscript we cite Ubbiali et al. (2024b-d) right in the Introduction.

● L73: Add a reference to Ubbiali et al. (2024c) and Ubbiali et al.
(2024d).

● L79-80: Add a reference to Ubbiali et al. (2024b).



3. Line 296 : Can NPROMA be explained further?

We thank the Referee for touching upon this aspect, which has been
raised in other reviews as well. In the revised manuscript, we shortly
describe what the NPROMA represents and refer the reader to
available literature resources (e.g. Bauer et al., 2020;
doi.org/10.21957/gdit22ulm, and Müller et al., 2019;
doi.org/10.5194/gmd-12-4425-2019) for further details on the NPROMA
slicing technique.

L299: Add footnote 13: “NPROMA blocking is a cache optimization
technique adopted in all Fortran codes considered in this paper. Given a
two-dimensional array shaped (K∗M, N), this is re-arranged as a
three-dimensional array shaped (K, M, N). Commonly, the leading
dimension of the three-dimensional array is called “NPROMA”, with K
being the “NPROMA blocking factor”. Here, we indicate K simply as
“NPROMA” for the sake of brevity. For further discussion of the
NPROMA blocking, we refer the reader to Müller et al. (2019) and
Bauer et al. (2020).”.

4. Line 307 : To clarify, is the symmetry test timing the sum of the
CLOUDSC2TL and CLOUDSCAD timings?

Yes, within the symmetry test both CLOUDSC2TL and CLOUDSCAD
are called and considered in the timings. Conversely, the computation of
the column-wise inner products (L11-12 of Algorithm 2) and the
following validation procedure (L13-23 of Algorithm 2) are switched off
when measuring performance. We added a footnote in the article to
clarify that validation is not performed when timing the symmetry test.

L315: Add footnote 14: “When measuring the performance of the
symmetry test, the validation procedure – corresponding to lines 11-23
of Algorithm A2 – is switched off.”.
Algorithm A2: Swap L10 with L11.

5. Line 336 : I'm a bit confused on the virtual GPU explanation. Does this
mean that when 1 MPI process is mapped to an MI250X, only half the
GPU is executed?

https://doi.org/10.21957/gdit22ulm
http://doi.org/10.5194/gmd-12-4425-2019


That is correct: a MI250X GPU consists of two Graphics Compute Dies
(GCDs) connected via four AMD Infinity Fabric links but not sharing
physical memory and therefore each MPI rank naturally maps to a
single GCD of a MI250X GPU. We rephrased the sentence at L307-310
to include all this information.

L309-312: Rephrase “Moreover, each MI250X GPU is split into two
virtual GPUs (vGPUs), with each vGPU assigned to a different NUMA
domain.” as “Moreover, we highlight that each MI250X GPU consists of
two Graphics Compute Dies (GCDs) connected via four AMD Infinity
Fabric links but not sharing physical memory. From a software
perspective, each compute node of LUMI is equipped with 8 virtual
GPUs (vGPUs), with each vGPU corresponding to a single GCD and
assigned to a different NUMA domain.”.

6. Question: The Gridtools backend was mentioned as a GT4Py backend
(and I think it enables GPU compute), but its results were not
presented. Was it because it was slower than the Dace backend?

Both the GridTools and the DaCe backends of GT4Py enable GPU
computing on both NVIDIA and AMD GPUs, offering very similar
performance on MeluXina and LUMI. However, we could not compile
the CLOUDSC stencil using the GridTools GPU backend on Piz Daint,
presumably because of a bug in CUDA11. We therefore decided to
show results for the DaCe GPU backend only, as they were available on
all three machines. On the other hand, the GridTools CPU backend was
found to be faster than the DaCe CPU backend in all tested scenarios,
so that is why we only present performance numbers for GridTools
CPU. This is aligned with all the other programming paradigms
considered in this study, for which only the fastest variant is taken into
account, as stated at L297-301.

L299-301: Add “Similarly, for all Python implementations we consider
only the most performant backends of GT4Py: the GridTools C++ CPU
backend with k-first memory layout, and the DaCe GPU backend.”.



RC2 (posted by Anonymous Referee #2 on 26.06.2024)

Overall this paper is a useful contribution towards efforts to achieve
performance portability and future-proofing of our model codes. Although I
have raised some questions about the scientific correctness of the transferred
code, these issues are not essential to the main goal of the paper – which is to
explain the software aspects.

We thank the Referee for such a careful revision of the manuscript, leading to
many constructive comments, valuable suggestions and useful corrections.
We are pleased to read the Referee’s appreciation of our work. In the
following, we address each of the issues raised by the Referee individually.

General Comments

1. Line 15: ‘reduced precision’ is referred to throughout the manuscript, but
this is specifically 32-bit IEEE (single precision). As GPUs in particular
can (and most Fortran compilers in general cannot currently) exploit
other floating point models, e.g. 16-bit IEEE or 32-bit float, I think it
would be better to be specific about which precision. As a general
question I wonder if you are well placed to explore these other
floating-point models with GT4Py?

We agree with the Referee that the term “reduced precision” may be too
vague. In the revised manuscript, we use the term “single” in place of
“reduced” in the abstract, while in Section 5 we now clarify that “double”
refers to the 64-bit IEEE format and “single” corresponds to the 32-bit
IEEE format.

Although GT4Py does only support 64-bit and 32-bit floats at the
moment, it will be pretty straightforward to allow 16-bit floats in the
future.

● L15: Replace “reduced” with “single”.
● L317: Replace “FP64” with “corresponding to the 64-bit IEEE format
and denoted as FP64”.

● L317-318: Replace “FP32” with “corresponding to the 32-bit IEEE
format and denoted as FP32”.



2. Line 96: You discuss a motivation for using the particular CLOUDSC
schemes is that they are representative of the computational patterns in
physical parametrizations. It would be good to be explicit about what
those patterns are. In contrast, on line 398, you talk about not all
patterns in parametrizations being natively supported. I would suggest
part of this discussion should clarify that the patterns under
consideration with CLOUDSC are based on the spatial gridded structure
(and in the column), while other parametrizations may use
‘pseudo-dimensions’ such as number of spectral bands, land surface
types, or even moments or bins for more complex microphysics
schemes. These may then require additional computational motifs and
looping structures to extract optimal performance on different hardware.

We thank the Referee for touching upon this important point. At the time
of writing, one important limitation is indeed that multi-dimensional
arrays are not supported in a performant manner. While this is not a
problem here, it could be for other scenarios (e.g., radiation). Secondary
features GT4Py is currently missing and that could be useful for physics
codes include single column abstractions, write (absolute) offsets, and
global reductions. In the revised version of the article, we mention the
major current limitations of GT4Py in the last paragraph of Section 6.

L410-413: Replace “These cases may be addressed by new features
added to GT4Py or by resorting to other Python libraries to generate
fast machine code.” with “In this respect, current limitations of the DSL
exist for higher-dimensional fields (e.g., arrays storing a tensor at each
grid point), but again we expect these to be fully supported for HPC with
future extensions of GT4Py. In addition, Python offers a variety of
alternative libraries that can be employed in conjunction with GT4Py to
generate fast machine code.”.

3. Line 139/Algorithm 1: I’m not entirely sure the details of the TaylorTest
are necessary for this paper. However, if you wish to keep it in then
please could you add some brief inline documentation (as you might
with real code) as to what the algorithm is doing at each stage. It is
quite a difficult algorithm to read without it.

To the best of our knowledge, there does not exist any good reference
online for the Taylor test and the symmetry test, so we would like to
keep both Algorithms 1 and 2. However, we agree with the Referee that



the details of the tests are not essential for the main purposes of the
paper, therefore we decided to move both Algorithms to the new
Appendix A titled “Algorithmic description of the Taylor test and
symmetry test for CLOUDSC2”. Since detailed understanding of the
Algorithms is not necessary to grasp the essence of the article, we
eventually decided not to add any more inline comments, so as not to
make the pseudo-codes even longer and more visually cumbersome.

● Move Algorithm 1 and 2 to the new Appendix A titled “Algorithmic
description of the Taylor test and symmetry test for CLOUDSC2”.

● L140-141: Add “(Appendix A)”.
● L146: Add “in Appendix A”.
● L415-417: Add “In Section 2.2, we briefly described the aim and
functioning of the Taylor test and the symmetry test for CLOUDSC2.
Here, we detail the logical steps performed by the two tests with the
help of pseudo-codes encapsulated in Algorithms A1 and A2.”.

4. Line 188/Figure 2: The example provided here is for the 2D horizontal
Laplacian which uses a stencil accessing horizontal neighbouring
columns, but no vertical neighbouring grid points. This is the opposite of
the microphysics stencil which does not require access to horizontal
neighbours, but does require vertical neighbours (due to sedimentation
of hydrometeors). Since this paper is specifically applying the method to
the latter, it would be best if the example related to that. At the very
least, having some text alongside the discussion of Figure 2 to explain
this would be helpful.

We agree with the Referee that the example shown in the code snippet
of Fig. 2 does not feature the characteristic access patterns of the
microphysics stencils. As a more representative example, we now
employ the three-dimensional Laplacian operator. However, since the
GT4Py internal workflow is described in the main body and Fig. 2 is
supposed to only be a visual aid, we avoid congesting the figure with
additional text.

● Figure 2: Modify the code snippet in the upper part of the diagram.
● Caption of Figure 2: Replace “horizontal” with “three-dimensional”.



5. Line 285: I’m not sure why you use the ‘allclose’ method to determine if
a particular tolerance has been met rather than calculating and
reporting the error. That said, my (limited) understanding of the allclose
method is that only one of rtol and atol is sufficient to pass the test. As a
result, the other can be made arbitrarily small and still pass the test.
E.g.

>>> x=1.0 + 0.99e-12

>>> y=1.0

>>> np.allclose(y, x, atol=1e-12, rtol=0)

True

>>> np.allclose(y, x, atol=0, rtol=1e-18)

False

>>> np.allclose(y, x, atol=1e-12, rtol=1e-18)

True

So how did you use this function to arrive at the quoted numbers?
(Presumably one would want to use the first two methods demonstrated
independently for each tolerance.)

I think it would be more informative to simply provide values of
max(abs(x-y)) and max(abs(x-y)/abs(x)) (where x is the reference data
and y is the rewrite).

In the Python community, it is pretty common to use the isclose function
from Numpy to check whether two numbers x (reference) and y are
close up to absolute tolerance atol and relative tolerance rtol: isclose(x,
y, atol, rtol) = abs(x - y) < atol + abs(x) * rtol. So both tolerance values
are employed by the function simultaneously, and the values we report
in the text are the smallest ensuring that isclose returns True on all grid
points for all output fields (i.e., further decreasing atol or rtol would
make the validation fail). Hence, we do not think that providing the
absolute and relative errors would be an added value for the paper.

No changes have been made to the text.



6. There seems to be more to investigate here to ensure correctness. The
previous comment would go some way to helping with this, but the fact
that the relative tolerance remains the same, but the absolute tolerance
is 2 orders of magnitude larger suggests that the evolution of the
experiment has changed. This could be a symptom of perturbation error
growth where a small change leads to a different branch of the code
being followed. To add some insight into this, it would also be useful to
add more detail about the scientific set up of the dwarf being tested -
what are the initial conditions and time-stepping - or where is this
described?

Our answer to the previous point should explain why the absolute and
relative tolerance can have different orders of magnitude (depending on
the magnitude of y).

With respect to the Referee’s comment about error growth and
time-stepping, we would like to point out that the dwarf codes tested in
the paper do not involve integration of a complete atmospheric model.
The study validates the developed GT4Py versions by reproducing the
results of the IFS Fortran microphysics schemes, which represent the
established codes for operational weather forecasting. Hence, we
ensure the correct execution of the GT4Py codes for CLOUDSC and
CLOUDSC2 by direct comparison with the baseline Fortran
implementation on the basis of identical input data to produce the same
output. The input represents real data that is serialized from the IFS and
which is available on Zenodo (cf. “Code and data availability” section).
With regard to CLOUDSC2TL and CLOUDSC2AD, any minimal error in
the implementation would have made either the Taylor test or the
symmetry tests fail. In addition, we further note that the GT4Py
implementation of CLOUDSC has been tested extensively in the context
of a full atmospheric model in the meanwhile. Altogether, we are very
confident about the correctness of our GT4Py implementations.

No changes have been made to the text.

7. Line 291: Was machine epsilon to single precision used in these tests?

We were actually using double precision machine epsilon. We are very
grateful to the Referee for guessing such inconsistency. We corrected
the text, highlighting that when using the appropriate machine epsilon,



the symmetry test for the GT4Py implementations succeeds both with
single and double precision, both on CPU and GPU.

L293-295: Replace “However, the conditions of both tests are not
satisfied when using single precision. This is not surprising, since both
tests are highly sensitive to round-off errors. Nevertheless, performance
numbers for the execution of the algorithms were taken.” with “In this
respect, we emphasize that the GT4Py implementations satisfy the
conditions of both tests on all considered computing architectures,
regardless of whether double or single precision is employed.”.

8. Line 355: Could you say how performance engineering would be done
with GT4Py? Would this be in the ‘Optimizations’ step in Figure 2?

The “Optimizations” step in Fig. 2 enclose all the optimization strategies
carried out internally by the GT4Py library. On the user side,
performance can be improved by, e.g., fusing statements & stencils, and
pruning temporaries. We briefly mention these aspects in the revised
manuscript.

L363: Add “(by, e.g., loop fusing and reducing the number of temporary
fields)”.

9. Line 397: As per comment 2 above, it would be good to expand on what
other patterns might be needed that aren’t natively supported.

Please see our reply to comment 2.

No changes have been made to the text.

Specific Comments

1. Line 17: ‘has become’ should be ‘became’.

Thank you, we adapted the text according to the Referee’s suggestion.

L17: Replace “has become” with “became”.



2. Line 56: References for the GungHo dynamical core can be found at
https://doi.org/10.1002/qj.3501 and https://arxiv.org/abs/2402.13738.

We thank the Referee for providing recent references to the GungHo
dynamical core. We updated the text accordingly.

● L56: Add references to Melvin et al. (2019;
https://doi.org/10.1002/qj.3501) and Melvin et al. (2024;
https://arxiv.org/abs/2402.13738).

● L530-532: Add bibliography entry for Melvin et al. (2019).
● L533-535: Add bibliography entry for Melvin et al. (2024).

3. Line 103: ‘slightly polished’ could perhaps be a bit more informative.
What needed to be done? Was it purely cosmetic?

The CLOUDSC & CLOUDSC2 dwarfs do not differ substantially from
the corresponding original implementations run operationally at
ECMWF. The cleaning-up mostly consisted in removing (i) all the
IFS-specific infrastructure code (that is not necessary to run the dwarfs
stand-alone), (ii) the calculation of budget diagnostics, and (iii) dead
codes (which would not be executed anyway). We added this
information in a footnote.

L105: Add footnote 3: “Compared to the original implementations run
operationally at ECMWF, the CLOUDSC & CLOUDSC2 dwarf codes do
not include (i) all the IFS-specific infrastructure code, (ii) the calculation
of budget diagnostics, and (iii) dead code paths.”.

4. Line 141: I think there is a missing 𝛿 in the first inner product.

We thank the Referee for spotting the error, we corrected the text.

L145, Eq. 4: Add missing 𝛿.

5. Line 142: ‘hearth’ should be ‘heart’.

We thank the Referee for spotting the typo, we corrected the text.

L146: Replace “hearth” with “heart”.

https://doi.org/10.1002/qj.3501
https://arxiv.org/abs/2402.13738
https://doi.org/10.1002/qj.3501
https://arxiv.org/abs/2402.13738


6. Line 180: ‘scientists is exposed’ should be ‘scientists are exposed’.

We thank the Referee for spotting the typo, we corrected the text.

L183: Replace “is” with “are”.

7. Line 237: ‘it builds’ should be ‘does it build’.

Thank you, we adapted the text according to the Referee’s suggestion.

L240-241: Rephrase “Not only it builds upon Sympl, but it also extends
it with grid-aware and stencil-oriented functionalities.” as “Not only does
it build upon Sympl, but the package also provides grid-aware and
stencil-oriented functionalities.”.

8. Line 237: It’s not clear to me what ‘grid-aware’ means in this context.
Could you be specific?

As we mention in the following sentences, this includes that all
components are instantiated over a ComputationalGrid (cf. Listing 2)
which collects information about the underlying (Cartesian) grid, e.g.
grid spacings, index spaces.

No changes have been made to the text.

9. Line 296: I don’t think NPROMA has been defined.

We thank the Referee for touching upon this aspect, which has been
raised in other reviews as well. In the revised manuscript, we shortly
describe what the NPROMA represents and refer the reader to
available literature resources (e.g. Bauer et al., 2020;
doi.org/10.21957/gdit22ulm, and Müller et al., 2019;
doi.org/10.5194/gmd-12-4425-2019) for further details on the NPROMA
slicing technique.

L299: Add footnote 13: “NPROMA blocking is a cache optimization
technique adopted in all Fortran codes considered in this paper. Given a
two-dimensional array shaped (K∗M, N), this is re-arranged as a
three-dimensional array shaped (K, M, N). Commonly, the leading
dimension of the three-dimensional array is called “NPROMA”, with K
being the “NPROMA blocking factor”. Here, we indicate K simply as

https://doi.org/10.21957/gdit22ulm
http://doi.org/10.5194/gmd-12-4425-2019


“NPROMA” for the sake of brevity. For further discussion of the
NPROMA blocking, we refer the reader to Müller et al. (2019) and
Bauer et al. (2020).”.



RC3 (posted by Anonymous Referee #3 on 24.07.2024)

This is an excellent paper expanding the use of domain specific languages
(DSLs), and GT4Py specifically, for performance and productivity in numerical
weather prediction. To my knowledge this is the first published work on a
tangent-linear or adjoint model in GT4Py, and the results are very
encouraging. The authors describe their methodology and development
process well, which will aid others looking to reproduce this work and apply it
to their own models. That said I do have some small questions and comments
I would like to raise before publication:

We would like to express our sincere gratitude to the Referee for reviewing our
work so carefully. We are very pleased to read the Referee’s general
appreciation of this study, and we thank them for the many constructive and
valuable comments that we address point-by-point in the following.

Primary points/questions:

1. I don’t think it is necessary to define the tangent linear or adjoint
operators explicitly, and I’m also not certain that you need to explicitly
define the Taylor test either.

To the best of our knowledge, there does not exist any good reference
online for the Taylor test and the symmetry test, so we would like to
keep Algorithms 1 and 2. However, we agree with the Referee that the
details of the tests are not essential for the main purposes of the paper,
therefore we decided to move both Algorithms to the new Appendix A
titled “Algorithmic description of the Taylor test and symmetry test for
CLOUDSC2”.

● Move Algorithm 1 and 2 to the new Appendix A titled “Algorithmic
description of the Taylor test and symmetry test for CLOUDSC2”.

● L140-141: Add “(Appendix A)”.
● L146: Add “in Appendix A”.
● L415-417: Add “In Section 2.2, we briefly described the aim and
functioning of the Taylor test and the symmetry test for CLOUDSC2.
Here, we detail the logical steps performed by the two tests with the
help of pseudo-codes encapsulated in Algorithms A1 and A2.”.



2. Line 247: I would like to see more description of the infrastructure code
around the stencil. What does compile_stencil look like? Presumably
the parent DiagnosticComponent class specifies the __call__ method,
which wraps array_call, but that would be nice to see explicitly instead
of assuming from what is in the paper.

We are glad to read the Referee’s interest in our infrastructure code.
However, it is beyond the scope of the paper to describe the
infrastructure code in detail, and we think that this pertains more to a
technical documentation, rather than a scientific paper. We refer the
Reviewer and any interested reader to the source code of
ifs-physics-common (https://github.com/stubbiali/ifs-physics-common)
and a talk given by the lead author of the paper at the recent PASC24
conference (https://event.pasc24-conference.org/slots/msa212).

No changes have been made to the text.

3. Line 250: Similarly, the stencil collection decorator is ifs-specific, and I
would appreciate more detail about what it does and how.

Please refer to our reply to the previous point.

No changes have been made to the text.

4. Line 265: Why use a GT4Py backend for CPU but a DaCe backend for
gpu?

As mentioned at L297-298 and now also at L299-301, for each
programming paradigm (either in Fortran, C or Python) we only show
performance numbers for the fastest variant. Since the GridTools CPU
backend is found to be faster than the DaCe CPU backend, we only
take into account the former. On the other hand, the GridTools GPU and
DaCe GPU backends offer very similar performance on MeluXina and
LUMI. However, we could not compile the CLOUDSC stencil using the
GridTools GPU backend on Piz Daint, presumably because of a bug in
CUDA11. We therefore decided to show results for the DaCe GPU
backend only, as they were available on all three machines.

L299-301: Add “Similarly, for all Python implementations we consider
only the most performant backends of GT4Py: the GridTools C++ CPU
backend with k-first memory layout, and the DaCe GPU backend.”.

https://github.com/stubbiali/ifs-physics-common
https://event.pasc24-conference.org/slots/msa212


5. Line 345: Is the goal of the GT4Py or ECMWF teams to achieve the
same performance as native Fortran and CUDA models, or is it to attain
most of their performance alongside the benefits of portability and
productivity?

We aim for productivity and portability while achieving competitive
performance on both GPU and CPU. As we mention in the revised
paper, since the DSL can accommodate any specific low-level
optimization, attaining the same performance as native Fortran and
CUDA models is feasible and will be the target of our future efforts.

L400-402: Add the sentence “Indeed, since the DSL can accommodate
any specific low-level optimization, attaining the same performance as
native, expert-written Fortran and CUDA/HIP models is feasible and will
be the target of our future efforts.”.

6. Figures 3-5: I’m not convinced by the layout of these figures. Because
there are fewer implementations of CLOUDSC2 (and none in 32-bit
aside from GT4Py) it may be more natural to report these performance
results in a table, or to remove the space for the missing data,
especially panels e and f which look disconcertingly sparse. On the
other hand this is a very striking way to draw attention to the fact that
GT4Py gives you 64- and 32-bit versions of the model in one go, but if
you want to emphasize that I would like to see it more explicitly
highlighted in the text.

We are glad to read that the Referee finds the layout of Figs. 3-5 a
striking way to emphasize the enhanced portability and flexibility of
GT4Py codes. This is indeed our goal, therefore we prefer to keep the
figures as they are. Moreover, we believe that these aspects are already
sufficiently highlighted in the text.

No changes have been made to the text.

Minor:

1. In your introduction is it worthwhile to discuss efforts to use tools like
Numba or Cython to accelerate numerical models written in Python
across various fields of science, such as Augier et al.
(doi:10.1038/s41550-021-01342-y) or others?



We thank the Referee for the meaningful suggestion. However, we note
that it is beyond the scope of the paper to discuss how to accelerate
Python codes in general. We believe that the Introduction is already
very comprehensive.

No changes have been made to the text.

2. Line 18: the authors describe Fortran’s “functional programming style”
which is slightly imprecise; while Fortran uses functions and
subroutines, functional programming refers to a style of programming
using only pure functions, so no values are updated in-place, which is
not how Fortran operates.

We thank the Referee for this clarification, which we agree with. In the
revised manuscript, we define Fortran as a “procedural programming”
language.

L18: Replace “functional” with “procedural”.

3. Line 177: It would be useful to acknowledge contributions from groups
beyond the Allen Institute, since they have ceased their work on GT4Py.

Only major partners of ETH Zurich are mentioned; the only exception is
the Allen Institute for Artificial Intelligence (AI2), for their significant
contributions to GT4Py.Cartesian.

No changes have been made to the text.

4. Line 190: “GTScript abstracts spatial for-loops away” would be more
accurate than stating it abstracts for-loops entirely.

Thank you, we adapted the text according to the Referee’s suggestion.

L193: Rephrase “GTScript abstracts for-loops away” as “GTScript
abstracts spatial for-loops away”.

5. Line 237: “Not only it builds upon Sympl, but it also extends it” should
be “Not only does it build upon Sympl, but also extends it”.



Thank you, we rephrased the sentence following the Referee’s
suggestion.

L240-241: Rephrase “Not only it builds upon Sympl, but it also extends
it with grid-aware and stencil-oriented functionalities.” as “Not only does
it build upon Sympl, but the package also provides grid-aware and
stencil-oriented functionalities.”.

6. Figure 6: Because the relevant information is contained within the top
~10% of the plot it may be useful to change the y-axis to instead range
from 0.8 to 1.0.

Although we understand the point made by the Referee, we find the
plots in Fig. 6 to be more informative if the full bars are shown, so that
one can better appreciate the fraction of the total runtime spent on the
Python side.

No changes have been made to the text.

7. Listing 1: Should foealfcu be “foealpha”?

We thank the Referee for spotting that the “foealfcu” function was
defined in Listing 1 instead of “foealfa”. In the revised version, we
include the definition of “foealfa” in Listing 1 and drop “foealfcu” (not
used in the “saturation” stencil).

Listing 1, L2-4: Replace the “foealfcu” function with “foealfa”.

Other comments:

1. Line 323: The fact that the GT4Py implementations of the tangent-linear
and adjoint formulations of CLOUDSC2 are the first to enable GPU
execution at any precision is very cool and could be emphasized more
heavily throughout the paper, in my opinion.

We are grateful to the Referee for acknowledging and appreciating our
work. However, we would like to point out that the primary purpose of
the paper is to show the effectiveness of the DSL approach (and in
particular GT4Py) for the NWP domain, with respect to productivity,
portability, and GPU performance. We believe the robustness of the



GT4Py approach, including with respect to the TL/AD codes and single
precision, becomes very clear from the current version of the
manuscript.

No changes have been made to the text.

2. Line 361: It might be worth mentioning that the Python overhead would
still account for around 1% of CPU runtime even if the GT4Py CPU
performance was on par with Fortran.

We thank the Referee for noting this interesting fact, which is now
highlighted in the text.

L371: Add “; the latter corresponds to 0.7% relative to the Fortran
execution time”.



Additional changes

● L15: Replace “competitive performance” with “competitive GPU
performance”.

● Listing 1: Except for field offsets, all numerical values are now
expressed as floats, instead of integers.

● L429-430: Add the statement “We would like to thank three anonymous
referees for carefully reviewing the manuscript and providing many
constructive comments.”.

● L432-434: Add the statement “CK acknowledges support from the
ESiWACE3 project funded by the European High Performance
Computing Joint Undertaking (EuroHPC JU) and the European Union
(EU) under grant agreement No 101093054.”.

● L434: Add “additionally”.


