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for Large Scale Inverse Modeling” (gmd-2024-90) for Geoscientific

Model Development

In this manuscript, the authors propose a modelling and algorithmic approach for performing model
selection in large-scale inverse problems. The context is that a set of predictor variables (say, meteorological
variables) are used in a linear model to predict an unknown quantity s (say, surface fluxes). The unknown
quantity s is related to the observations through a forward model. Interest is on both estimating s and
on identifying a small subset of the predictor variables that are most informative of s. To achieve this,
the authors propose a sparsity-promoting prior on the coefficients of the predictors, and develop a hybrid
iterative projection method based on flexible Krylov subspace methods for efficient optimization.

The paper is well written and the novelty and significance of the work is well justified. The paper is well
organized and the figures are clear and informative. The authors perform extensive simulation studies to
validate their method. My comments are mostly minor and relate to the (lack of) discussion of prior work in
the statistical literature on model selection, as well as some minor points regarding the simulation studies.

My detailed comments are as follows:

1. The proposed model structure in (7) places a Laplace prior on β, the coefficients of the predictors.
This is a common choice for promoting sparsity in the coefficients, which is often called the Bayesian
LASSO (Park and Casella, 2008). It would be worthwhile for the authors to discuss this connection:
indeed this present manuscript could be seen as the extension of the Bayesian LASSO into the inversion
context.
Park and Casella (2008) also address the problem of performing Markov chain Monte Carlo for this
model so it may also be worth mentioning in the Conclusion where uncertainty quantification is dis-
cussed.

2. Relatedly, there is literature discussing the implications of the choice of sparsity promoting prior. For
example, Carvalho et al. (2010), in proposing an alternative sparsity promoting prior, discuss the
limitations of the Laplace prior and other choices, and Piironen and Vehtari (2017) discuss ways to
tune sparsity promoting priors. While an extensive discussion of these choices is beyond the scope of
this paper, a brief mention of how these modelling choices can impact the results would be useful.

3. I was a bit confused by the one-dimension simulation example in Section 4.1. Here are my questions,
which I suggest the authors clarify in the manuscript:

(a) In Figures 2 and 3, what is the x-axis showing?
(b) In Figure 2(b), can the authors show s and Xβ as well as the blurred observation?
(c) In Figure 3(a), I was surprised to see that all methods noticeably overestimate the true function,

particularly for the x-axis values between 0 and 0.5. Shouldn’t the stochastic component, ζ,
correct this? How does this error arise?

(d) What exactly is the “reconstruction error norm” and the “relative reconstruction error norm”
shown in Figure 5 and mentioned in the text (also in the later simulation studies)?

4. In discussing the partial F -test in Section 2, it may be worth mentioning that the “smaller” model must
nest within the “larger” model, a notable limitation of the F -test compared to competing methods.

5. Minor points:
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(a) Lines 419–420: the references Miller et al and Liu et al would be better parenthesised.
(b) Lines 485–486: I’m surprised that the elements of Q have units (ppm)2—isn’t this quantity a

flux?
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