
1 

Generalised drought index: A novel multi-scale daily approach 

for drought assessment 

João António Martins Careto1, Rita Margarida Cardoso1, Ana Russo1, Daniela Catarina André 

Lima1, Pedro Miguel Matos Soares1 

1 Universidade de Lisboa,Faculdade de Ciências,Instituto Dom Luiz, 1749‑016 Lisbon, Portugal. 5 

Correspondence to: João Careto (jacareto@ciencias.ulisboa.pt)  

Abstract. Drought is a complex climatic phenomenon characterised by water scarcity and is recognised as the 

most widespread and insidious natural hazard, posing significant challenges to ecosystems and human society. In 

this study, we propose a new daily based index for characterising droughts, which involves standardising 

precipitation and/or precipitation minus potential evapotranspiration data. The new index, the Generalised 10 

Drought Index (GDI), proposed here is computed for the entire period available from the Iberian Gridded Dataset 

(1971 to 2015). Comparative assessments are conducted against the daily Standardised Precipitation Index (SPI), 

the Standardised Precipitation Evapotranspiration Index (SPEI), and a simple Z-Score standardisation of climatic 

variables. Seven different accumulation periods are considered (7, 15, 30, 90, 180, 360, and 720-days) with three 

drought levels: moderate, severe, and extreme. The evaluation focuses mainly on the direct comparison amongst 15 

indices, in their ability to conform to the standard normal distribution, added value assessment using the 

Distribution Added Value (DAV) and a simple bias difference for drought characteristics. Results reveal that the 

GDI, together with the SPI and SPEI follow the standard normal distribution. In contrast, the Z-Score index 

depends on the original distribution of the data. The daily time step of all indices allows the characterisation of 

flash droughts, with the GDI demonstrating added value when compared to SPI and SPEI for the shorter and 20 

longer accumulations, with positive DAV up to 35%. Compared to the Z-Score, the GDI shows expected greater 

gains, particularly at lower accumulation periods, with DAV reaching 100 %. Furthermore, the spatial extent of 

drought for the 2004-2005 event is assessed. All three indices generally provide similar representations, except 

for the Z-Score, which exhibits limitations in capturing extreme drought events at lower accumulation periods. 

Overall, the findings suggest that the new index offers improved performance and adds value comparatively to 25 

similar indices with a daily time step. 

1. Introduction 

Drought is known to be one of the most impactful and costliest weather-related disasters, affecting the ecosystems, 

the economy, and sectors such as agriculture, health, and water management (Wilhite, 2000; Rhee et al., 2010; 

Vicente-Serrano et al., 2013; Wang et al., 2014; 2017; Lai et al., 2019). Amongst all natural disasters, droughts 30 

can spread further and have the most extend length (Jain et al., 2010), developing often in a slow manner, while 

at the same time, their effects can linger in the environment long after the end of the event (Vicente-Serrano et al., 

2013; Hunt et al, 2014). 

Over the years, numerous indices have been developed to assess drought conditions, particularly related to 

intensity and duration. One of the first proposed drought indices was the Palmer Drought Severity Index (PDSI, 35 

Palmer, 1965; Alley, 1984), which enables the measurement and evaluation of wet and dry conditions. The PDSI 

standardises the balance between monthly precipitation and atmospheric demand by incorporating potential 

evapotranspiration in its formulation. While this index was a landmark, it does have certain shortcomings. Its 

performance is enhanced only for the region where the index was initially defined with its outputs being heavily 
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influenced by the chosen calibration period. Therefore, PDSI revealed problems related to its spatial comparison 40 

and application. To address some of these issues, Wells et al. (2004) introduced the self-calibrated PDSI, which 

allows for spatial comparison and identifies extreme wet and dry events as rare occurrences. However, fixed 

timescales for computing the index remained a concern. Further developments were introduced during the 

following years to address these caveats. The Standardised Precipitation Index (SPI, McKee et al., 1993) is one of 

the indices developed which tackled the comparability and temporal scales issues (Guttman 1998; Hayes et al. 45 

1999). SPI is a straightforward standardised index only requiring monthly precipitation, representing it as a 

standard deviation from its mean. SPI overcomes the limitations of the self-calibrated PDSI by enabling the 

computation of the index at various timescales. Nevertheless, SPI the sole use of precipitation could be a limiting 

factor depending on the climatic dominating conditions in certain regions. Moreover, with anthropogenic climate 

change, rising temperatures and the subsequent increases in evapotranspiration can also significantly increase the 50 

impact of drought events (Hu and Wilson, 2000; Vicente-Serrano et al., 2010). Therefore, including the influence 

of atmospheric evaporative demand in a drought index becomes imperative (Vicente-Serrano et al., 2010; Svoboda 

and Fuchs, 2016). To address this need, Vicente-Serrano et al. (2010) proposed the Standardised Precipitation 

Evapotranspiration Index (SPEI), which was further developed by Beguería et al. (2014). SPEI combines all the 

features and advantages of SPI together with the inclusion of atmospheric evaporative demand represented by the 55 

potential evapotranspiration. Both SPI and SPEI are indices that require data to be fitted to a theoretical Probability 

Density Distribution (PDF). In the literature, numerous PDFs have been considered. For SPI, distributions such 

as Pearson type III (Vicente-Serrano et al., 2006) or Gamma (Mkee et al., 1993; Edwards et al., 1997; Wang et 

al., 2022; Zhang et al., 2023) have been commonly employed. On the other hand, the 3-parameter log-logistic 

(Beguería et al., 2014; Wang et al., 2015; Ma et al., 2020) and the Generalised Extreme Value (Stagge et al., 2015; 60 

Wang et al., 2021; Zhang et al., 2023) distributions have been widely used for SPEI. However, the best distribution 

to fit the data is still not clear, as the same distribution may perform differently for distinct regions (Stagge et al., 

2015; Monish and Rehana, 2020; Zhang and Li, 2020). For instance, for a global dataset, Stagge et al. (2015) 

concluded that the Gamma (Weibull) for long (short) accumulations was the best distribution for SPI, while the 

Generalised Extreme value was the best distribution to fit SPEI. On the other hand, Zhang and Li. (2020), 65 

concluded that the Log-Logistic distribution could be used as an alternative when analysing SPI for a large river 

basin in China. At the same time, the Log-logistic distribution which is known to be resilient to the presence of 

outliers (Ahmad et al., 1988) and more appropriate for the Iberian Peninsula (Vicente-Serrano et al., 2010; 

Beguería et al., 2014), was deemed the best function for fitting the data for SPEI. Usually, the SPI and SPEI 

indices only rely on a single probability density distribution, even for large regions. To overcome this issue, there 70 

are methods to estimate the underlying distribution and associated parameters, which could, however, become 

computationally infeasible for large datasets (Guttman, 1999). At the same time, the method considered to estimate 

the parameters of a single distribution could also be computationally demanding. 

Simpler drought indices which do not require fitting to a distribution also exist. One is the Z-Score which is 

computed for precipitation or with the difference between precipitation and evapotranspiration by subtracting the 75 

long-term mean and dividing the result by the long-term standard deviation (Umran Komuscu, 1999; Patel et al., 



3 

2007; Akhtari et al., 2009; Jain et al., 2015). Slightly different formulations for this index also exist such as those 

used by Zhang et al. (2022a) and (2022b), or the China Z-Index (Wu et al., 2001) and is also considered in the 

standardised Reconnaissance Drought Index (Tsakiris and Vangelis, 2004). The advantage of the Z-Score index 

lies in its simple calculation being considered an alternative to indices which require fitting data to a distribution 80 

such as the SPI or SPEI, being capable of accommodating missing values. Similarly, the Z-Score also represents 

a standardised departure from the mean. However, the Z-Score may not effectively represent the shorter timescales 

since precipitation data is skewed (Edwards, 1997). Additionally, the index’s performance may vary in regions 

with diverse precipitation or potential evapotranspiration patterns, where data does not assume a normal 

distribution. This can affect the accuracy and reliability of the index.  85 

Although droughts are, in general, known to be a slowly evolving phenomenon (Wilhite and Glantz, 1985; Mishra 

and Singh, 2010), recently the concept of flash drought has emerged (Wang et al., 2021;2022; Zhang et al., 2022a; 

Christian et al., 2023). These types of extreme events are characterised by a sudden onset, fast aggravation, and 

end (Christian et al., 2023). Depending on the type of climate, these short-duration events may threaten the water 

supply and cause significant reductions in crop yield at critical stages of plant development (Meyer et al., 1993; 90 

Dai, 2011; Vicente-Serrano et al., 2013; Hunt et al., 2014). due to their sub-monthly timescale nature flash 

droughts can only be identified with daily drought indices. Therefore, the widespread of observational-based daily 

gridded datasets such as the National Gridded Dataset for the Iberia Peninsula (IB01; Herrera et al., 2019), Climate 

Prediction Center (CPC, Xie et al., 2007; Chen et al., 2008), the E-OBS (Cornes et al., 2018), the European 

Meteorological Observations (EMO-5, Thiemig et al., 2022), station based datasets such as the European Climate 95 

Assessment & Dataset (ECA&D, Klein-Tank et al., 2002), reanalysis data such as ERA5 (Hersbach et al., 2020; 

2023), the JRA-55 (Kobayashi et al., 2015), the Merra-2 (Gelaro et al., 2017), or regional climate models initiatives 

such as the World Climate Research Program Coordinated Regional Climate Downscaling Experiment 

(CORDEX, Giorgi et al., 2009; 2021, Gutowski et al., 2016), assisted in the development of new drought indices 

with a daily time step (Wang et al., 2015; 2021; 2022; Jia et al., 2018; Li et al., 2020; Ma et al., 2020; Onuşluel 100 

Gül et al., 2021; Zhang et al., 2022a; 2022b; Zhang et al., 2023). At the same time, most of these indices are still 

fitted to a probability distribution and/or are not standardised. Wang et al. (2015) used a daily version of SPEI to 

understand if there has been any improvement in drought conditions. The authors report that the daily SPEI can 

provide a more comprehensive understanding of drought dynamics at a finer temporal scale. Li et al. (2020) 

proposed the Standardised Antecedent Precipitation Evapotranspiration Index. The index is first compared against 105 

the monthly PDSI, SPEI and soil moisture, revealing a similar performance against SPEI at the monthly scale 

while outperforming at the weekly scale. Ma et al. (2020) computed a daily SPEI index and compared it with the 

traditional monthly version. The authors reported that the daily index can capture more detailed drought events 

than the monthly counterpart. Wan et al. (2023) also considered a daily SPEI index to determine the trend of 

drought severity and duration over 40 years (1979-2018) for China. The authors also concluded that the potential 110 

evapotranspiration was the dominant climatic factor influencing drought for most of the region. Zhang et al. 

(2022a) proposed the Daily Evapotranspiration Deficit Index and compared the results against the Meteorological 

Drought Composite Index and SPEI for four drought events in China. The proposed index was able to capture 
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better the start and end of the events, as well as the peak intensity. Still, indices such as the SPI or the SPEI 

computed at the daily scale also prove to be demanding. The parameter estimation and the subsequent fitting to a 115 

theoretical distribution may be computationally expensive and result in a poor fit. At sub-monthly aggregation 

scales, the presence of outliers could hinder the parameter estimation and fit andgenerate values that might fall 

outside the range of the chosen distribution. Furthermore, periods with no precipitation may also pose difficulties 

in computing the SPI index (Beguería et al., 2014). Table 1 displays a summary of all indices presented here. 

Nevertheless, daily indices are still at an early stages in comparison with the diverse monthly drought indices 120 

available. Motivated by the shortcomings illustrated before, in the present study, we propose a new daily drought 

index, the Generalised Drought Index (GDI). The GDI is an index identical to SPI or SPEI in the sense of 

standardising data to follow the standard normal distribution, allowing the evaluation of both short and long-time-

scale droughts with a daily time step. Furthermore, GDI allows for a generalised fitting distribution which is 

empirically based, and thus the index accepts alternative variables for drought assessment and not only 125 

precipitation. For instance, actual evapotranspiration could be considered as an alternative to the usual 

precipitation minus potential evapotranspiration (P-PET). Moreover, the new index may be perceived as an 

alternative for removing skewness and kurtosis from climate data.  Here, the GDI index is computed for the Iberian 

Peninsula region using the IB01 dataset, covering 1971-2015. Our study contributes to the ongoing efforts to 

develop more effective drought monitoring tools and provides a valuable instrument for decision-makers and 130 

stakeholders to better manage the impacts of flash-droughts and longer droughts, consistently and solidly. Our 

proposed index can be easily implemented in regions with limited climatic variables and can help improve the 

accuracy and reliability of drought assessment, requiring solely long-time series. The introduction of GDI can also 

be regarded as an important step in the evaluation of climate simulations. This is particularly relevant for high-

resolution models such as those from the EURO-CORDEX (Jacob et al., 2014; 2020; Gutowski et al., 2016) or 135 

from the CORDEX flagship FPS-Convection simulations (Coppola et al., 2020; Ban et al., 2021; Pichelli et al., 

2021), which aim to capture extreme weather events more accurately than their coarser counterparts. With the use 

of daily datasets and a daily drought index, researchers can more accurately assess a model’s ability in capturing 

the fast-evolving conditions, characteristic from flash-droughts. Therefore, the GDI allows for a better 

understanding of drought dynamics, facilitating the evaluation of not only long-term drought events but also short-140 

term variability. Furthermore, with GDI index one can more easily perform studies of co-occurrence with other 

types of extremes such as heatwaves or fire ignitions (Zscheischler et al., 2020; Shan et al., 2024), all on the same 

scale.  

The following section introduces the IB01, as well as the methodology for computing the GDI, the SPI and SPEI, 

and finally the simple Z-Score standardisation. Afterwards, the results are presented in section 3, followed by a 145 

Discussion and Conclusions in section 4. 
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Table1. Examples of drought indices. 
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PDSI Palmer, (1965) x    x    x 

sc-PDSI 

 

x    x    x Wells et al. (2004) 

 

SPI 

Mckee et al. (1993) 

x  x x   x   
Zhang et al. (2023) 

SPEI 

Vicente-Serrano et al. (2010) 

x x x  x  x   Ma et al. (2020) 

Zhang et al. (2022a) 

Z-Score 

 

x x x  x    x Komusou, (1999) 

 

RDI 

 

x    x    x Tsakiris and Vangelis, (2004) 

 

SAPEI 

 

x x   x  x   Li et al. (2020) 

 

DEDI 

 

  x  x  x   Zhang et al. (2022a) 

 

GDI ------ x x x x x x   x 

2. Data and Methods 

2.1. Study Area  150 

The Iberian Peninsula exhibits a diverse and complex climate influenced by its geographical position, surrounded 

by the Atlantic Ocean to the north and west and the Mediterranean Sea to the south and east. In the northern 
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regions of the Iberian Peninsula, such as Galicia and northern Portugal, a maritime climate prevails, characterised 

by mild winters and cool summers. The Atlantic Ocean influence brings relatively high precipitation throughout 

the year (Rios-Entenza et al., 2014). Towards the south, the climate shifts to a more Mediterranean type, with hot 155 

and dry summers. Winters remain mild and relatively wet compared to the summer months. The Mediterranean 

climate is associated with distinct wet and dry seasons, with most rainfall occurring during the winter (Peel et al., 

2007). Droughts are a recurring and significant challenge for the Iberian Peninsula. The region has a long history 

of drought events, with a clear drying trend throughout the 20th century, mainly due to increased temperature 

(Fonseca et al., 2016; Páscoa et al., 2021). Climate change projections suggest that the frequency and intensity of 160 

droughts may amplify in the future (Sanchez et al., 2011; Seguí et al., 2016; Moemken et al., 2022; Soares et al., 

2023a). Rising temperatures and changing precipitation patterns may exacerbate water scarcity and put additional 

stress on the region’s ecosystems. (Soares et al., 2017; Cardoso et al., 2019; Carvalho et al., 2021; Soares and 

Lima 2022). 

2.2. IB01 Observational Dataset 165 

The IB01 Observational dataset (Herrera et al., 2019) is a high-quality dataset that offers daily values for 

precipitation, as well as minimum and maximum temperatures, with a spatial resolution of 0.1o. This dataset was 

constructed using an extensive network of quality-controlled observational weather stations (a maximum of 3486 

for precipitation and 275 for temperatures) across the Iberian Peninsula from 1971 to 2015. Herrera et al. (2019) 

reported that not only IB01 effectively captures the spatial patterns of the mean and extreme precipitation and 170 

temperatures. but also exhibits a more realistic precipitation pattern than E-OBS (Cornes et al., 2018), and 

comparable performance to E-OBS for temperatures. 

The IB01 dataset has been employed in numerous studies to characterise the present climate and was used as a 

benchmark for evaluating the ability of a set of EURO-CORDEX (Giorgi et al., 2009; Jacob et al., 2014; 2020; 

Gutowski et al., 2016) simulations to reproduce the present climate over Iberia (Herrera et al. 2020; Páscoa et al., 175 

2021; Careto et al., 2022a; 2022b; Lima et al., 2023a; 2023b; Soares et al., 2023b). Herrera et al. (2020) evaluated 

the performance of the EURO-CORDEX over the Iberian Peninsula and characterised the observational 

uncertainty with the use of the IB01, E-OBS-v19e, and MESAN-0.11o datasets. Páscoa et al. (2021) employed 

this dataset to assess the recent trends in drought events across Iberia. Careto et al. (2022a) and (2022b) evaluated 

the added value of using high-resolution simulations from EURO-CORDEX in characterizing means and extremes 180 

of precipitation and temperature over the Iberian Peninsula. More recently, Lima et al. (2023a) considered the 

IB01 dataset as the reference to evaluate the accuracy of a set of historical EURO-CORDEX simulations in 

representing the main properties of the observed climate within mainland Portugal. Based on this evaluation, a 

weighted multi-variable multi-model ensemble of EURO-CORDEX simulations was built and used to characterise 

both the mean climate, extremes, and indices (Lima et al. 2023a and 2023b), as well as water scarcity conditions 185 

over Portugal (Soares and Lima, 2022) throughout the 21st century. Based on the same weighting methodology, 

Soares et al. (2023b) projected the future of drought events across the Iberian Peninsula. Finally, IB01 was used 

to critically assess the CMIP quality to project the recent past climate of Iberia (Soares et al, 2023a). 
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2.3. Potential Evapotranspiration 

Potential Evapotranspiration (PET) represents the maximum atmospheric water demand and is a requirement for 190 

the computation of several drought indices (Vicente-Serrano et al., 2010; Li et al., 2020; Zhang et al., 2022a; 

2022b). The FAO-56 Penman-Monteith formula (Allen et al., 1998) is one of the most widely used approaches to 

calculate PET. Although it was specifically designed for non-stressed grass cover, is considered the most accurate 

estimate. However, it requires multiple variables, some of which may not be readily available, posing a drawback 

to its practical implementation. An alternative approach, known for its simplicity, is the Thornthwaite formulation 195 

(Thornthwaite, 1948), which only requires latitude and temperature as inputs. However, studies have shown that 

the Thornthwaite formulation underestimates PET in arid and semiarid regions while overestimating it in humid 

tropical or equatorial regions (van der Schrier et al., 2011). Therefore, in the context of climate change and the 

Iberian Peninsula, with arid and semiarid regions, this equation is not the best option for computing PET (Beguería 

et al., 2014) 200 

As a compromise between formulation complexity and data availability, a modified version of the Hargreaves 

formulation is thus considered in this study (Droogers and Allen, 2002). The Modified Hargreaves is identical to 

the original Hargreaves method, in which beyond the incorporation of maximum and minimum temperature, the 

precipitation is also integrated. Precipitation data is commonly accessible in most modelling and observational 

datasets and can serve as a proxy for cloud cover and humidity. In this study, a daily version of the Modified 205 

Hargreaves formula is implemented (Farmer et al., 2011): 

𝑃𝐸𝑇 = 0.0019 ∗ 0.408 ∗ 𝑅𝐴 ∗ (𝑇𝑎𝑣𝑔 + 21.0584)(𝑇𝐷 − 0.0874 ∗ 𝑃)0.6278 (1) 

More details on the calculation of the PET with the modified Hargreaves version can be found in Soares et al. 

(2023). 

2.4. Drought Indices 

2.4.1. Standardised Precipitation and Standardised Precipitation Evapotranspiration Indices 210 

In this section, the Standardised Precipitation Index (SPI, McKee et al. 1993) and the Standardised Precipitation 

Evapotranspiration Index (SPEI, Vicente-Serrano et al. 2010) are presented. Both SPI and SPEI are commonly 

used (Edwards, 1997; Vicente-Serrano et al. 2006; 2010; Beguería et al. 2014; Wang et al. 2022; Zhang et al. 

2022a; 2022b) with the former being calculated based solely on precipitation (hereafter PR) and the latter on a 

simplified water balance (Precipitation minus Potential Evapotranspiration, hereafter PR-PET). Probabilistic 215 

indices such as these allow for a Standardised juxtaposition and comparison across different spatial areas or 

between climate zones (Vicente-Serrano et al., 2010; Pohl et al., 2023) 

To compute either the SPI or the SPEI, first, the PR and PR-PET data must be aggregated into the desired 

timescale through a moving window with a length equal to the timescale, i.e., a daily value is computed as the 

sum of the day under analysis (d) and the previous 𝑠 − 1 days where s is the timescale (in days): 220 
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𝑋𝑑 = ∑ 𝑑𝑎𝑡𝑎

𝑑

𝑑−(𝑠−1)

 (2) 

Subsequently, a daily yearly mean is obtained from a moving window of 31 days centred on each day d: 

𝑆𝑒 =
1

31𝑌
∑ ∑ 𝑋𝑑𝑖,𝑗

 

𝐷+15

𝑗=𝐷−15

𝑌

𝑖=1

 (3) 

Where Y is the total number of years and D is the day of the year. For instance, 1st January corresponds to day 1 

and 31st December to day 366. To ease all computations, all years are considered to have 366 days in order to 

include the 29th of February from leap years. Consequently, the value for 29th February from non-leap years is 

considered a missing value. Thus, 𝑆𝑒 is an annual mean cycle. Thirdly, this annual cycle is removed from the 𝑋𝑑 225 

series: 

𝑋𝑎 = ∑ ∑ 𝑋𝑑𝑖,𝑗
− 𝑆𝑒𝑗  

366

𝑗=1

𝑌

𝑖=1

 (4) 

Traditionally, the removal of the seasonal cycle is not performed for the SPI and SPEI. However, it can be 

regarded as a step to remove days without precipitation, which is relevant in the case of the SPI index. Usually in 

those situations, a factor is considered for precipitation data (Stagge et al., 2015; Wang et al., 2022; Zhang et al., 

2023). 230 

Afterwards, the 𝑋𝑎 series are adjusted to a theoretical distribution. The log-logistic distribution (Eq- 5) 

was chosen to fit 𝑋𝑎 for both SPI (Zhang and Li, 2020) and SPEI (Vicente-Serrano et al., 2010; Beguería 

et al., 2014). Therefore, the difference between the two indices lies solely in the inclusion of PET for 

SPEI. To avoid issues when fitting the data to the distribution, first the values of the 𝑋𝑎 series are shifted 

to positive values above 0. This change does not affect the distribution or the final value. 𝑓(𝑥) =

𝛽

𝛼
(

𝑥−𝛾

𝛼
)

𝛽−1

[1 + (
𝑥−𝛾

𝛼
)

𝛽

]
−2

 

(5) 

The three parameters β (shape), α (scale) and γ (location) can be estimated via the maximum likelihood or with 

Probability Weighted Moments (PWM, Hosking, 1986; 1990). Following Beguería et al. (2014), the unbiased 

estimator for PWM (Hosking, 1986) was considered: 

𝑊𝑠 =  
1

𝑁
∑

(𝑁−𝑖
𝑠

)

(𝑁−1
𝑠

)

𝑁

𝑖=1

𝑋𝑑𝑖
=  

1

𝑁
∑

Γ(N − i + 1)/(Γ(s + 1)Γ(N − i − s + 1)

Γ(N)/(Γ(s + 1)Γ(N − s))

𝑁

𝑖=1

𝑋𝑎𝑖
  (6) 

Moments 𝑊𝑠 of different orders 𝑠 can be computed easily via software programming tools. Γ denotes the gamma 

function for Natural numbers including 0. From the first three moments (𝑊0, 𝑊1 and 𝑊2) it is possible to obtain 235 

the three parameters for the Log-Logistic (Singh et al., 1993): 

𝛽 =  
2𝑊1 − 𝑊0

6𝑊1 − 𝑊0 − 6𝑊2

  (7) 

𝛼 =  
(𝑊0 − 2𝑊1)𝛽

Γ (1 +
1
𝛽

) Γ (1 −
1
𝛽

)
 (8) 
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𝛾 =  𝑊0 −  𝛼Γ (1 +
1

𝛽
) Γ (1 −

1

𝛽
) (9) 

To convert the 𝑋𝑎 series into SPI or SPEI, the Cumulative Distribution Function (CDF) of the Log-Logistic is 

required to obtain the accumulated probability: 

𝐹(𝑥) = [1 + (
𝛼

𝑋𝑎 − 𝛾
)

𝛽

]

−1

  (10) 

Having the accumulated probabilities, the indices can be easily obtained following the classical approximation of 

Abramowitz and Stegun. (1965): 240 

𝑃 = 1 − 𝐹(𝑥) (11) 

𝑃 = 1 − 𝑃, 𝑖𝑓 𝑃 > 0.5 (12) 

If P is above 0.5, then the signal of the final index is also reversed. 

𝑊 = √−2 ln(𝑃) (13) 

𝑆𝑃𝐸𝐼 = 𝑊 −
𝐶0 + 𝐶1𝑊 + 𝐶2𝑊2

1 + 𝐷1𝑊 + 𝐷2𝑊2 + 𝐷3𝑊3
 (14) 

With 𝐶0 = 2.515517, 𝐶1 = 0.802853, 𝐶2 = 0.010328, 𝐷1 = 1.432788, 𝐷2 = 0.189269 𝑎𝑛𝑑 𝐷3 = 0.001308. 

2.4.2. Z-Score Index 

Z-Score method is a straightforward approach used to standardise a dataset based on its mean and standard 

deviation (Umran Komuscu, 1999; Patel et al., 2007; Akhtari et al., 2009; Jain et al., 2015). It follows a simple 245 

rationale: 1) obtain the accumulated series and remove its seasonal cycle, as described in section 2.4.1; 2) remove 

the mean and divide the result by the standard deviation to get the 𝑋𝑎 anomalies. This ensures that all data points 

have the same statistics for mean and standard deviation. However, it is important to note that while the mean and 

standard deviation will be consistent across all points, the underlying distribution and its parameters describing 

the data at each location may vary. Still, for long accumulations and as a consequence of the central limit theorem, 250 

the Z-Score and the standardised indices approach each other. The Z-Score can be computed by: 

𝑍 − 𝑆𝑐𝑜𝑟𝑒 =
𝑋𝑎 − 𝑋𝑎

̅̅̅̅

𝜎(𝑋𝑎)
  (15) 

 

2.4.3. Generalised Drought Index 

A new index, the Generalised Drought Index (GDI) is proposed here as an alternative to the commonly used 

Standardised drought indices, such as the SPI or the SPEI, both described in section 2.3.1. The GDI is also a 255 

standardised index but introduces three upgrades which are particularly interesting when addressing drought 

impacts that often occur at sub-monthly scales:  

● It can be calculated using any daily aggregation. For instance, the 7-, 15-, 30-, 90-, 180-, 360-, and 720-days 

were chosen, ranging from weekly to biannual aggregations. Regardless of the timescale chosen, a daily 

index is obtained, allowing an assessment of flash droughts, which were not possible with monthly indices. 260 
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● Since fitting to a distribution is not required, any variable relevant to drought characterisation can be 

considered as input, such as PR or PR-PET, actual evapotranspiration or PR divided by PET.  

● Relies on a unique spline adjustment technique to smooth the cumulative histogram. The main advantage is 

the automatic fit of the empirical distribution to the data for different sites, resulting in an enhanced index. 

Figure S2 (in the supplemental material) shows the two sample Cramér-von Mises statistics from all land points 265 

and for each accumulation period, comparing the GDI, SPI and SPEI cumulative distribution against the empirical 

cumulative distribution. This figure reveals that the spline adjustment outperforms the theoretical log-logistic fit 

used by both SPI and SPEI, as given by the lower values of the Cramér-von-Mises statistics across all time scales. 

Moreover, the p-value over the assumption that the 𝐻0hypothesis, where both samples came from the same 

distribution, cannot be rejected for the spline adjustment at the 5% significance level. This result is expected since 270 

the spline is empirically driven. However, in the case of SPI and SPEI the hypothesis 𝐻0 is rejected for most 

accumulations where both samples came from different distributions. Again, this result is expected since the log-

logistic distribution was assumed and used to fit the data, which for most cases does not correspond to the 

underlying distribution of the data. 

To compute the GDI, the 𝑋𝑎 series anomalies obtained in subsection 2.3.1 are considered. The following step is 275 

to compute a histogram of the data. The Freedman-Diaconis rule is used, which gives an optimised estimate for 

the bin width based on the data variability and length: 

𝑖𝑛𝑐 = 2 ∗
𝐼𝑄𝑅

√𝑁
3  

(16) 

Where IQR is the interquartile range and N is the length of the 𝑋𝑎 series. The histogram is defined between the 

minimum and maximum values and is tailored specifically for each time series. Following Soares and Cardoso, 

(2018) the histogram series are normalised by the sum of all bins: 280 

𝑋𝑑 =
ℎ𝑖𝑠𝑡(𝑋𝑑)

sum(ℎ𝑖𝑠𝑡(𝑋𝑑))
 

(17) 

𝑋𝑑 = 𝑆𝑁 = ∑ 𝑋𝑑,𝑖

𝑁

𝑖=1

∗ (1 − 𝑁−1) 
(18) 

Subsequently, a cumulative sum of each bin is considered (Eq. 18). At this stage, the bins of the cumulative 

histogram were treated as data (x, y) points, where x represents the endpoint between the bin edges and y 

represents the corresponding probability. It is important to avoid 0s and 1s, since the cumulative distribution of 

the normal distribution tends to infinity for a probability of 0 and 1. Therefore the factor (1 − 𝑁−1 ) was 

considered, slightly scaling down the value for all bins. A value proportional to the length of data (1/𝑁) was also 285 

appended at the minimum edge of the first bin, corresponding to the minimum value of the 𝑥𝑑 series. Afterwards, 

a cubic spline technique (Fritsch and Butland, 1984) is used to smooth the cumulative histogram. With this 

approach the probability of any value can occur, without the need of a theoretical distribution fit.  

This method allows the estimation of intermediate probabilities between the cumulative histogram points, 

resulting in a continuous and smooth representation of the underlying distribution, bounded by the probability of 290 

the minimum value (1/𝑁) and the last bin, allowing the preservation of the daily time step for the final index. 
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Afterwards, the original 𝑋𝑎 series are converted into accumulated probabilities using the interpolated accumulated 

histogram. By using the inverse of the normal distribution, one can transform these probability values into a 

standardised series following the standard normal distribution with a mean of 0 and a standard deviation of 1. It 

is important to note that the feasibility of this approach depends on the length of the original time series, as the 295 

statistics from longer time series will tend to align more closely with the parameters of the normal distribution. 

This is identical to what occurs for both SPI and SPEI (McKee et al., 1993; Pohl et al., 2023). Figure 1 introduces 

a flowchart to guide the users on the steps needed to obtain the GDI.  

2.5. GDI Evaluation 

The performance of GDI, SPI, SPEI, and Z-Score is assessed using the IB01 dataset for each single location to 300 

generate quantile-quantile plots, which allows us to determine the underlying distribution of all-time series 

relative to the standard normal distribution. The percentiles considered for evaluation are constituted by a 

sequence from the 10th to the 90th percentile, with increments of 10. With this inter-comparative analysis, one can 

inspect the underlying distribution of the data and how close it is to the theoretical standard normal distribution. 

A wider vertical spread represents deviations of the time series from normality (linear line). Conforming results 305 

to the standard normal distribution is paramount in various statistical analyses, as it facilitates meaningful 

comparisons and allows for the application of well-established statistical techniques. When data closely follows 

the standard normal distribution, it exhibits known statistical properties, simplifying the interpretation of the 

results (e.g., equal mean and median, 68% of the data falls within one standard deviation of the mean, 95% of the 

data falls within two standard deviations of the mean). In the context of drought indices, compliance with 310 

normality assumptions is crucial for accurately characterising drought severity and frequency. Moreover, the 

standard normal distribution allows for direct comparison across different spatial areas and periods, which is 

particularly relevant for assessing drought severity and patterns on both regional and global scales (Guttman 1998; 

Hayes et al., 1999; Vicente-Serrano et al., 2006; 201; Beguería et al., 2014). As a complement, statistics including 

the mean, median, standard deviation, interquartile range, skewness, Yule-Kendall skewness, and kurtosis were 315 

computed for all indices, from all land points of observations.  

A Distribution Added Value (DAV, Soares and Cardoso, 2018) assessment is also performed. In this version, the 

DAV allows a comparison and quantification of the similarity between distributions of the different indices to the 

standard normal distribution. This assessment is performed for the GDI against the SPI or SPEI and against the 

GDI against the Z-Score for each land grid point. To compute the DAV, a histogram is first constructed.   320 
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Figure 1. Flowchart for the construction of the Generalised Drought Index. 

 

For GDI, SPI and SPEI the limits considered are -5 to 5, while for the Z-Score the limits are wider, ranging from 

-15 to 15. The bin width was set to be constant for all datasets and is determined by the Freedman-Diaconis rule 325 

described earlier. In this context, the 75th and 25th percentiles are taken from the theoretical standard normal 

distribution. To build the histogram of the normal distribution, the normalised rank of each time series is first 

considered (this is equivalent to the empirical CDF probabilities). The probabilities range from 0 to 1, where the 

first value is close to 1/𝑁 and the last value is 1 − 1/𝑁, where 𝑁 corresponds to the data length at each location. 
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The factor used in eq. 17 is also contemplated here. These probabilities are then converted into values by 330 

considering the inverse of the standard normal distribution. Afterwards, each histogram is normalised by dividing 

each bin by the sum of all bins. From the histograms, a Perkins Skill Score (𝑆𝑖𝑛𝑑𝑒𝑥; Perkins et al., 2007) is thus 

computed, which represents the sum of the lowest value of the two normalised histograms: 

𝑆𝑖𝑛𝑑𝑒𝑥 = ∑ 𝑚𝑖𝑛 (𝑛𝑜𝑟𝑚ℎ𝑖𝑠𝑡𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑛𝑜𝑟𝑚ℎ𝑖𝑠𝑡𝑖𝑛𝑑𝑒𝑥)

⬚

⬚

 (19) 

where 𝑛𝑜𝑟𝑚ℎ𝑖𝑠𝑡𝑛𝑜𝑟𝑚𝑎𝑙  is the normalised histogram for the normal distribution, the 𝑛𝑜𝑟𝑚ℎ𝑖𝑠𝑡𝑖𝑛𝑑𝑒𝑥  is the 

normalised histogram for a specific index. A score is computed for each individual index and represents the degree 335 

of similarity between the index histogram to the standard normal distribution histogram. The Perkins Skill Score 

of each index is then used to compute the DAV: 

𝐷𝐴𝑉 = 100 ∗
𝑆𝐺𝐷𝐼 − 𝑆𝑖𝑛𝑑𝑒𝑥

𝑆𝑖𝑛𝑑𝑒𝑥

  
(20) 

Where 𝑆𝑖𝑛𝑑𝑒𝑥 is the score obtained for the SPI, SPEI or Z-Score. A positive percentage denotes an added value 

from the proposed GDI index. Finally, the Pearson correlation and Root-Mean-Squared-Error (RMSE) are also 

computed to further investigate the differences between the GDI and the other indices. All the metrics mentioned 340 

to this aimed to assess the overall performance for daily time series. 

Regarding the drought characteristics, several aspects are examined such as the mean event severity, decadal 

frequency, mean event duration and daily spatial drought extent. The drought levels considered are as follows: 

moderate drought with an index below -0.5, severe drought with an index below -1 and extreme drought with an 

index below -1.5 (McKee et al., 1993; Soares et al., 2023b). The drought frequency can be defined as the average 345 

number of times any index falls below the specified threshold per decade. Mean event severity is computed by 

dividing the sum of all days with the index below the defined thresholds, against the total number of events. The 

mean event duration is computed similarly and is defined as the ratio between the total number of days by the 

total number of drought events. These drought characteristics are computed following Spinoni et al. (2018) and 

Soares et al. (2023). All the statistics were computed for all indices and for the 7-, 15-, 30-, 90-, 180-, 360- and 350 

720 timescales considering each land grid point. A comparison is then performed by studying the spatial 

correlation and root mean squared error between the GDI and other indices, for moderate drought only. An 

assessment of the differences between the GDI against the SPI or SPEI and Z-Score is also performed, considering 

the drought characteristics. Additionally, the supplementary material includes comparisons of the GDI index 

against the monthly SPI and SPEI version computed with the default definitions provided by the 'SPEI' package 355 

for the R programming language (Beguería et al., 2014) as a complement. Whenever it is applied, the monthly 

GDI is also computed by aggregating the daily index at monthly time steps, by simply averaging the daily index. 

An analysis of the spatial extent of drought classes (moderate, severe, and extreme) is performed for the IB01 

dataset for a case study. The spatial extent is computed for each day and is defined as a percentage of land points 

with any index below the given thresholds. This analysis is performed for the extreme drought that affected the 360 

Iberia Peninsula in 2004 and 2005, where the evaluation period corresponds to two hydrological years, starting in 
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October 2004 and ending in September 2006. Moreover, the spatial average time series of all drought indices for 

all time aggregations were also analysed.  

3. Results 

3.1. GDI General Performance 365 

GDI, SPI and SPEI indices (Figs. 2a to 2d) reveal percentiles close to those obtained by a normal distribution. 

Figure 2a displays the results for the GDI computed solely from precipitation. For the timescales below 90 days, 

the distributions deviate slightly from the normal, particularly near the median. While, for the longer aggregation 

scales, the time series deviates more from the normal distribution towards the tails. Figure 2b, for the GDI 

computed with PR-PET, reveals a similar pattern. Yet, with the inclusion of PET, the deviations from the normal 370 

distribution are reduced. For SPI (Fig. 2c), the time series still follows the central line, although with a notorious 

dispersion. The pattern of the spread from all distributions remains similar for all accumulation scales, with higher 

deviations towards the tails of the distribution. For SPEI (Fig. 2d), the inclusion of PET relative to the SPI (Fig. 

2c) did improve the results as in Fig. 2b for the GDI, but the pattern of spread remains rather large. Both SPI and 

SPEI present a larger spread in comparison to GDI. In the Z-Score index with PR (Fig. 2e) and PR-PET (Fig. 2d), 375 

the underlying distribution does not necessarily have to align with the normal standard distribution. Yet, due to 

the central limit theorem, for longer accumulations the time series tend towards normality, as evidenced by the 

alignment with the central line, despite the expected and large spread amongst all-time series. Figure S3 in the 

supplementary material shows the same but for the monthly versions of the GDI, SPI and SPEI indices. Although 

the spread is larger for the monthly GDI in comparison to the daily version, it is still lower than the SPI and SPEI 380 

indices. 

As a complement, Fig. S4, in supplementary material, displays the statistics for all accumulation timescales and 

indices. The proximity of the values to zero indicates their similarity to the reference standard normal distribution. 

For the GDI indices, the mean and the median exhibit closer values, albeit with a slight deviation above 0. 

Nevertheless, those results together with the low skewness and kurtosis are good indicators of normality. For the 385 

SPI and SPEI indices, all metrics are near 0, although there is a more noticeable deviation among the time series 

in comparison with the results obtained for the GDI.  Conversely, by definition, the Z-Score displays a mean of 0 

and a standard deviation of 1. Still as expected from the statistics and the quantile-quantile plot from Fig. 2, the 

underlying distribution clearly deviates from normality. 

To assess the performance of the new index, the DAV metric (Eq. 20) is applied (Table 2). In this configuration, 390 

the DAV metric allows a quantification of a higher or lower degree of conformity to the standard normal 

distribution, relative to the other indices. The Perkins Skill Scores are determined for GDI, SPI, SPEI and Z-score 

for each location individually and chosen time scales. Table 2a shows the DAV for GDI with PR against SPI, and 

GDI with PR-PET against SPEI. For each accumulation period, a histogram represents the percentage of land 

points within each DAV category. All locations for all accumulations clearly display positive added value. For 395 

most of the accumulation periods, more than 50 % of land points reveal gains between a DAV of 5 to 10 %.   
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
Figure 2. Quantile-Quantile plot against the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th percentile from the standard 

normal distribution for all grid points of IB01 dataset for (a) GDI (PR), (b) GDI (PR-PET), (c) SPI, (d) SPEI, (e) Z-Score 

index (PR) and (f) Z-Score index (PR-PET). All indices were computed at the daily time step. A smaller vertical spread 

indicates a better agreement with the standard normal distribution from all locations. The numbers of the y-axis, the horizontal 400 
and vertical lines correspond to the percentiles of the standard normal distribution (SND percentile). 
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The exceptions are for 7 days accumulation for the PR indices and 720 days for the PR-PET, where most locations 

exhibit higher gains. However, the intermediate aggregation time scales (30D, 90D and 180D) still reveal more 

than 20 % of locations falling within the neutral DAV range (-5 to 5 %) for the PR indices. A similar trend occurs 405 

for the PR-PET indices, albeit with a more prominent result, with approximately 64 %, 48.5 % and 16.4 % of 

locations for the aggregations of 30-, 90-, and 180-days, respectively, having DAV values up to 5 %. Following 

Fig. 2, this behaviour is likely attributed to the PR-PET indices offering a better representation of the normal 

distribution. In general, GDI can add value, due to its improved representation of the shape of the cumulative 

distribution and consequently normality, as indicated in Fig. 2 and S4. Table 2b displays the DAV metric between 410 

the GDI and the Z-Score, showing that the GDI index reveals again a positive added value. In this case, since the 

underlying distribution for the original time series does not necessarily have to follow the normal distribution, 

large DAV values are expected. The gains are relevant, namely for the shorter accumulations. Towards the longer 

accumulations, the time series for the Z-Score better aligns with the normal distribution as hinted by Fig. 2e and 

2f, returning lower DAV values. These findings are relevant and could indicate that the fit of the data to a chosen 415 

theoretical distribution could introduce some uncertainty into the final index, while a fit to an empirical 

distribution can return more precise results. Table S1 displays the DAV for the daily GDI against the monthly SPI 

or SPEI (Table S1a) and the DAV for the monthly GDI against the monthly SPI or SPEI (Table S1b). The results 

obtained in Table S1a are identical to Table 2, where all locations reveal gains. Yet for Table S1b, some points 

have negative DAV. This behaviour hints at the fact that the added value of the index in this context is not only 420 

due to the comparison between a daily time step, with a monthly time step, but also to an overall better fit to the 

empirical distribution. 

To evaluate the degree of similarity between the GDI against the other indices, the temporal correlation and the 

RMSE are presented in Fig. 3. Figures 3a and 3b show the comparison between the GDI against the corresponding 

SPI and SPEI, i.e., GDI (PR) is compared with SPI and GDI (PR-PET) compared to SPEI. The degree of 425 

agreement for most locations is very high, with correlations close to 1. The RMSE mirrors the results obtained 

for the correlations, with very low values, indicating a proximity of the index values across SPI or SPEI and the 

corresponding GDI. These outcomes suggest small differences amongst the indices across all timescales, i.e., GDI 

can detect the same drought events as SPI or SPEI. Fig. 3b displays the comparison between the GDI and the Z-

Score, for both PR and the PR-PET as input. For Figure 3a, the correlations are still somewhat high with low 430 

RMSE, namely for the longer accumulations.  A high correlation is still expected since the same time series were 

used for computing both the GDI and Z-Score. However, for the Z-Score, the prospect is different, which is 

expected since the underlying distribution of the raw data is non-normal (Fig. 2). Hence the larger differences 

found relative to the GDI. For the longer accumulations, the underlying distribution of the Z-Score data tends to 

be closer to the standard normal, resulting in lower RMSE values and an approximation between GDI and Z-435 

Score. The dispersion of the values is also greater in comparison to Fig. 3a. For the 7-day accumulation, the 

correlation (RMSE) is approximately 0.9 (0.6), gradually increasing (decreasing) for longer accumulation periods.  
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Table 2. Distribution Added Value for (a) GDI against SPI or SPEI, (b) GDI against the Z-Score index. Each column denotes 

the accumulation periods, where PR stands for accumulated precipitation (left) and PR-PET stands for accumulated 440 
precipitation minus potential evapotranspiration (right). The colours and values in each cell correspond to the percentage of 

land points within the respective DAV category. The Perkins Skill Score is built by confronting each index histogram against 

the normal distribution histogram. The DAV is then computed as the relative difference between each index Perkins Skill 

Score, and for each location individually. The Table shows the percentage of land points falling within each DAV category. 

a) 

 
b) 

 
 

 
 445 
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a) 

 

 
 

 

 
b) 

 

 
 

 

 
Figure 3. Pearson correlation and root Mean Squared Error between the GDI index against (a) SPI or SPEI, and (b) against 

the Z-score index. Each column denotes the accumulation periods, where PR stands for accumulated precipitation (left) and 

PR-PET stands for accumulated precipitation minus potential evapotranspiration (right). The lines depict individual land points 450 
for the IB01 observations, with darker shading indicating a higher density of closely spaced lines. 

 

Figure S5 of the supplementary material shows the correlation and RMSE of the monthly GDI against the monthly 

SPI or SPEI. The findings are akin to those from Fig 3b, where the agreement between indices is higher for the 

longer accumulations. 455 

3.2. Drought Characteristics Assessment 

When evaluating the performance of a drought index, it is crucial to assess key characteristics such as event 

severity, frequency, duration and spatial extent. Table 3 presents the spatial correlation and RMSE for drought 

intensity, frequency, duration and spatial extent between the GDI against the SPI or SPEI (Table 3a) and against 

the Z-Score index (Table 3b). Only the results for moderate drought are considered since, for higher drought 460 

thresholds, the lack of events may hinder this comparison. Overall, the spatial agreement of the intensity and mean 
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duration of drought characteristics, between the GDI and SPI or SPEI (Table 3a) reduces towards the higher 

accumulations, as indicated by declining correlations and increasing RMSEs. Those results contrast with the 

findings from Figure 3, where correlations remained high and RMSE low for all timescales. As for the drought 

frequency, although the correlation decreases for higher aggregation periods, the RMSE also decreases. 465 

Nonetheless, for all cases and regardless of the accumulation time step, the higher the base values from each 

drought characteristic, shown in Fig. S6, S8 and S10, imply potentially larger differences amongst the indices. 

The spatial extent in drought reveals close values between the GDI and the SPI or SPEI, with near perfect 

correlation (near 1) and low RMSE values Comparing with the Z-Score index yields similar results to Table 3a, 

albeit with some differences, particularly at the 7-day accumulation for drought intensity and frequency. In this 470 

case, the correlations and RMSE do not follow the previous pattern. For instance, the correlation for drought 

intensity is 0.917 for the PR indices and 0.909 for the PR-PET indices, contrasting with 0.938 and 0.949 obtained 

in the same comparison of the GDI against the SPI or SPEI. Figures S7, S9 and S11, along with Table S2 show 

the same results for the monthly GDI and monthly SPI or SPEI indices. In this case, the comparability at shorter 

timescales is notably lower, particularly for PR indices, increasing towards higher accumulations. 475 

Figure 4a displays the difference between GDI and SPI or SPEI for the drought characteristics mean event 

severity, decadal frequency, mean duration, and spatial extent for the three drought classes defined: moderate 

( 𝑖𝑛𝑑𝑒𝑥 < −0.5 ), severe ( 𝑖𝑛𝑑𝑒𝑥 < −1 ) and extreme ( 𝑖𝑛𝑑𝑒𝑥 <  −1.5 ). Regarding drought severity, the 

difference amongst indices increases for higher accumulations, with the GDI showing higher intensity for most 

locations, as indicated by the positive median value. In terms of drought decadal frequency, the differences vary 480 

more for all accumulations. At the 7-days accumulations, GDI tends to reveal less moderate and severe events, 

but more extreme events. Conversely, and for the PR based indices, at the 15-, 30- and 90-days, GDI slightly 

indicates more moderate events, while showing fewer severe and extreme events. The opposite occurs for the PR-

PET based indices. It is important to note that the extreme drought class is contained within severe drought, which 

in turn is contained within moderate drought. This approach avoids splitting the events (Soares et al., 2023b). The 485 

position of the median in this context is relevant, indicating the trend shown by most locations. For the mean 

event duration not only does the dispersion of the results increase towards the longer accumulations, but the 

median value is also negative, suggesting systematic shorter events for the GDI index within the majority of 

locations. For severity and duration, the differences are higher for the longer accumulations, consistent with the 

findings in Table 3a, where greater variability for the differences implies lower correlation and higher RMSE. In 490 

opposition to the other drought characteristics, the spatial extent reveals fewer differences across all time scales, 

as anticipated from the results obtained in Table 3a. In this case, extreme drought tends to reveal lower differences 

than moderate and severe drought. It is worth noting that the scale is not linear thus, for higher values, the 

differences in the spread may not be as noticeable. Additionally, the inclusion of the PET does not change 

noticeably the results in this context.  495 
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Table 3. Spatial Pearson Correlation (blue) and spatial Root Mean Squared Error (red) between (a) GDI against SPI or SPEI 

and (b) GDI against the Z-Score index. Each row, for both panels and from top to bottom, represents the drought intensity, 

drought mean decadal frequency, and drought mean duration. The last row in both panels displays a time Pearson Correlation 

and Root Mean Squared Error for the drought spatial extent. These results are presented only for moderate drought (index< -500 
0.5). Each column denotes the accumulation periods, where PR stands for accumulated precipitation (left) and PR-PET stands 

for accumulated precipitation minus potential evapotranspiration (right). The colours denote extremes of either correlation or 

RMSE. 

a) 

 
b) 

 
 

 
 

Figure 4b illustrates the differences between the GDI and the Z-Score index. Since the Z-Score is a simple 505 

standardisation with no changes in the underlying distribution, one can anticipate larger differences, as suggested 

by the previous figures. Concerning mean drought severity, shorter accumulations of up to 30-days reveal that the 

GDI has fewer events than the Z-Score. For the higher accumulations, the differences tend to be more positive 

with more variability across all locations. Regarding drought decadal frequency, the same behaviour occurs for 

moderate drought. However, for severe and extreme drought, GDI reveals more events than the Z-Score, 510 

decreasing towards the longer accumulations. As for the mean drought duration, a similar behaviour can be 

observed, albeit with smaller differences in the shorter accumulations. Furthermore, and akin to the mean event 

severity, differences tend to be more spread out for longer accumulations. It is noteworthy that for severe and 

namely for extreme droughts, the Z-Score may show locations without events. The same may occur for GDI, SPI 

or SPEI, although with a lower chance. This clearly occurs for extreme drought, for instance atthe 7-day 515 

accumulation Z-Score index (Fig. S6, S8 and S10). Regarding drought spatial extent, GDI returns lower values 

for moderate drought and higher values for severe and extreme drought. The only exceptions are at the 360- and 

720-days accumulations, where most locations reveal a slightly negative difference. Overall, the results in Fig. 4 

do not indicate a significant alteration between the PR and PR-PET based indices, consistent with the findings in 

Fig. 3 for the correlation and RMSE of the time series, as well as Table 3.  520 
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a) 

 
b) 

 
Figure 4. Boxplot of all land points featuring the difference of drought characteristics between the (a) GDI index and SPI or 

SPEI and between (b) GDI index and Z-Score index. In each sub-figure, from top to bottom: the mean event severity, decadal 

frequency, mean event duration and spatial extent of droughts. For the case of drought spatial extent, the differences are made 

for each time step. Each column denotes the accumulation periods, where PR stands for accumulated precipitation (left) and 525 
PR-PET stands for accumulated precipitation minus potential evapotranspiration (right). The different boxplot denotes the 

results for moderate drought for index <-0.5 (yellow), severe drought for index <-1 (orange) and extreme drought for index <-

1.5 (red). For each boxplot, the low (high) whisker denotes the 1st (99th) percentile, while the three horizontal lines within the 

box correspond, from bottom to top to the 25th, 50th and 75t percentiles. 

 530 

It appears that the variations between the PR and PR-PET indices are more evident within the indices themselves 

rather than in the comparisons performed amongst them. Figure S12 shows the same differences but for the 

monthly GDI against the monthly SPI or SPEI. 

3.3. 2004/2005 Case Study 

A case study of an extreme drought which affected the Iberian Peninsula, starting in the autumn of 2004 is 535 

presented in Fig. 5, where the spatial extent for moderate, severe, and extreme drought are shown, computed for 
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all timescales and indices. Figure S13 in the supplementary material shows the same but for the PR-based indices. 

The differences between the PR and PR-PET based indices is minimal in terms of drought spatial extent, as 

expected from the previous results. The 2005 drought is widely regarded as one of the most extreme events in 

recent history affecting the Iberian Peninsula, characterised by a precipitation deficit during the hydrological year 540 

of 2004/2005 (García-Herrera et al., 2007; Santos et al., 2007). The patterns of the spatial extent for all drought 

severities for the lower accumulations (Figs. 5a, 5b and 5c) are similar, revealing the extremely dry autumn of 

2004 and spring of 2005, which somewhat repeated in the following hydrological year. At these scales, the GDI, 

SPI and SPEI indices exhibit similar percentages of territory in the three drought categories.  

The SPEI and GDI show that over 75% of the land experienced extreme drought conditions from October 2004 545 

to May 2005. Conversely, the Z-Score stands out with lower spatial percentages of Iberia experiencing severe 

drought and almost no territory is classified as extreme drought. As for the longer accumulations (Figs. 5d to 5g), 

all three indices converge regarding the spatial extent of drought. At 90- and 180-days accumulation almost the 

entire year of 2005 was at least in moderate drought, returning to normal conditions in 2006. For the 360-day 

accumulation, the peak of drought severity occurs during the summer and autumn of 2005. It is worth noting that 550 

summer is typically one of the most critical periods for drought due to reduced precipitation and increased 

temperatures. For the 720 days, however, the drought conditions started in 2005 with a peak in 2006, revealing a 

shift relative to the previous cases due to the longer accumulation. As indicated by the results from Figs. 5a to 5c, 

the autumn of 2005 and spring of 2006 were also drier, albeit not as severe as during the previous hydrological 

year. 555 

Figure 6 shows the time series of the spatial means of the PR-PET indices for the same period and event as Fig. 

5 (October 2004 to September 2006). Figure S14 shows the same, but for the PR based indices. The red and blue 

shadings denote the differences between the GDI (solid black line) the SPEI and the Z-Score, respectively. 

Amongst all aggregation periods (Figs. 6a to 6g), the differences across indices are more visible towards the 

extreme values. Overall, the differences are larger for the Z-Score rather than for the SPEI. Since the Z-Score is 560 

based on a simple standardisation, it closely follows the accumulated PR-PET patterns, while the same does not 

occur for the other indices, hence the higher differences. Still, for the lower aggregation periods (Figs. 6a to 6c), 

the Z-Score fluctuates more relative to the SPEI and GDI. As for the GDI, the day-to-day values can reach higher 

extremes. Since the index is based on an empirical distribution, the maximum and minimum of the time series is 

dependent on the length of the data used. On the other hand, for indices such as the SPEI, the extremes are more 565 

controlled by the chosen distribution, while for the Z-Score, the extremes are dependent on the difference of the 

accumulations relative to their mean. Those factors may cause a smoothing effect on the extremes for the SPEI, 

SPI and Z-Score. 

 

  570 
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Figure 5. Time series of the daily drought spatial extent of the period from 1 October 2004 until 30 September 2006 for the 

IB01 with aggregations of (a) 7-, (b) 15-, (c) 30-, (d) 90-, (e) 180-, (f) 360- and (g) 720-days. In each panel, the top row 

displays the results for the GDI index, the middle row for the SPEI index and the bottom row for the Z-Score standardisation. 

All indices consider only the balance between precipitation and PET. The yellow colour denotes the results for moderate 

drought for index <-0.5, light orange for severe drought for index <-1 and dark orange for extreme drought for index <-1.5.  575 
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Figure 6. Area average time series of the daily drought indices for the period from 1 October 2004 until 30 September 2006 

for the IB01 dataset with aggregations of (a) 7-, (b) 15-, (c) 30-, (d) 90-, (e) 180-, (f) 360- and (g) 720-days. The black line 

represents the GDI index, while the red and blue shadings denote, respectively, differences between the GDI and SPEI and 

between GDI and the Z-Score index. The differences are computed by taking the absolute value of each index first. Thus, if 

the difference is positive, it implies that the GDI is further away from the mean 0 than the other index. All indices only consider 580 
the balance between precipitation and PET.  
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4. Discussion and Conclusions 

In the present chapter, a new drought index is introduced, designated as Generalised Drought Index or GDI. This 

index is extremely straightforward to compute since the fitting process to a known distribution is not required. It 

is empirically driven and can be regarded as an alternative to other indices such as SPI or SPEI. The GDI is 585 

computed by generating an empirical distribution based on a smoothed cumulative histogram, where the PR or 

PR-PET data can be converted into probabilities and then brought back as standardised values following a normal 

distribution of mean 0 and a standard deviation of 1. As an example, the IB01 observational-based dataset was 

used to compute the GDI for Iberia. The analysis considers the IB01 period from 1971 to 2015. To compare and 

to assess the proposed index added value, the daily SPI, SPEI and Z-Score indices were computed with a daily 590 

time step, for PR and PR-PET based accumulations. A comparison with the monthly SPI and SPEI is also 

performed and shown in the supplementary material. 

The main distinction between GDI and SPI or SPEI lies in the fitting of climate data to a probability distribution 

function. In the case of the monthly SPI and SPEI, the fitting process is mandatory due to the scarcity of data 

points compared to daily data, which hinders the applicability of the GDI. Nonetheless, in this study, and since 595 

the seasonal cycle was previously removed, both the daily SPI and SPEI were fitted to the log-logistic 

distributions. The reason to consider the log-logistic distribution for SPI lies in the poor fit found for the Gamma 

distribution. It is important to note that assuming a specific distribution for different climate types or even different 

accumulations can be detrimental since the underlying distributions may differ (e.g., Stagge et al., 2015; Monish 

and Rehana, 2020; Zhang and Li 2020) as also shown in Fig S1. Those issues do not arise with the GDI index. 600 

Furthermore, SPI and SPEI may encounter difficulties in fitting data from semi-arid and arid climates with very 

low accumulations, such as deserts (Beguería et al., 2014). The very low accumulations, which could also occur 

in climate change studies with historical reference, may not be very well simulated, although alternative 

approaches exist, such as Spinoni et al. (2018) and Soares et al. (2023a). On the other hand, the GDI does not 

have those constraints since the distribution is built empirically by smoothing an accumulated data histogram. 605 

Apart from the distribution, the definition of the parameters in the case of SPI and SPEI may also pose challenges, 

especially at the daily scale. Outliers present in the data may hinder the parameter estimation process. 

Additionally, as the dataset size increases, the computational expense for calculating the index also escalates, 

particularly when considering methods such as maximum likelihood (Beguería et al., 2014). In contrast, the GDI 

offers a simple and computationally efficient procedure which easily bypasses the determination of fitting 610 

parameters, making it suitable for large datasets. The performance of the GDI may be superior for larger datasets, 

as the underlying distribution associated with each location is better defined. Indeed, the GDI time series conforms 

better to the theoretical standard normal distribution, namely if PET is considered. Another potential source of 

uncertainty, particularly for extreme values, is associated with the Abramowitz and Stegun (1965) approximation, 

which performs better for values closer to the mean. For extremes, the values deviate from the true standard 615 

normal distribution, although the likelihood of SPI or SPEI being extreme is low (Stagge et al., 2015). GDI does 

not exhibit this limitation due to its empirical nature; the minimum and maximum values of the index are 

dependent on the size of the time series and these values do not deviate from the standard normal as much as the 
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other indices. 

Regarding the evaluation of the proposed metric with a version of the DAV, using the normal distribution as a 620 

reference, the GDI exhibits a positive added value against the other drought indices. The gains of the proposed 

index against the SPI and SPEI are relevant since both indices already conform to the standard normal distribution. 

Those findings could potentially indicate a reduction of the uncertainty due to the fitting procedures. Thus, this 

added value is not solely owned to the different standardisation methodologies, otherwise the DAV would be 

closer to 0 % in this case. As for the comparison against the Z-Score, the GDI displays higher DAV percentages 625 

as expected, highlighting the relevance of the underlying distribution in thresholds based on standard deviations 

from the mean, such as those used in GDI, SPI or SPEI. 

To assess the degree of similarity amongst the indices, a Pearson correlation and a RMSE were computed. The 

results reveal a strong agreement amongst the three indices, particularly between the GDI with SPI or SPEI. 

Nevertheless, lower correlations and higher RMSE occur for the comparison to the Z-Score. In this case, those 630 

deviations are expected since the original underlying distribution is kept. Regarding the drought characteristics 

such as intensity, frequency, and duration, for moderate drought conditions, the GDI shows similar results against 

the SPI, SPEI and Z-Score. Still, the proposed index reveals differences since, for most cases and towards longer 

aggregation periods, the similarity amongst indices decreases.  

The GDI is also evaluated in terms of drought spatial extent against the SPEI and Z-Score for the severe 2004/2005 635 

drought event. While GDI, SPI and SPEI reveal very similar values for all timescales and drought severities, the 

Z-Score had some difficulty in representing severe and namely extreme drought for the lower accumulations. All 

indices tend to converge due to the approximation towards normality for longer accumulations. Regarding the 

performance of the GDI, the proposed index demonstrated a close representation of the spatial extent of drought 

compared to SPEI. The same conclusions can be drawn for the PR-based indices. As for the spatial mean time 640 

series the indices tend to grow apart towards the extreme values. Nevertheless, the differences are small, 

particularly for the comparison of GDI against the SPI or SPEI. Those findings provide reassurance and present 

the GDI as a viable alternative to the SPI or SPEI indices.  

The Z-Score synchronises only the statistical mean and standard deviation by setting them to 0 and 1, respectively, 

disregarding the underlying distribution. In contrast, GDI, SPI or SPEI share the same distribution and parameters: 645 

the standard normal distribution with a mean of 0 and a standard deviation of 1. PR or even PR-PET tend to be 

positively skewed, which may result in an underrepresentation of severe and extreme drought for shorter 

accumulations on threshold-based definitions. Since GDI, SPI or SPEI indices, follow the standard normal 

distribution, this issue does not arise. If a percentile-based threshold were used, differences in decadal drought 

frequency, mean event duration, and spatial extent would likely be reduced. However, using a threshold based on 650 

percentiles could hinder the comparison amongst indices, as the intensity of individual events and the index value 

for each day would vary. 

The GDI index can identify the same events as SPI or SPEI by returning similar results for most cases while 

revealing an enhanced performance. However, it is less computationally expensive, does not need the assumption 

of the characteristics of the underlying distribution of the data and can be applied to other variables such as soil 655 
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moisture or actual evapotranspiration. Comparatively to other studies also featuring a daily drought index (e.g., 

Li et al., 2020; Ma et al., 2020, Zhang et al., 2022a), the daily approach to GDI offers a finer temporal resolution, 

enabling a more detailed depiction of meteorological variations and their immediate impacts on drought 

conditions. The higher sensitivity compared to monthly indices allows for the timely identification of short-term 

drought events, better capturing the start and duration. This feature is particularly relevant in regions characterised 660 

by a sizeable climatic variability. Thus, GDI is suitable for describing meteorological, hydrological, agricultural 

and flash droughts using the same methodology. Therefore, GDI could be a viable alternative for computing a 

standardised index for drought analysis and simulation evaluation with EURO-CORDEX simulations or the large 

kilometre-scale simulations from the WRCP Flagship Pilot Study on “Convective phenomena over Europe and 

the Mediterranean”.  The assessment of simulations with a daily drought index allows researchers to scrutinise 665 

models more rigorously, examining not just their ability to predict long-term trends but also their effectiveness in 

capturing short-term variability. With the use of a daily drought index, the assessment of a model’s performance 

regarding frequency, severity and duration of events is thus enhanced. Furthermore, the daily index enhances our 

understanding of the feedback mechanisms between meteorological droughts and their impacts on sectors such as 

agriculture and water management. Unlike traditional indices, which might aggregate data over longer periods 670 

and potentially smooth out critical variations, the daily index preserves the day-to-day variations in moisture 

availability. This is crucial for understanding drought onset, evolution and dissipation, as well as for predicting 

their impact on crop yields, water supply, and other critical resources. As climate simulations evolves, daily 

drought indices will undoubtedly play a key role in ensuring that the same models are able to meet the challenges 

posed by a rapidly changing climate. 675 

Nevertheless, some questions are still open. Firstly, how different are the GDI results for climate change 

projections? The proposed index is empirically based; thus, the approach from Spinoni et al. (2018) or Soares et 

al. (2023a) can be considered for climate change assessment, where the entire time series is considered to build 

the empirical distribution. However, it would still be possible to use the historical period as a reference, conserving 

the absolute values for both the reference and future periods? What is the applicability and performance of the 680 

index at a global level? Other questions also arise, namely the sensitivity of the index to the potential 

evapotranspiration method considered and the sensitivity related to the initial variables. Furthermore, can the 

index be used for an ensemble-based analysis? Some of these questions will be pursued in future studies. 

Data availability.  

All model and observational datasets are publicly available. The regional and global model data are available 685 

through the Earth System Grid Federation portal (Williams et al., 2011; https://esgf.llnl.gov/, last access: 

September 2023). The Iberia01 dataset is publicly available through the DIGITAL.CSIC open science service 

(Herrera et al., 2019a, https://doi.org/10.20350/digitalCSIC/8641).  
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