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Abstract. NARCliM2.0 comprises two Weather Research and Forecasting (WRF) regional climate 1 

models (RCMs) downscaling five CMIP6 global climate models contributing to the Coordinated 2 

Regional Downscaling Experiment over Australasia at 20 km resolution, and south-east Australia at 4 3 

km convection-permitting resolution. We first describe NARCliM2.0’s design, including selecting 4 

two, definitive RCMs via testing seventy-eight RCMs using different parameterisations for planetary 5 

boundary layer, microphysics, cumulus, radiation, and land surface model (LSM). We then assess 6 

NARCliM2.0's skill in simulating the historical climate versus CMIP3-forced NARCliM1.0 and 7 

CMIP5-forced NARCliM1.5 RCMs and compare differences in future climate projections. RCMs 8 

using the new Noah-MP LSM in WRF with default settings confer substantial improvements in 9 

simulating temperature variables versus RCMs using Noah-Unified. Noah-MP confers smaller 10 

improvements in simulating precipitation, except for large improvements over Australia’s southeast 11 

coast. Activating Noah-MP’s dynamic vegetation cover and/or runoff options primarily improve 12 

simulation of minimum temperature. NARCliM2.0 confers large reductions in maximum temperature 13 

bias versus NARCliM1.0 and 1.5 (1.x), with small absolute biases of ~0.5K over many regions versus 14 

over ~2K for NARCliM1.x. NARCliM2.0 reduces wet biases versus NARCliM1.x by as much as 15 

50%, but retains dry biases over Australia’s north. NARCliM2.0 is biased warmer for minimum 16 

temperature versus NARCliM1.5 which is partly inherited from stronger warm biases in CMIP6 17 
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versus CMIP5 GCMs. Under shared socioeconomic pathway (SSP)3-7.0, NARCliM2.0 projects ~3K 18 

warming by 2060-79 over inland regions versus ~2.5K over coastal regions. NARCliM2.0-SSP3-7.0 19 

projects dry futures over most of Australia, except for wet futures over Australia’s north and parts of 20 

western Australia which are largest in summer. NARCliM2.0-SSP1-2.6 projects dry changes over 21 

Australia with only few exceptions. NARCliM2.0 is a valuable resource for assessing climate change 22 

impacts on societies and natural systems and informing resilience planning by reducing model biases 23 

versus earlier NARCliM generations and providing more up-to-date future climate projections 24 

utilising CMIP6. 25 
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1. Introduction 28 

Climate projections are foundational to informing climate change mitigation and adaptation planning 29 

at various spatial scales (IPCC, 2021). Regional climate models (RCMs) dynamically downscale 30 

global climate models (GCMs) at ~100-200 km resolution to simulate higher resolution climate 31 

projections that better resolve local-scale influences on regional climate, such as mountain ranges, 32 

land-use variation, land-sea contrasts, and convective processes (Torma et al., 2015; Giorgi, 2019). As 33 

such, whilst GCMs are the best tools for investigating climate at global scales, RCMs provide 34 

improved guidance for climate policy at regional scale, which is the scale at which climate change 35 

impacts are experienced (Hsiang et al., 2017). 36 

The NARCliM programme (New South Wales and Australian Regional Climate Modelling) is 37 

now in its third generation. Like its predecessors, NARCliM version 2.0 (‘NARCliM2.0’), aims to 38 

produce robust, detailed regional climate projections at spatial scales relevant for use in local-scale 39 

climate change analysis. A key feature of all NARCliM generations is to simulate the climate over the 40 

Coordinated Regional Downscaling Experiment (CORDEX)-Australasia domain, and a higher 41 

resolution inner domain over southeast Australia via one-way nesting (Figure 1). With one-way 42 

nesting the inner domain obtains its initial and lateral boundary conditions from the simulation over 43 

CORDEX-Australasia. NARCliM1.0 simulated the climate of Australasia for three periods (1990-44 

2009, 2020-2039, 2060-2079) at 50 km resolution and southeast Australia at 10 km using three 45 

configurations of the weather research and forecasting (WRF) RCM (Skamarock et al., 2008) to 46 

downscale GCMs from Coupled Model Intercomparison Project phase three (CMIP3) under the SRES 47 

A2 greenhouse gas (GHG) scenario (Evans et al., 2014). NARCliM1.5 used CMIP5 GCMs under 48 

representative concentration pathways (RCP) 4.5 and 8.5 to simulate continuously for 1950-2100 on 49 

the same grids as NARCliM1.0 using two of its RCMs (Nishant et al., 2021). 50 

NARCliM2.0 aims to improve performance in simulating the Australian climate relative to 51 

previous NARCliM generations with the goal of better informing community resilience to climate 52 

change (New South Wales Government, 2022, 2023). All NARCliM projects include a bottom-up 53 

design ethos involving multi-sectoral end-user engagement in specifying model requirements to 54 

ensure model performance and outputs meet end-user needs. Key requirements from the NARCliM2.0 55 

user-consultation include providing increased detail in climate simulations via higher resolution, and 56 

improving the simulation of precipitation and temperature as these are fundamental inputs to climate 57 

impact studies. Whilst NARCliM1.0 and 1.5 (1.x) confer the expected level of performance in 58 

simulating the Australian climate (Di Virgilio et al., 2019; Evans et al., 2020b), recent technological 59 

and scientific advancements mean that aspects of their performance might now be improved. 60 

NARCliM1.x RCMs show widespread cold biases in maximum temperature exceeding −5K for some 61 

RCMs. Conversely, minimum temperature is simulated more accurately with biases in the range of 62 
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±1.5K. NARCliM1.x RCMs overestimate precipitation, particularly over Australia’s socio-63 

economically important eastern seaboard (Di Virgilio et al., 2019).  64 

As they are expensive to run from both computational and data storage perspectives, dynamical 65 

downscaling projects like NARCliM2.0 use a subset of available GCMs as driving data, necessitating 66 

careful model selection. Similarly, a large combination of different physical parametrisations 67 

available for the WRF RCM enables many structurally different RCMs to be potentially used to 68 

downscale GCMs. A key component of NARCliM2.0’s design is testing the viability of alternative 69 

RCM parameterisations via a three-phase approach, with each phase building on the preceding phase 70 

to identify the RCM parameterisations that perform well during testing to meet NARCliM2.0’s aim of 71 

improving the simulation of Australia’s climate. GCM and RCM statistical independence are also 72 

sought to avoid creating a biased sample of climate change. Hence, the aims of this paper are to: 73 

 1) describe how and why NARCliM2.0 differs from its predecessors in terms of its design and 74 

production processes, explaining the model test and evaluation approaches underlying its design 75 

decisions. A key focus is on the design and testing of seventy-eight different WRF RCMs and their 76 

evaluation to identify a subset of RCMs for use in NARCliM2.0;  77 

2) characterise the performance improvements of CMIP6-NARCliM2.0 RCMs in simulating the 78 

Australian climate relative to previous NARCliM generations by evaluating their skill in simulating 79 

mean maximum and minimum temperature and precipitation versus observations; 80 

 and 3) summarise the climate projections produced by CMIP6-NARCliM2.0 and how these 81 

differ from previous CMIP3-5-NARCliM generations.  82 

 The following section summarises the basic design features of each NARCliM generation; 83 

section 3. describes NARCliM2.0’s design process with a focus on its RCM physics testing, as well as 84 

a brief overview of its production process; section 4. describes evaluation methods and metrics; 85 

section 5. summarises the RCM physics test results; section 6. evaluates the performance of all 86 

NARCliM models in simulating the recent Australian climate; section 7. provides an overview of their 87 

future projections; and section 8. discusses key results and summarises this paper. 88 
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 89 

Figure 1. Model domains for NARCliM regional climate simulations. The southeast inner domain for 90 

NARCliM2.0 is delineated with a solid black rectangle; the corresponding inner domain for NARCliM1.0 and 91 

1.5 is delineated with a dashed black line. The elevated terrain of the Australian Alps which form part of the 92 

Great Dividing Range is in eastern Australia. Inset shows the CORDEX-Australasia outer domain. 93 

2. Three generations of NARCliM: model overviews 94 

The design of NARCliM1.0 is described in Evans et al. (2014); NARCliM1.5 used the same design 95 

approach but used CMIP5 rather than CMIP3 GCMs. All generations of NARCliM use different 96 

versions of the WRF model (Skamarock et al., 2008) to perform dynamical downscaling of GCMs 97 

since the WRF model goes through regular updates. The southeast Australian inner domain captures 98 

five of Australia’s eight capital cities (Figure 1) and over 75% of the Australian population 99 

(Australian Bureau Statistics, 2024). Additionally, the inner domain captures coastal regions that are 100 

characterised by topographic complexity and land-use class variation. Regions east of the Great 101 

Dividing Range mountains in southeast Australia (Figure 1) show different responses to oceanic 102 

climate modes compared to inland semi-arid regions (Murphy and Timbal, 2008) and are impacted by 103 

events such as rapidly developing storms, including east coast lows (Pepler and Dowdy, 2021). Such 104 

atmospheric processes are not adequately resolved by GCMs due to coarse resolutions (Di Virgilio et 105 

al., 2022; Grose et al., 2020).  106 

 NARCliM2.0 encompasses several design advancements over its predecessors (Table 1). 107 

NARCliM2.0 RCMs have a 20 km resolution CORDEX-Australasia domain (versus 50 km) and 4 km 108 

(versus 10 km) domain over southeast Australia and use 45 (versus 30) vertical levels. The aim of 109 
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increasing the resolution of this inner domain from 10 km to 4 km is to render these simulations 110 

convection-permitting (Kendon et al., 2021; Lucas-Picher et al., 2021). Hence, whilst the 20 km-111 

resolution outer domain uses cumulus parametrisation, simulations over the 4 km domain do not use 112 

cumulus parametrisation. NARCliM2.0 also includes a new collaboration with the Western Australian 113 

government, with separate 4 km simulations being performed over south-west and north-west Western 114 

Australia (not shown in Figure 1) as part of the Western Australian climate science initiative (DWER, 115 

2023). Boundary conditions derived from the 20 km NARCliM2.0 CORDEX Australasia domain are 116 

used to drive these simulations. Additional major differences in model setup for NARCliM2.0 117 

include: 118 

▪ NARCliM1.0 RCMs use different parameterisations for planetary boundary layer (PBL) 119 

physics, surface physics, cumulus physics, land surface model (LSM), and radiation (Evans et 120 

al., 2014). These RCM parameterisations were also used for NARCliM1.5. Owing to the pro-121 

ject aims stated above, RCM parameterisations for NARCliM2.0 differ to those of NAR-122 

CliM1.x (see sect. 3). 123 

▪ NARCliM2.0 increases the number of driving GCMs to 5 and simulates for a wider range of 124 

plausible future climates via three shared socioeconomic pathways (SSP). SSP1-2.6 is select-125 

ed as a low GHG scenario envisaging a future climate with CO2 emissions cut to net zero by 126 

around 2075 and warming held to below 2˚C by 2100; SSP2-4.5 estimates projected warming 127 

under a ‘middle of the road’ scenario where temperatures increase to ~2.7˚C by 2100; and 128 

SSP3-7.0 is a high GHG scenario which assumes warming of ~4˚C by 2100 (IPCC, 2021). 129 

▪ Urban physics is activated in NARCliM2.0 (WRF setting: sf_urban_physics=1) to represent 130 

surface energy balance in urban areas via a single layer urban canopy model (Kusaka and 131 

Kimura, 2004). 132 

▪ Input of different aerosol species is activated for the RCM radiation scheme using the Tegen 133 

et al. (1997) climatology available in WRF (aer_opt=1). This aerosol forcing is the same for 134 

all GCMs, and not model-specific. 135 

▪ The eastern boundary of the NARCliM2.0 inner domain is located further westward relative 136 

to that of NARCliM1.x (Figure 1). 137 
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Table 1. High-level design features of three generations of NARCliM regional climate models 138 

 

Model Generation 

  NARCliM1.0 NARCliM1.5 NARCliM2.0  

Release date 2014 2020 2023-2024 

Years simulated 
1990-2009, 2020-2039, 

2060-2079 
1950-2100 1950-2100 

Grid resolutions: 

CORDEX-Australasia; 

NARCliM inner domains 

50 km; 10 km 50 km; 10 km 20 km; 4 km 

Vertical levels 30 30 45 

Global Climate Models 4 CMIP3 GCMs 3 CMIP5 GCMs 5 CMIP6 GCMs 

Regional Climate Models 
3 RCM configurations 

(WRF3.3) 

2 RCM configurations 

 (WRF3.6.0.5) 

2 RCM configurations 

(WRF4.1.2) 

Future emission scenarios SRES A2 RCP4.5, RCP8.5 
SSP1-2.6, SSP2-4.5,  

SSP3-7.0 

Reanalysis-driven 

(CORDEX Evaluation) 
NCEP: 1950-2009 ERA-Interim: 1979-2013 ERA5: 1979-2020 

3. NARCliM2.0 design and production process overview 139 

The NARCliM2.0 design and production processes are summarised below in reference to Figure 2. 140 

The design process is an adaptation of that introduced in Evans et al. (2014). Two companion 141 

manuscripts describe elements shown in Figure 2, and which are therefore only summarised briefly in 142 

this manuscript. Di Virgilio et al. (2022) describes the CMIP6 GCM selection process summarised in 143 

Box 2, and Di Virgilio et al. (in review) describes the ERA5 evaluation undertaken in Boxes 5 and 6. 144 

I. Design Phase: 145 

i) Box 1: model design requirements are identified via consultation between NARCliM2.0 146 

modelling groups and multi-sectoral end-users, as well as adherence to CORDEX-CMIP6 147 

design requirements (WCRP, 2020).  148 
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ii) Box 2: NARCliM1.x selected driving CMIP3-5 GCMs (respectively) via literature review 149 

of existing GCM evaluations. During NARCliM2.0 design, there were no pre-existing 150 

comprehensive evaluations of individual CMIP6 GCMs for the Australian region, includ-151 

ing assessments of climate change signals and GCM statistical independence. Hence, an 152 

evaluation and selection of CMIP6 GCMs was conducted (see Di Virgilio et al. 2022). 153 

This evaluation selected five GCMs to force two NARCliM2.0 RCMs (see sect 3.2 and 154 

3.4). The relative contribution to uncertainty/variation in climate projections can be larger 155 

for GCMs than for RCMs (e.g. Lee et al., 2023). 156 

iii) Box 3: a new WRF RCM multi-physics test ensemble is created for NARCliM2.0: RCM 157 

physics testing is conducted via a three-phase approach, with each phase building on the 158 

findings of the preceding phase to identify the RCM parameterisations that perform well 159 

during testing with the aim of improving the simulation of the Australian climate. In this 160 

way, RCMs are parameterised with different physics settings via each test phase, system-161 

atically removing poor performing options while facilitating the fine tuning and im-162 

provement of the parameterisations that perform well during testing to build a total en-163 

semble size of seventy-eight structurally different test RCMs. The performances of the 164 

different test RCM configurations are evaluated, ultimately selecting a subset of seven 165 

RCMs for subsequent downscaling of ERA5 reanalysis and comprising the CORDEX 166 

evaluation experiment. 167 

iv) Boxes 4-6: These seven RCMs are used to downscale ERA5 reanalysis over the 20 km 168 

and 4 km domains for 1979-2020. Evaluating these ERA5-forced simulations informs se-169 

lection of two ‘production’ RCMs for CMIP6-forced downscaling (see sect. 3.4 and Di 170 

Virgilio et al. in review).  171 

II. Production Phase: 172 

i) Boxes 7-8: CMIP6 GCM data are pre-processed to create initial and boundary conditions 173 

to drive simulations for the historical (1950-2014) and SSP experiments (2015-2100). A 174 

code repository used for this GCM preprocessing is available at 175 

https://bitbucket.org/oehcas/narclim2-176 

0_design_and_evaluation_2024_support_materials/src/main/ within the 177 

WRF/repo_snapshots subdirectory. Quality assurance/quality control (QA/QC) is per-178 

formed on these data before initiating the simulations (e.g. variables are checked to con-179 

firm data do not contain significant outliers across ensemble members). 180 

ii) Boxes 9-11: the 151-year CMIP6-forced NARCliM2.0 RCM simulations are run using 181 

National Computing Infrastructure at Canberra, Australia (NCI, https://nci.org.au/). File 182 

integrity verification and QA/QC are performed on each year of raw WRF output 183 

throughout the simulation lifecycle and prior to post-processing to CORDEX-compliant 184 
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format climate variables. QA/QC tests include calculating the minimum, maximum, mean 185 

and standard deviation for key variables over consecutive periods of six days. Variables 186 

are categorised as either normally distributed or otherwise. Normally distributed variables 187 

(e.g. surface temperature) are deemed potentially erroneous if their minima/maxima are 188 

greater than five standard deviations away from the global mean of the relevant statistic 189 

of the rolling six-day period. Non-normally distributed variables (e.g. snow depth and 190 

precipitation) are checked for global minima and maxima only. 191 

iii) Boxes 12-13: after each year of simulation raw output is generated, their post-processing 192 

is initiated to produce CORDEX CORE, Tier 1 and Tier 2 variables (WCRP, 2022). A 193 

statistical QA/QC process is automatically applied to each year of post-processed 194 

CORDEX CORE variables as they are generated throughout the simulations. QA/QC 195 

tests include: 196 

▪ Check for presence of missing values. 197 

▪ Check that all values are within realistic ranges for minima and maxima.  198 

▪ Check minima and maxima are not equal at any timestep with exceptions (e.g. 199 

snow depth which can be zero everywhere in the outer domain). 200 

▪ Check that changes over time are within realistic ranges (i.e. assess temporal gra-201 

dients). 202 

▪ Check that changes between neighbouring data points are within realistic ranges 203 

(i.e. assess spatial gradients). 204 

▪ Check the number of grid cells with NaN (non-numerical) values do not exceed 205 

the threshold set for the variable. 206 

Reasonable ranges for variables are determined using a series of threshold values that are 207 

based on historical records and/or empirical analysis. QA/QC computer scripts generate 208 

'exceedance files' which output every data point that surpasses the threshold values, and 209 

these exceedance files are then manually reviewed to determine whether an issue is a true 210 

or false positive, etc. 211 

iv) Box 14: Once each year of WRF raw files are post-processed, raw files are transferred to 212 

a tape facility for long-term storage. 213 
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 214 

Figure 2. Simplified overview of NARCliM2.0 (N2.0) design and production processes. ERA5 = ECMWF 215 

Reanalysis v5 data; BDY = boundary conditions; IC = Initial conditions; QA/QC = Quality Assurance / Quality 216 

Control; NCI = National Computing Infrastructure (high performance computer used for N2.0 production 217 

simulations). 218 

These model design and production stages are now described in more detail: 219 

3.1 Model evaluation and selection 220 

Practical constraints such as available compute and data storage resources enforce an upper limit on 221 

GCM-RCM ensemble size. Thus, NARCliM2.0 uses a subset of available CMIP6 GCMs and WRF 222 

RCM configurations, necessitating careful GCM and RCM selection to create a subset of GCM-223 

RCMs that provide robust climate simulations whilst also adequately sampling model uncertainty. In 224 

selecting a subset of GCMs and RCMs for dynamical downscaling, it is desirable to reject models that 225 

perform consistently poorly relative to their peers in simulating the current climate, as this provides 226 

lower confidence in the projected change (Evans et al., 2020b; Di Virgilio et al., 2022; Grose et al., 227 

2023). Furthermore, the modelled climate space sampled is reduced when selecting a subset of GCMs, 228 

which can create a biased view of the climate, as well as the plausible change in climate. Care must 229 

therefore be taken to ensure that the subset of models used for downscaling are representative of the 230 

full range of possible climates, and that model errors are uncorrelated, i.e., that models are statistically 231 

independent. The steps taken to evaluate and select GCMs and RCMs for NARCliM2.0 are described 232 

next. 233 

3.2 CMIP6 GCM evaluation 234 

A three-phase process was used to evaluate individual CMIP6 GCMs (for further details see Di 235 

Virgilio et al. 2022): 236 
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3.2.1 CMIP6 GCM Performance 237 

The performances of individual CMIP6 GCMs in simulating the Australian climate were assessed 238 

with respect to climate means, extremes, climate modes, and daily climate variable distributions. A set 239 

of GCMs that performed consistently poorly across the variables and statistics considered were 240 

identified. These models, as well as those with insufficient data to enable dynamical downscaling 241 

using the WRF RCM, were excluded from further evaluation leaving 27 GCMs for subsequent 242 

assessment.  243 

3.2.2 CMIP6 GCM Independence 244 

The retained 27 GCMs were subjected to the Bishop and Abramowitz (2013) and Herger et al. (2018) 245 

independence analyses (see sect. 4.4). The GCMs were then ranked according to their relative level of 246 

statistical independence. 247 

3.2.3 Sampling CMIP6 GCM Climate Change Spread 248 

For climate change risk assessments, climate projections should reflect as much of the range of 249 

plausible future climate changes as possible (Whetton and Hennessy, 2010). The subset of CMIP6 250 

GCMs selected for NARCliM2.0 spanned a wide range of future changes in annual mean temperature 251 

and precipitation. Climate change signals were calculated for 2080-2099 minus 1995-2014 for the 252 

Australian continent and south-east Australia under SSP3-7.0 (for the latter, see Figure 3). The GCM 253 

independence rankings were placed within this climate change space, with higher independence 254 

rankings viewed as favourable, along with consideration of the following criteria:  255 

i) A balanced range of GCM Equilibrium Climate Sensitivities (ECS) were sampled. ECS is the 256 

long-term increase in global mean surface air temperature in response to the radiative forcing 257 

caused by a doubling of pre-industrial CO2 concentrations. ECS is related to global tempera-258 

ture change, not just changes over Australia, however, it correlates strongly with regional 259 

warming. Around one third of CMIP6 GCMs show ECS values higher than the upper end of 260 

the likely range of 2.5°C to 4°C (IPCC, 2021). An upper range of > ~5°C cannot be ruled out 261 

(Meehl et al., 2020; Bjordal et al., 2020; Sherwood et al., 2020). 262 

ii) Some CMIP6 GCMs that are favourable in terms of model performance and independence 263 

could not be selected as input to WRF for NARCliM2.0 owing to insufficient data availability 264 

for key variables/variable, where ideally, WRF requires sub-daily data for the variables 265 

shown in Supporting Information, Table S1. 266 

As a result of the above process, the five CMIP6 GCMs listed in Table 2 are selected to force 267 

NARCliM2.0 RCMs. 268 

https://doi.org/10.5194/gmd-2024-87
Preprint. Discussion started: 14 May 2024
c© Author(s) 2024. CC BY 4.0 License.



12 
 

Table 2. Basic details of the CMIP6 GCMs used for NARCliM2.0 simulations. 269 

CMIP6 GCM Institution Variant/Run 
Atmosphere 

lat/lon grid (o) 

ACCESS-ESM1-5 CSIRO r6i1p1f1 1.2 × 1.8 

EC-Earth3-Veg EC-EARTH consortium r1i1p1f1 0.7 × 0.7 

MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI) r1i1p1f1 ~0.9 

NorESM2-MM Norwegian Climate Centre r1i1p1f1 0.9 × 0.9 

UKESM1-0-LL UK Met Office and NERC research centres r1i1p1f2 1.3 × 1.9 

 270 
Figure 3. CMIP6 GCM climate change signals (2080-2099 versus 1995-2014) over south-east Australia for the 271 
subset of GCMs retained following the model performance evaluation in Di Virgilio et al. (2022), and that 272 
simulated at least monthly mean near surface air temperature and precipitation for the SSP-3.70 scenario. Boxed 273 
GCMs are selected to force NARCliM2.0 RCMs. Marker shapes indicate overall GCM performance; markers 274 
are coloured according to their global equilibrium climate sensitivity (ECS) values; Red numbers represent the 275 
smallest Herger Method 1 set for that GCM. 276 

3.3 NARCliM2.0 RCM physics testing 277 

The NARCliM2.0 RCM physics testing aims to identify and exclude RCMs that perform consistently 278 

poorly in simulating the southeast Australian climate and to select RCMs that have high statistical 279 

independence. The selection of RCMs in NARCliM2.0 involves the creation of a multi-physics 280 

ensemble where each RCM uses different physical parametrisations for PBL, microphysics, cumulus, 281 

radiation, and LSM. This enables many structurally different RCMs to be constructed and tested. In 282 
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NARCliM1.0, 36 WRF RCM configurations were designed, tested, and evaluated (Evans et al. 2014). 283 

NARCliM2.0 physics testing assesses 78 RCM configurations which are progressively tested via three 284 

phases, where each test phase is informed by the outcomes of the preceding phase to systematically 285 

remove poor performing RCM options while facilitating the selection of parameterisations that 286 

perform well during testing. The N=36 RCMs tested for NARCliM1.0 were evaluated based on eight 287 

representative storm event simulations each of two-weeks duration (Evans et al. 2014). NARCliM2.0 288 

physics simulations were run over an entire annual cycle (2016) with a two-month spin up period 289 

commencing 1 November 2015. Australia experienced a range of weather extremes during 2016 290 

driven by a range of climatic influences making 2016 a suitable target year (Bureau of Meteorology, 291 

2017). Whilst assessing RCMs for an entire year improves on assessing for discrete storm events as 292 

per physics testing for NARCliM1.0, it was not feasible to run a large RCM physics ensemble for a 293 

longer duration. Initial and boundary conditions for all phases of the NARCliM2.0 RCM physics test 294 

simulations were derived from the ERA-Interim reanalysis data set (Dee et al., 2011). ERA-Interim 295 

was used because ERA5 was not available at the time. The three phases of NARCliM2.0 physics 296 

testing are as follows: 297 

3.3.1 Phase I (N=36) 298 

Thirty-six RCMs were evaluated in Phase I. One radiation scheme (RRTMG) is tested for both long 299 

and short-wave radiation (it is held fixed for all RCMs), whereas physics settings for PBL, 300 

microphysics, cumulus, and LSM are varied. Of the 36 simulations, 18 used the Noah-Unified LSM, 301 

whilst the remainder used Community Land Model version 4.0 (CLM4). The physics options tested 302 

are listed in Table 3, where these were selected based on literature review. Each physics test 303 

simulation is denoted by a 12-digit identifier which comprises 6 pairs of digits, with each pair 304 

corresponding to the choice of a specific physics option as specified in the WRF namelist.input file. 305 

These pairs of digits follow the order: planetary boundary layer (pbl) ¦ cloud microphysics (mp) ¦ 306 

cumulus convection (cu) ¦ shortwave radiation (sw) ¦ longwave radiation (lw) ¦ LSM (sf) and 307 

correspond to the WRF namelist options shown in Table 3. For example, the simulation 308 

‘050601040402’ is interpreted as: 05 ¦ 06 ¦ 01 ¦ 04 ¦ 04 ¦ 02 and denotes that this simulation uses the 309 

following physics settings: 310 

bl_pbl_physics = 05 (MYNN2) 

mp_physics  = 06 (WSM6) 

cu_physics  = 01 (Kain-Fritsch) 

ra_sw_physics = 04 (RRTMG) 

ra_lw_physics  = 04 (RRTMG) 

sf_surface_physics = 02 (Noah Unified) 
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The complete set of WRF RCM configurations tested in Phase I is shown in Supporting Information 311 

Table S2. 312 

Table 3. Physics options used in phase I (N=36) tests. 313 

Physics Option Description WRF Namelist Options Tested 

Planetary boundary layer bl_pbl_physics 

01 = YSU 

05 = MYNN2 

07 = ACM2 

Microphysics mp_physcis  
06 = WSM6 

08 = Thompson  

Cumulus parameterisation cu_physics 

01 = Kain-Fritsch 

02 = BMJ 

06 = Tiedtke 

Shortwave radiation ra_sw_physics 04 = RRTMG 

Longwave radiation ra_lw_physics 04 = RRTMG 

Land surface model sf_surface_physics 
02 = Noah-Unified 

05 = Community Land Model V4 

3.3.2 Phase II (N=60): additional LSM and radiation scheme tests 314 

Phase I RCMs using CLM4.0 were omitted from further testing because they did not consistently im-315 

prove performance in simulating the Australian climate relative to RCMs using Noah-Unified. In ad-316 

dition, RCMs using CLM4.0 had increased simulation times (by approximately twice when compared 317 

to Noah-Unified). Hence, Phase II focuses exclusively on further testing of the RCM configurations 318 

that used the Noah-Unified LSM. 319 

The physics settings tested in Phase II are an alternative LSM to Noah-Unified (Noah Multi-320 

Parameterisation; ‘Noah-MP’, Niu et al., 2011) and New Goddard radiation. Owing to time/resource 321 

constraints, testing all eighteen Phase I RCMs using Noah-Unified was not feasible. To reduce the 322 

number of RCMs for further testing, the worst-performing Noah-Unified based RCM configurations 323 

identified in Phase I were excluded. The N=18 RCMs using Noah-Unified are listed along with their 324 

overall performance total scores in Table 4 where the lowest scores under ‘Rank totals’ indicate the 325 

RCMs that overall perform relatively well versus their peers (see sect. 4 Evaluation Methods). Note 326 

that the ‘Overall rank’ denotes the RCMs’ relative ranking among all Phase I RCMs. There is a sharp 327 

reduction in rank totals for RCMs #13-18 inclusive, relative to RCMs #1-12. Therefore, RCMs #13-328 

18 are excluded from further testing, and RCMs #1-12 are retained. 329 

Table 4. RCM physics combination ranks of the Phase I, N=18 Noah Unified (NU) based RCMs. 330 

Scores/ranks are based on model bias and root mean square error for annual and seasonal precipita-331 

tion, minimum temperature, maximum temperature, climate extremes (wettest and hottest days), and 332 

Perkins Skill Scores (see sect. 4). RCMs #1-12 are selected for further testing. 333 
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RCM 

# 
RCM ID 

Physics combination  
Rank 

total 

Overall 

rank in 

N=36 

Phase I 
PBL MP Cumulus SW/LW LSM 

1 070801040402 ACM2 Thom KF RRTMG NU 484 1 

2 070601040402 ACM3 WSM6 KF RRTMG NU 495 2 

3 070802040402 ACM4 Thom BMJ RRTMG NU 527 3 

4 070602040402 ACM5 WSM6 BMJ RRTMG NU 559 4 

5 010802040402 YSU Thom BMJ RRTMG NU 574 7 

6 050801040402 MYNN2 Thom KF RRTMG NU 583 8 

7 010801040402 YSU Thompson KF RRTMG NU 617 11 

8 050802040402 MYNN2 Thompson BMJ RRTMG NU 630 12 

9 070606040402 ACM2 WSM6 Tiedtke RRTMG NU 639 13 

10 050601040402 MYNN2 WSM6 KF RRTMG NU 662 16 

11 070806040402 ACM2 Thompson Tiedtke RRTMG NU 662 16 

12 010602040402 YSU WSM6 BMJ RRTMG NU 674 19 

13 010601040402 YSU WSM6 KF RRTMG NU 702 23 

14 010606040402 YSU WSM6 Tiedtke RRTMG NU 759 25 

15 050606040402 MYNN2 WSM6 Tiedtke RRTMG NU 766 27 

16 050602040402 MYNN2 WSM6 BMJ RRTMG NU 811 31 

17 010806040402 YSU Thompson Tiedtke RRTMG NU 830 34 

18 050806040402 MYNN2 Thompson Tiedtke RRTMG NU 857 35 

This gives two sets of physics combinations for additional testing: 1) one replaces only RRTMG 334 

(|04|04|) for short and longwave radiation with New Goddard (|05|05|) making no other changes; and 335 

2) RRTMG radiation is retained, but Noah-MP (|04|) replaces Noah-Unified (|02|). This creates an 336 

additional 24 RCM configurations for assessment, bringing the total RCMs tested to 60. Although 337 

Noah-MP has several parameter options, Phase II uses its default settings. 338 

3.3.3 Phase III (N=78): parameterising Noah-MP 339 

Phase II shows that RCM performance using New Goddard radiation is generally inferior to the same 340 

RCMs using RRTMG (see sect. 5. RCM Physics test results). Consequently, RRTMG radiation is re-341 

adopted for Phase III. Conversely, a general performance improvement is conferred by using Noah-342 

MP over Noah-Unified (sect. 5). Given this performance improvement using Noah-MP with default 343 

settings, Phase III assesses RCM performances using specific parameter settings for Noah-MP.  344 

Noah-MP provides a ‘dynamic vegetation cover’ model option (referred to as dynamic vege-345 

tation in the WRF users’ guide) (Niu et al., 2011). When deactivated (the default), monthly leaf area 346 

index (LAI) is prescribed for various vegetation types and the greenness vegetation fraction (GVF) 347 

comes from monthly GVF climatological values. Conversely, when dynamic vegetation cover is acti-348 
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vated, LAI and GVF are calculated using a dynamic leaf model. We clarify here that dominant plant-349 

functional types do not change when using this option, but only the LAI and GVF, i.e. only the 350 

amount of green cover changes.  351 

 Noah-MP also provides several options for modelling surface run-off and groundwater pro-352 

cesses including a TOPMODEL (TOPography based hydrological MODEL)-based surface runoff 353 

scheme and a simple groundwater model (SIMGM; Niu et al., 2011). Some studies have shown using 354 

this option improves modelling of soil moisture (e.g. Zhuo et al., 2019). Thus, three new sets of phys-355 

ics configurations are tested using Noah-MP where default options for specific settings are changed as 356 

follows:  357 

1. activate dynamic vegetation cover (dveg=2 in the WRF namelist); no other changes.  358 

2. activate TOPMODEL runoff with simple groundwater (opt_run=1); no other changes.  359 

3. activate both dynamic vegetation and TOPMODEL runoff with simple groundwater, no other 360 

changes. 361 

As above, the worst performing RCMs in Phase II are excluded from Phase III testing. Based 362 

on the RCM configuration performance rankings (Table 5), there is a sharp reduction in performance 363 

starting from RCM #7 inclusive. Therefore, RCMs #7-12 are excluded from further testing. Phase III 364 

thus comprises 18 new test simulations (sets 1-3 each comprising 6 RCMs) bringing the total RCMs 365 

tested to N=78. Phase III physics tests are denoted using the same RCM identification schemes distin-366 

guished by appending ‘set_1’, ‘set_2’, ‘set_3’ to identifiers. 367 

Table 5. RCM physics combination ranks of the Phase II Noah-MP RCMs. Scores/ranks are based on model 368 

bias and root mean square error for annual and seasonal precipitation, minimum temperature, maximum temper-369 

ature, climate extremes (wettest and hottest days), and Perkins Skill Scores (see sect. 4). 370 

No. Physics combination Rank total 

1 50801040404 721 

2 70806040404 822 

3 50802040404 848 

4 70802040404 872 

5 70601040404 880 

6 50601040404 891 

7 10802040404 988 

8 70602040404 1005 

9 70606040404 1028 

10 10801040404 1042 

11 70801040404 1056 

12 10602040404 1264 
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3.3.4 Shortlisting Physics Test RCMs for ERA5-NARCliM2.0 evaluation simulations 371 

Considering the complete NARCliM2.0 N=78 physics test ensemble, to identify physics test RCMs 372 

that perform poorly overall, RCMs are eliminated if they are in the lowest 1/3 for RCM performance 373 

ranks for any of maximum temperature, minimum temperature, precipitation, or for the overall model 374 

performance rank across these variables (see sect. 5. RCM Physics test results). Under this scheme, 20 375 

RCMs remain. The independence measures are then applied to the remaining 20 RCMs to choose a 376 

final subset of 7 RCMs for ERA5-forced evaluation simulations (see sect. 3.4). The ensemble size 377 

limit of N=7 is determined by available compute resources. These 7 candidate RCMs are assessed for 378 

potential use in the CMIP6 GCM-forced downscaling phase of NARCliM2.0 (sect. 3.4 and Di Virgil-379 

io et al. in review).  380 

3.4 CORDEX ERA5-NARCliM2.0 evaluation simulations 381 

NARCliM1.x performed production climate simulations using a two-phase process. Its RCM physics 382 

testing selected definitive ‘production-grade’ RCMs which were then used to downscale both reanaly-383 

sis data and CMIP3/5 GCMs. In contrast, for NARCliM2.0, as described above the N=78 RCM phys-384 

ics testing culminates in shortlisting 7 ‘production-candidate’ RCMs which are used to downscale the 385 

ERA5 reanalysis for 42-years (1979-2020). This enables assessment of shortlisted RCM performances 386 

over a climatological period rather than the single year (2016) of the physics testing, which helps as-387 

certain that performance differences between shortlisted RCMs are robust across a multi-decadal 388 

timescale capturing climatologically diverse years. The aim is that two definitive production-grade 389 

RCMs can be selected for CMIP6-forced downscaling from these ERA5-forced CORDEX ‘evalua-390 

tion’ simulations. Thus, the seven ERA5-NARCliM2.0 RCMs were driven by ERA5.0 boundary con-391 

ditions for January 1979 to December 2020 using the model and nested domain setups described 392 

above for NARCliM2.0. The skill of these RCMs in simulating the recent Australian climate was as-393 

sessed as follows (see Di Virgilio et al. in review): annual and seasonal means were calculated for 394 

maximum and minimum temperature and precipitation using monthly means for temperature varia-395 

bles, and the monthly sum for precipitation. Extremes of maximum temperature and precipitation (99th 396 

percentiles) and extreme minimum temperature (1st percentile) were calculated using daily data. RCM 397 

performances in reproducing observations over these timescales were assessed by calculating model 398 

outputs minus observations (i.e. model bias), and the RMSE of modelled versus observed fields. RCM 399 

skill in simulating distributions of observed variables was assessed by comparing the probability den-400 

sity functions (PDFs) for daily mean observations versus those of the RCMs. The ultimate outcome of 401 

these ERA5-forced simulations and their evaluation is the selection of two RCM configurations, R3 402 

and R5 to run the CMIP6-forced phase of NARCliM2.0, see Di Virgilio et al. (in review) for further 403 

details on the evaluation methods and results. Supporting Information Figure S1 shows the WRF 404 

namelist settings for the R3 and R5 RCMs (see also sect. 9. Code Availability).  405 
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3.5 CORDEX CMIP6-forced NARCliM2.0 simulations 406 

The ideal CMIP6 GCM variables and their frequencies required to run the WRF RCM are listed in 407 

Table S1. A minority of variables in Table S1 are not available at sub-daily frequencies for every tar-408 

get GCM. This necessitates assumptions/data proxies to be made. For instance, soil moisture and soil 409 

temperature variables were unavailable for some selected GCMs; hence, surrogate data, such as sur-410 

face temperature, were used for initialisation (noting that soil data are only used by the RCM at ini-411 

tialisation). In these cases, we investigated how long it took for uncertainty in the initial conditions to 412 

disappear from the WRF output by analysing the regionally averaged soil moisture time series. The 413 

data were regionalised according to the four Australian Natural Resource Management (NRM) re-414 

gions / climate zones (Supporting Information Figure S2) which are broadly aligned with climatologi-415 

cal boundaries (Fiddes et al., 2021) and with the IPCC reference regions (Iturbide et al., 2020). Time 416 

series plots (Figure S3) show that soil moisture equilibrates to be within a normal range following 417 

initialisation, indicating that the 12-month spin-up year (1950) is sufficient to account for the assump-418 

tions made at model initialisation. 419 

Boundary and initial conditions were prepared using selected GCM data to run the 151-year 420 

GCM-driven simulations using WRF version 4.1.2. The GCM-driven simulations were run and com-421 

pleted using the pre-defined RCM settings for two RCM configurations using the WRF namelists in 422 

Supporting Information Figure S1 (see also sect. 9. Code Availability). A cold restart was performed 423 

on the last Historical experiment year (2014), thus enabling the SSP1-2.6 and SSP3-7.0 experiments 424 

to be run for 2015-2100 concurrently with the Historical experiment. The 2014 cold start year is even-425 

tually overwritten by Historical runs initiated in 1950. 426 

4. Evaluation methods  427 

This section largely focuses on the methods and metrics used for the NARCliM2.0 RCM physics test-428 

ing. Overviews of the methods and metrics for CMIP6 GCM evaluation and selection and assessments 429 

of the ERA5-forced evaluation simulations are provided above, with further information on these 430 

available in Di Virgilio et al. (2022) and Di Virgilio et al. (in review). 431 

4.1 Observations 432 

Australian Gridded Climate Data (AGCD version 1.0; Evans et al., 2020a) are the observational data 433 

used to evaluate the NARCliM2.0 RCM physics test RCMs. These daily gridded data for maximum 434 

and minimum temperature and precipitation are obtained from an interpolation of station observations 435 

across Australia. AGCD data are on a regular WGS84 grid with a grid-averaged resolution of 0.05°. 436 

For the NARCliM2.0 RCM physics tests, the AGCD data were re-gridded to correspond with the 437 

RCM data from the inner domain on their native grids using a conservative area-weighted re-gridding 438 
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scheme. All data (RCM and AGCD) were restricted to a common extent contained within the inner 439 

domain over southeast Australia, and a land mask was applied so that statistics were computed using 440 

only land pixels. Treatment of AGCD for the CMIP6 GCM evaluation and the ERA5-NARCliM2.0 441 

RCM evaluation is described in Di Virgilio et al. (2022) and Di Virgilio et al. (in review), respective-442 

ly.  443 

4.2 Methods and metrics: phase I-III physics tests 444 

RCM performances in reproducing observations for daily maximum and minimum temperature and 445 

daily precipitation were assessed by calculating the model bias, i.e. model outputs minus AGCD, and 446 

the RMSE of modelled versus observed fields. Model biases and RMSEs were calculated at annual 447 

and seasonal timescales. The model representations of the hottest and the wettest day on an annual 448 

time scale over the study region were also compared with AGCD. PDFs were calculated for each var-449 

iable using daily data. The Perkins skill score (PSS) (Perkins et al., 2007) was calculated to assess the 450 

overall degree of overlap between modelled and observed distributions, with PSS = 1 indicating that 451 

distributions overlap perfectly. 452 

 To identify the overall performances of the RCM configurations, the RCMs are ranked based 453 

on the bias and RMSE for all variables and seasons, the annual PSS, as well as the bias and RMSEs 454 

for the maximum temperature and precipitation extremes. These ranks are then summed with the low-455 

est totals indicating the best performing RCM configurations overall. 456 

4.3 CMIP6 GCM and ERA5-NARCliM2.0 evaluations 457 

Overviews of the evaluation methods and rationale for these components of NARCliM2.0 design have 458 

been provided above. For further details on methods and results on the CMIP6 GCM evaluation and 459 

the ERA5-NARCliM2.0 RCM evaluation, see Di Virgilio et al. (2022) and Di Virgilio et al. (in re-460 

view), respectively. 461 

4.4 Independence assessments 462 

We used the method of Bishop and Abramowitz (2013) as one of two methods of assessing the inde-463 

pendence of physics test RCMs and the target CMIP6 GCMs under evaluation for use in NAR-464 

CliM2.0. This approach uses the covariance in model errors as the basis to define model dependence; 465 

specifically, independence coefficients are derived from the error covariance matrix of the RCMs or 466 

GCMs. Model independence is quantified using the correlation of model errors. For the physics test 467 

RCMs, errors are computed by comparing the climatology of maximum and minimum temperature 468 

and precipitation over the south-east Australia inner domain for 2016 with corresponding AGCD ob-469 

servations. The same calculation is performed for the CMIP6 GCMs, except for the Australian conti-470 

nent. Daily timeseries of precipitation, maximum and minimum temperature are calculated individual-471 
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ly for each RCM and for AGCD. The simulated and observed daily timeseries of each variable are 472 

then normalised by the standard deviation of the corresponding observed variable. These normalised 473 

variables are concatenated for each RCM (GCM) and AGCD. An anomaly time series for each grid 474 

cell is then produced. These time series are used to create a ‘model error covariance matrix’ contain-475 

ing the errors for all RCMs (GCMs). The coefficients of a linear combination of the RCMs (GCMs) 476 

that optimally minimises the mean square error depends on both model performance and model de-477 

pendence (Bishop and Abramowitz, 2013). The result of this minimisation problem is written in terms 478 

of the covariance matrix. The magnitude of coefficients assigned to each RCM (GCM) reflects a 479 

combination of their performance and independence. Highly independent models have different errors 480 

when simulating the recent climate. Models with the largest coefficients have the most independent 481 

errors versus observations. 482 

 The Herger method of subset selection (Herger et al., 2018), as implemented here, uses quad-483 

ratic integer programming to find the subset of models whose equally-weighted subset mean (EWSM) 484 

minimises a quadratic cost function. This cost function is chosen to measure the performance of the 485 

EWSM in comparison to a given observational product. The two cost functions used here are: the 486 

mean squared error (MSE) between the EWSM and the observational product (Herger et al. 2018, Eq. 487 

1); and another which measures a combination of the MSE of the EWSM, the average MSE of each 488 

subset member, and the average pairwise mean squared distance between subset members (Herger et 489 

al. 2018, Eq. 2). 490 

4.5 NARCliM2 CMIP6-RCMs: historical evaluation and climate change 491 

projections 492 

Performances of NARCliM2.0 versus NARCliM1.x RCMs in reproducing the recent Australian cli-493 

mate are evaluated by calculating the model biases (model outputs minus AGCD observations) for 494 

mean maximum and minimum temperature and precipitation for 1990-2009. To enable comparison of 495 

future projections between NARCliM1.0, NARCliM1.5 and NARCliM2.0 (where NARCliM1.0 mod-496 

elled for 1990-2009, 2020-2039, and 2060-2079), all NARCliM ensemble projected changes are 497 

shown as far future (2060–2079) minus present day (1990–2009). 498 

4.6 Statistical significance 499 

When quantifying future climate change projections (compared to the historical period) and biases in 500 

maximum and minimum temperature, the statistical significance is calculated for each grid cell using 501 

t-tests (α = 0.05) assuming equal variance. The Mann–Whitney U test is used for precipitation given 502 

its non-normality. For individual RCMs, grid cells showing statistically significant changes are stip-503 

pled, otherwise they are shown in colour where change is statistically insignificant. Results on the 504 

statistical significance of each ensemble mean are separated into three categories following Tebaldi et 505 
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al. (2011): 1) statistically insignificant areas are shown in colour, denoting that less than 50% of 506 

RCMs are significantly biased/different; 2) in areas of significant agreement (stippled), at least 50% 507 

of RCMs are significantly biased/different and at least 70% of significant models in the CMIP6-508 

NARCliM2.0 RCM ensemble agree on the sign of the bias/difference. In such areas, many ensemble 509 

members have the same bias sign which is an undesirable outcome; and 3) areas of significant disa-510 

greement, where at least 50% of RCMs are significantly biased/different and fewer than 70% of sig-511 

nificant models agree on the bias sign, are shown with diagonal hatching for the CMIP6-NARCliM2.0 512 

historical evaluation and climate change signals. 513 

5. RCM Physics test results 514 

5.1 Phase I RCM performance summary 515 

The spatial variation and magnitudes for Phase I RCM biases and RMSEs for annual mean maximum 516 

and minimum temperature and precipitation are shown in Figures 4-5, respectively. Overall, RCMs 517 

are biased cold for maximum temperature (mean absolute bias for the ensemble mean = 1.18 K), and 518 

warm-biased for minimum temperature (mean absolute bias = 1.31 K; Figure 4a-b). Maximum tem-519 

perature RMSE magnitudes are large over the elevated terrain of the southeast coast and over western 520 

regions (Figure 5a). The simulation of precipitation shows biases of varying sign, with wet biases that 521 

are strongest over eastern coastal regions (Figure 4c). Precipitation RMSEs are particularly large 522 

along the eastern coastline (>15 mm), and generally show an east-west gradient, i.e. progressively 523 

decreasing further inland from the coast (Figure 5c). 524 

5.2 Comparing Phase II Physics Test RCM performances versus Phase I 525 

5.2.1 Climate Means 526 

Overall, the RCM ensemble using New Goddard (NG) radiation has inferior performance to the corre-527 

sponding RCMs using RRTMG in terms of annual/seasonal mean maximum temperature biases, 528 

RMSEs, and PSS (Table 7). In contrast, NG confers superior performance for annual/seasonal mean 529 

minimum temperature for these statistics. RCMs using NG show reduced biases for annual mean and 530 

spring-time precipitation, but larger errors for DJF and JJA (Table 7). RMSEs for annual and seasonal 531 

precipitation are similarly variable. 532 
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Table 7. Climate means performance: phase II physics tests (i.e. N=12 set 1 changing only RRTMG to New 533 

Goddard (NG) and N=12 set 2 changing only land surface model (LSM) from Noah-Unified to Noah-MP 534 

(NMP) compared with the phase I physics test RCMs that were shortlisted for further testing (N=12). 535 

  
Bias RMSE PSS 

Variable Timescale 

Phase I  

(N=12) 

ensemble 

mean 

Phase II 

(NG 

rad.) 

ensemble 

mean 

Phase II 

(NMP 

LSM) 

ensemble 

mean 

Phase I  

(N=12) 

ensemble 

mean 

Phase II 

(NG 

rad.) 

ensemble 

mean 

Phase II 

(NMP 

LSM) 

ensemble 

mean 

Phase I  

(N=12) 

ensemble 

mean 

Phase II 

(NG 

rad.) 

ensemble 

mean 

Phase II 

(NMP 

LSM) 

ensemble 

mean 

Temp. 

Max. (K) 

Annual 0.87 1.27 0.58 3.56 3.73 3.50 0.950 0.936 0.955 

DJF 0.74 1.29 0.63 4.41 4.70 4.43 

- - - 
MAM 1.40 2.06 0.83 3.68 3.92 3.55 

JJA 0.62 0.81 0.52 2.64 2.66 2.65 

SON 0.87 1.04 0.66 3.25 3.32 3.20 

 
 

           

Temp. 

Min. (K) 

Annual 1.35 0.95 1.2 3.53 3.41 3.42 0.927 0.941 0.931 

DJF 1.50 1.08 0.87 3.86 3.82 3.66 

- - - 
MAM 1.21 0.84 0.92 3.55 3.45 3.50 

JJA 0.82 0.51 0.91 3.00 2.92 3.00 

SON 1.88 1.47 1.92 3.63 3.40 3.58 

 
 

           

Prec.  

(mm) 

Annual 0.25 0.24 0.25 7.21 7.32 6.78 0.943 0.950 0.946 

DJF 0.41 0.53 0.49 8.28 8.83 8.85 

- - - 
MAM 0.32 0.32 0.25 5.91 6.47 5.53 

JJA 0.37 0.53 0.44 7.63 7.34 7.65 

SON 0.34 0.22 0.39 6.68 6.18 6.92 

Phase II RCMs using Noah-MP with RRTMG retained show improved performance in simu-536 

lating mean maximum and minimum temperature at annual timescales and most seasons relative to 537 

corresponding Phase I RCMs using Noah-Unified (Table 7; Figure 4-5). For instance, the mean abso-538 

lute bias for annual mean maximum temperature is 0.58 K for the Noah-MP ensemble mean versus 539 

1.18 K for the Noah-Unified ensemble. In particular, cold bias magnitudes for maximum temperature 540 

are considerably lower over eastern and southern regions for the RCMs using Noah-MP (Figure 4d). 541 

RMSE magnitudes for maximum temperature are substantially reduced over the topographically com-542 

plex regions of the southeast, and southwest and central regions (Figure 5d).  543 

Overall, the magnitude of warm biases for minimum temperature are broadly similar for 544 

Phase I and Phase II RCMs (Figure 4b,c). Conversely, while RCMs in both Phases show large 545 

RMSEs for minimum temperature over several eastern regions, RMSEs are smaller for the Noah-MP 546 

ensemble over some southern areas (Figure 5b,c). 547 
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In contrast to the above results for the simulation of maximum temperature, overall, Phase II 548 

RCMs using Noah-MP show smaller performance improvements for the simulation of precipitation 549 

relative to the Phase I RCMs (Table 7). However, precipitation bias magnitudes are smaller for the 550 

Noah-MP ensemble over specific regions, e.g. north-eastern coastal regions and the elevated terrain of 551 

the south-east (Figure 4c,f). 552 

 553 

Figure 4. Phase I (N=36), Phase II (N=60) and Phase III (N=78) ensemble mean biases for annual mean maxi-554 

mum temperature, minimum temperature and precipitation with respect to Australian Gridded Climate Data 555 
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(AGCD) observations for NARCliM2.0 Phase I physics test RCMs using Noah-Unified as the land surface 556 

model (LSM) (a-c); Phase II physics test RCMs using Noah-MP as the LSM and its default settings (d-f); Phase 557 

III ‘set 1’ physics test RCMs using Noah-MP with dynamic vegetation cover activated (g-i); Phase III ‘set 2’ 558 

physics test RCMs using Noah-MP with TOPMODEL surface runoff and simple groundwater activated (j-l); 559 

and Phase III ‘set 3’ physics test RCMs using Noah-MP with both dynamic vegetation cover and TOPMODEL 560 

runoff activated (m-o). 561 

 562 

Figure 5. As per Figure 4 but showing RMSEs. 563 
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5.2.2. Climate Extremes 564 

Climate extreme analysis assesses RCM representations of the hottest and the wettest day versus 565 

AGCD. For both extremes and for RCM biases and RMSEs, Phase II RCMs using NG radiation 566 

showed inferior performance relative to phase I RCMs using RRTMG (Table 8). Conversely, Phase II 567 

RCMs using Noah-MP show substantial reductions in bias for both the hottest and wettest days (Table 568 

8). Phase II Noah-MP RCMs show a small increase in RMSE for the hottest day (Phase I bias=3.59 569 

K; Phase II bias=3.74 K); however, RMSEs are smaller for the wettest day (i.e. Phase I RMSE=19.20 570 

mm; Phase II RMSE=18.47 mm) (Table 8). 571 

Table 8 Climate extremes performance: comparing phase I RCMs (N=12) with phase II RCMs (i.e. 572 

12 RCMs changing radiation from RRTMG to New Goddard (NG) and 12 RCMs changing land sur-573 

face model (LSM) from Noah-Unified to Noah-MP; NMP). 574 

 
Bias RMSE 

Variable 

Phase I  

(N=12) 

ensemble 

mean  

Phase II 

(NG 

rad.) 

ensemble 

mean  

Phase II 

(NMP 

LSM) 

ensemble 

mean  

Phase I  

(N=12) 

ensemble 

mean  

Phase II 

(NG 

rad.) 

ensemble 

mean  

Phase II 

(NMP 

LSM) 

ensemble 

mean  

Temp. max: hottest 

(K) 
1.11 1.93 0.81 3.59 3.97 3.74 

Prec.: wettest 

(mm) 
3.08 3.21 2.60 19.20 20.52 18.47 

5.3 Phase III RCM performance summary and shortlisting N=7 RCMs for 575 

ERA5-NARCliM2.0 evaluation simulations 576 

Overall, RCM biases for mean maximum temperature do not show marked improvements once the 577 

dynamic vegetation cover and surface runoff options are activated for Noah-MP (Figure 4 g,j,m) rela-578 

tive to RCMs using Noah-MP with default settings (Figure 4d). However, specifically for the RCM 579 

ensemble with dynamic vegetation cover activated for Noah-MP, RMSE magnitudes for maximum 580 

temperature are lower over some eastern coastal regions (Figure 5g).  581 

 The simulation of mean minimum temperature shows clear performance improvements for 582 

Phase III RCMs using options activated for Noah-MP, relative to RCMs using Noah-MP defaults. 583 

Overall, both biases and RMSEs for minimum temperature are reduced in magnitude for RCMs using 584 

the either or both of dynamic vegetation cover and runoff/groundwater options activated for Noah-585 
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MP, relative to the default parameters (Figure 4-5). These performance improvements are largest over 586 

eastern and southern regions. 587 

There are no substantial overall performance improvements in the simulation of precipitation 588 

for Phase III RCMs relative to Phase II RCMs (Figures 4-5 f,i,l,o). However, using Noah-MP with 589 

specific LSM options remains favourable to using RCMs with Noah-Unified, albeit the performance 590 

gains are generally small, except for some coastal regions and especially the north-east. 591 

All 78 RCMs in the complete RCM physics test ensemble are ranked for performance as de-592 

scribed in sect. 4.2. Once the poor-performing RCMs are excluded, there are 20 RCMs remaining 593 

(Table 9; Figures 6-8). In Table 9, we see that 16 Noah-MP-based RCMs from Phase II and Phase III 594 

comprise this set of 20 RCMs, with 3 of the 20 RCMs using Noah-Unified, and 1 using CLM4.0. For 595 

maximum temperature, some shortlisted RCMs show large RMSEs over north-western and inland 596 

areas (e.g. Figure 6 d-f) that are of similar magnitude to those of the ensemble means of Phase I-III 597 

RCMs (Figure 5). Conversely, several shortlisted RCMs show very low RMSEs for maximum tem-598 

perature across eastern and southern regions, especially along the eastern coast (Figure 6, e.g. RCMs 599 

in panels d,l,n,o,q). For minimum temperature, a subset of the twenty shortlisted RCMs show substan-600 

tially reduced RMSEs over many regions relative to the Phase I-III ensemble means (Figure 7, e.g. 601 

RCMs in panels: b,h,i). Additionally, several shortlisted RCMs show reduced RMSEs for precipita-602 

tion over the eastern coast and north-east (Figure 8, e.g. RCMs in panels: c, l, m, n, o) relative to the 603 

Phase I-III RCM ensemble means in Figure 5c,f,i,l,o. 604 

These 20 RCMs are assessed for statistical independence and 7 RCMs from this RCM set are 605 

shortlisted for the ERA5-forced RCM simulations considering both their performance and independ-606 

ence scores (Table 9). These 7 shortlisted RCMs are listed in bold in Table 9 and are identified as R1-607 

R7 in the ERA5-forced evaluation simulations (Table 9; final column). RCMs are shortlisted from the 608 

set of 20 if they rank highly for both performance and independence. For instance, RCM 609 

050801040404_set_3 (top row, Table 9) is top-ranked for performance, however, its independence 610 

scores/ranks are low, hence it is not shortlisted. It is important to note that, while a general perfor-611 

mance gain is observed in the physics testing when using Noah-MP, there are some specific RCM 612 

configurations using Noah-Unified that perform well in simulating the Australian climate. For in-613 

stance, the RCM 010602050502 (row 7; Table 9; ‘R1’) uses Noah-Unified and performs well overall 614 

(its overall performance rank=7), and especially for the simulation of maximum temperature (Figure 615 

6a). It is also the only RCM in this set of 20 RCMs to use YSU for PBL. Importantly, this RCM is 616 

highly ranked for statistical independence, hence, this RCM is shortlisted for the N=7 set. 617 
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Table 9. The 20 NARCliM2.0 physics test RCMs shortlisted from the full ensemble of 78 RCMs based on their 618 

performance in simulating the Australian climate and independence (Ind.) scores. N=7 ‘R1-R7’ RCMs shortlist-619 

ed for ERA5-forced CORDEX evaluation simulations shown in bold. NU=Noah Unified; NMP=Noah-MP; 620 

DV=dynamic vegetation cover; TOP=topmodel runoff. 621 

# 
RCM Physics  

Combination 
PBL MP Cumulus SW/LW LSM 

Test 

Phase 

Overall 

Performance 

Rank 

Bishop 

Abramowitz 

Ind. Rank 

Herger 

Ind. 

Set 1 

Herger 

Ind. 

Set 2 

ERA5-

forced RCM 

Identifier 

1 050801040404_set_3 MYNN2 Thom KF RRTMG 
NMP 

DV+TOP 
III 1 19 20 20  

2 070806040404_set_1 ACM2 Thom Td RRTMG 
NMP 

DV 
III 2 8 5 6 R6 

3 50801040404 MYNN2 Thom KF RRTMG NMP II 3 16 12 13  

4 070802040404_set_1 ACM2 Thom BMJ RRTMG 
NMP 

DV 
III 4 4 3 3 R5 

5 070802040404_set_2 ACM2 Thom BMJ RRTMG 
NMP 

TOP 
III 5 15 13 12  

6 050601040404_set_1 MYNN2 WSM6 KF RRTMG 
NMP 

DV 
III 6 7 10 10 R2 

7 10602050502 YSU WSM6 BMJ NG NU II 7 1 3 3 R1 

8 070806040404_set_2 ACM2 Thom Td RRTMG 
NMP 

TOP 
III 8 9 9 5 R7 

9 70806040404 ACM2 Thom Td RRTMG NMP II 9 11 14 14  

# 50802040404 MYNN2 Thom BMJ RRTMG NMP II 10 20 19 19  

# 050802040404_set_1 MYNN2 Thom BMJ RRTMG 
NMP 

DV 
III 11 5 2 2 R3 

# 070806040404_set_3 ACM2 Thom Td RRTMG 
NMP 

DV+TOP 
III 14 12 10 10  

# 70802040404 ACM2 Thom BMJ RRTMG NMP II 17 13 15 15  

# 070601040404_set_3 ACM2 WSM6 KF RRTMG 
NMP 

DV+TOP 
III 22 14 16 16  

# 050802040404_set_2 MYNN2 Thom BMJ RRTMG 
NMP 

TOP 
III 23 2 4 4 R4 

# 70802050502 ACM2 Thom BMJ NG NU II 24 18 18 18  

# 50801040405 MYNN2 Thom KF RRTMG CLM4 I 28 17 17 17  

# 070601040404_set_1 ACM2 WSM6 KF RRTMG NMP DV III 29 6 7 8  

# 70801040404 ACM2 Thom KF RRTMG NMP II 30 3 1 1  

# 50801040402 MYNN2 Thom KF RRTMG NU I 31 10 6 7   
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 622 

Figure 6. RMSEs for modelled mean maximum temperature (tmax) versus observations for the twenty 623 
NARCliM2.0 physics test RCMs shortlisted from the full ensemble of seventy-eight RCMs based on their 624 
performance in simulating the recent south-east Australian climate. Overall (final) performance ranks and 625 
Bishop and Abramowitz (2013) method independence (Ind.) scores are shown. 626 

  627 
Figure 7. As per Figure 6 but for mean minimum temperature (tmin). 628 
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 629 

Figure 8. As per Figure 6 but for mean precipitation (precip.). 630 

6. CORDEX-CMIP6 NARCliM2.0 historical evaluation 631 

6.1 Maximum temperature 632 

NARCliM2.0 RCMs simulate maximum temperature more accurately than NARCliM1.x, with wide-633 

spread, statistically significant reductions in cold biases (Figure 9). These reductions in bias apply for 634 

all timescales but are largest for the annual mean, i.e. the area-averaged mean absolute bias is 0.75°C 635 

for the NARCliM2.0 ensemble, 1.73°C for NARCliM1.5, and 1.89°C for NARCliM1.0 (Figure 636 

9d,g,j). Notably, annual mean maximum temperature bias magnitudes are very small, i.e. around 637 

<0.5°C, over south-west WA, southern coastal regions, and several eastern regions. This may be im-638 

portant from a climate change adaptation and mitigation perspective as these regions are heavily pop-639 

ulated and economically significant. NARCliM2.0 retains warm biases of similar magnitude to NAR-640 

CliM1.5 along the north-west coast of Australia (Figure 9d,g). Moreover, these warm biases cover 641 

additional areas for NARCliM2.0, especially during DJF (Figure 9e,h). A wide range of bias signs are 642 

evident for the individual NARCliM2.0 ensemble members (Figures S4-S6). The R5 RCM is general-643 

ly warmer than R3, e.g. (Figure S4c,d). Considering the forcing GCM data, overall, ensemble means 644 

for the CMIP6 and CMIP5 GCMs generally show similar patterns and magnitudes of cold bias for 645 

maximum temperature (Supporting Information S7). 646 
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 647 

Figure 9. Annual, DJF and JJA mean near-surface atmospheric maximum temperature biases for NARCliM2.0, 648 

1.5 and 1.0 historical ensemble means with respect to Australian Gridded Climate Data (AGCD) observations 649 

for 1990-2009. Stippled areas indicate locations where an RCM shows statistically significant bias (P<0.05). 650 

Significance stippling for the ensemble mean bias follows Tebaldi et al. (2011) and is applied separately to each 651 

RCM ensemble. Statistically insignificant areas are shown in colour, denoting that less than half of the models 652 

are significantly biased. In significant agreeing areas (stippled), at least half of RCMs are significantly biased, 653 

and at least 70% of significant RCMs in each ensemble agree on the direction of the bias. Significant disagree-654 

ing areas are shown in hatching, which are where at least half of the models are significantly biased and less 655 

than 70% of significant models in each ensemble agree on the bias direction - see main text for additional detail 656 

on the stippling regime. 657 
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6.2 Minimum temperature 658 

The simulation of mean minimum temperature by NARCliM2.0 is generally warm biased at all time-659 

scales (Figure 10). Its bias magnitudes over many regions are larger versus NARCliM1.5, e.g. annual 660 

mean area-averaged absolute biases are 0.98°C and 0.79°C for NARCliM2.0 and NARCliM1.5, re-661 

spectively (Figure 10 d,g). However, there are exceptions to this result over specific regions, for ex-662 

ample, parts of south-west western Australia show annual mean bias magnitudes of <1°C for NAR-663 

CliM2.0, but these areas show biases below -2°C for NARCliM1.x (Figure 10d,g,j). Most individual 664 

RCMs comprising the NARCliM2.0 ensemble show stronger warm biases than their NARCliM1.5 665 

peers at both annual and seasonal timescales (Figures S8-S10). The ACCESS-ESM-1-5-forced NAR-666 

CliM2.0 RCMs are considerably more warm-biased than the other NARCliM2.0 RCMs, with average 667 

absolute biases of 1.74°C and 1.9°C; Fig. S8c-d).  668 

Many of the CMIP6 GCMs used to force the NARCliM2.0 RCMs are warmer than the CMIP5 669 

GCMs used to force NARCliM1.5, such that the ensemble mean bias of the former is 1.9°C versus 670 

1.11°C (Figure S11). In particular, ACCESS-ESM-1-5 and MPI-ESM1-2-HR are substantially more 671 

warm-biased relative to all other selected GCMs, with mean absolute biases of 2.2°C and 3.47°C, re-672 

spectively (Figure S11). This suggests that NARCliM2.0’s warm biases for mean minimum tempera-673 

ture are at least partially inherited from the driving data. However, whilst the ACCESS-ESM-1-5-674 

forced NARCliM2.0 RCMs are much warmer than their counterparts (i.e. 1.74°C and 1.9°C), this 675 

does not apply to the MPI-ESM1-2-HR-forced RCMs, which have biases of only 1.01°C and 1.09°C. 676 

Hence, factors additional to the driving data, such as changes in RCM parameterisations between 677 

NARCliM generations and other model design changes likely contribute to the warmer biases ob-678 

served for NARCliM2.0. 679 
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 680 

Figure 10. As per Figure 9 but for mean minimum temperature. 681 

6.3 Precipitation 682 

The NARCliM2.0 ensemble shows small dry biases for mean precipitation over most regions, except 683 

for some areas mainly in the east of the country which show slight wet biases (Figure 11d-f). This 684 

contrasts with stronger, statistically significant wet biases of NARCliM1.5 (Figure 11g-i) and the even 685 

stronger wet biases of NARCliM1.0 (Figure 11j-l). Area-averaged bias magnitudes are considerably 686 

smaller for NARCliM2.0 relative to NARCliM1.x, especially for the annual mean, i.e. 8.03 mm ver-687 

sus 16.69 mm and 33.25 mm, respectively. Annual mean precipitation biases are particularly small 688 
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over eastern regions, often being <5 mm. NARCliM2.0 retains the strong summertime dry biases for 689 

precipitation over northern Australia that are evident for NARCliM1.5 (Figure 11e,h), noting that this 690 

region also shows strong warm biases for maximum temperature (Figure 9). 691 

 The individual RCMs comprising NARCliM2.0 show a range of results for annual and sea-692 

sonal mean precipitation biases (Fig S12-S14). Notably, three of the ten NARCliM2.0 RCMs have 693 

substantially larger bias magnitudes than their peers at annual and summer timescales, i.e. both MPI-694 

ESM1-2-HR-R3 and R5 (absolute biases are 15.53 mm and 22.45 mm for annual mean precipitation, 695 

Figure S12g-h) and EC-Earth3-Veg-R5 (Figure S12f; 18.59 mm). Despite EC-Earth3-Veg-R5 being 696 

strongly dry-biased, EC-Earth3-Veg-R3 simulates precipitation more accurately i.e. its mean absolute 697 

bias=9.53 mm (Figure S12e). Analogously to NARCliM2.0’s performances for temperature, R5 is 698 

drier than R3. Comparing the ensemble means of the driving GCMs, the CMPI6 GCMs are marginal-699 

ly more accurate in simulating annual mean precipitation than the CMIP5 GCMs (Figure S15). Whilst 700 

the CMIP6 ensemble produces small biases over inland regions, its biases are larger along the east 701 

coast. 702 

 703 
Figure 11. As per Figure 9 but for mean precipitation (precip.). 704 
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7. CORDEX-CMIP6 NARCliM2.0 climate change projections 705 

Dependent on location, the largest maximum temperature projected increases for NARCliM2.0 under 706 

SSP3-7.0 are over ~3°C, and over ~1.5°C under SSP1-2.6 (Figure 12a,d). SSP3-7.0-NARCliM2.0 707 

shows faster warming over inland than coastal regions, with greater warming across a horizontal band 708 

of the continent during annual and summer timescales (Figure 12a-b). This contrasts with NAR-709 

CliM1.5 which shows a north-south warming gradient at annual and seasonal timescales, with its fast-710 

est warming rate over northern regions, and NARCliM1.0 which projects fastest warming over the 711 

west (Figure 12). For NARCliM2.0, the tropical north warms faster during the winter dry season than 712 

during the summer wet season under SSP3-7.0, but this is not the case for SSP1-2.6 (Figure 12b-c; e-713 

f). NARCliM2.0 simulations under SSP3-7.0 show less warming than NARCliM1.5-RCP8.5, but 714 

warmer futures than for NARCliM1.0-SRES A2, with differences in the underlying driving GCMs 715 

and GHG scenarios likely contributing to these variations in warming. As per NARCliM1.x, all 716 

NARCliM2.0 maximum temperature projections are significant-agreeing with all RCMs projecting 717 

statistically significant temperature increases. 718 

 719 

Figure 12. Ensemble mean climate change projections (far future minus present-day) for annual, DJF and JJA 720 
mean maximum temperatures with significance stippling as per Figure 9. 721 
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Projected increases in annual mean minimum temperature for NARCliM2.0 exceed 3°C over 722 

some regions for SSP3-7.0, and 1.6°C for SSP1-2.6 (Figure 13). Under both GHG scenarios, at annual 723 

and winter timescales warming is fastest over north-east Australia. Conversely, NARCliM1.x mini-724 

mum temperature future increases are generally largest over northwest or northern Australia, though 725 

the summertime projection for NARCliM1.0 is an exception (Figure 13k). As for maximum tempera-726 

ture projections, all RCMs for all NARCliM generations project statistically significant increases. 727 

 728 

Figure 13. Ensemble mean climate change projections (far future minus present-day) for annual, DJF and JJA 729 

mean minimum temperatures with significance stippling as per Figure 9. 730 

NARCliM2.0 SSP3-7.0 projects a dry future over most of Australia, except for wetter futures 731 

over northern and western regions, which are largest in magnitude in summer (Figure 14a-b). In con-732 

trast, overall, NARCliM2.0 SSP1-2.6 projects dry changes across most of Australia, with the strongest 733 

drying over northern Australia during summer (Figure 14e). Similarities between NARCliM2.0 pro-734 

jections for the low and high GHG SSPs include faster drying over the eastern coastline at all time-735 

scales, especially during summer. The wetter futures projected by RCMs downscaling SSP3-7.0-736 

GCMs relative to SSP1-2.6 may be partially inherited from the driving CMIP6 GCMs, because over-737 

all, SSP3-7.0 GCMs show wetter futures than corresponding SSP1-2.6 GCMs (Fig. S16). 738 
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 739 

Figure 14. Ensemble mean climate change projections (far future minus present-day) for annual, DJF and JJA 740 

mean precipitation with significance stippling as per Figure 9. 741 

Considering mean precipitation projections for individual NARCliM2.0 RCMs, in some cases, 742 

R3 and R5 RCMs produce similar results when downscaling the same GCM. For instance, ACCESS-743 

ESM-1-5 forced R3 and R5 both show statistically significant projected decreases in annual mean 744 

precipitation across Australia (Figure 15b-c). In contrast, while UK-ESM1-0-LL R3-R5 both show 745 

projected decreases in annual mean precipitation over eastern Australia, R3 shows precipitation in-746 

creases that are substantially more widespread over western and northern regions relative to R5 (Fig-747 

ure 15j-k). Overall, the NARCliM2.0 ensemble members show a variety of climate change signals for 748 

precipitation (Figure 15) and temperature (not shown), reflecting the range within the larger CMIP6 749 

ensemble (Di Virgilio et al. 2022). 750 

There are some key differences between the mean precipitation projections of NARCliM2.0 rela-751 

tive to those of previous NARCliM generations. For instance, NARCliM1.5 shows stronger reduc-752 

tions in future precipitation over northern and eastern regions at annual and winter timescales (Figure 753 

14), and these changes are statistically significant over many regions, whereas there are only small 754 

regions of significant changes for NARCliM2.0. Additionally, NARCliM2.0 projects marked precipi-755 
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tation decreases along the south-east coast during summer, while NARCliM1.5 shows the opposite 756 

result (Figure 14). NARCliM1.0 generally projects wet futures across larger portions of Australia, 757 

especially at annual and summer timescales. 758 

 759 

Figure 15. Climate change projections (1990-2009 versus 2060-2079) for annual mean precipitation for NAR-760 

CliM ensemble mean climate change signals (a,l,s) and for individual ensemble members. Significance stippling 761 

as per Figure 9. 762 

8. Discussion and Summary 763 

NARCliM regional climate models produce robust climate projections at spatial scales suitable for 764 

local-scale climate change analysis and impact decision-making. The third and latest generation of 765 

these regional climate models, NARCliM2.0, encompasses several model design advancements over 766 

its predecessors.  767 
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8.1 NARCliM2.0 RCM physics testing 768 

A key aim of this paper is to describe how NARCliM2.0 differs from its predecessors and explain the 769 

rationale for these design decisions. In addition to RCM design choices including increased resolu-770 

tion, and incorporation of convection-permitting modelling and urban physics, a major change for 771 

NARCliM2.0 relative to its predecessors is to use new WRF RCM configurations which are selected 772 

via a large suite of physics tests. RCM performance evaluations for the NARCliM2.0 RCM physics 773 

testing focused on the 4 km resolution convection-permitting domain which does not use a cumulus 774 

physics parameterisation. Notably, the 7 ‘candidate’ shortlisted RCMs from the N=78 physics test 775 

ensemble used three different cumulus parameterisations for their outer domains, with 4 RCMs using 776 

BMJ, 2 RCMs using Tiedtke, and 1 using Kain-Fritsch. This indicates that differences in the outer 777 

domain boundary conditions have key influences on the RCM performances in the convection-778 

permitting domain. 779 

The use of the Noah-MP LSM in the NARCliM2.0 RCM physics tests conferred overall RCM 780 

skill improvements relative to the test Phase I RCMs using the Noah-Unified LSM, especially in 781 

terms of the simulation of temperature. Although using Noah-MP also improved the simulation of 782 

precipitation in some respects, these improvements were smaller relative to the gains for temperature, 783 

and improvements were mainly located over coastal regions. The developers of Noah-MP suggest that 784 

some limitations in the Noah-Unified LSM have been modified to better represent several parameters. 785 

These include surface layer radiation balances, snow depth, soil moisture and heat fluxes, leaf area-786 

rainfall interaction, vegetation and canopy temperature distinction, drainage of soil, and runoff.  787 

In the NARCliM2.0 physics testing, improvements in RCM skill were evident for Noah-MP 788 

with default settings. Activating specific parameterisations for this LSM (i.e. dynamic vegetation cov-789 

er and surface runoff-simple groundwater) delivered comparatively smaller gains in RCM perfor-790 

mances. Some previous studies have found no overall benefit of using Noah-MP with default settings. 791 

For instance, Imran et al. (2018) conducted an evaluation of WRF coupled with a variety of LSMs 792 

including Noah-MP using its default settings. Their focus was on simulating short-duration (~3-day) 793 

heatwaves in Melbourne, Australia. They observed larger temperature biases using Noah-MP relative 794 

to RCMs using Noah-Unified and CLM4.0. However, their focus on specific heatwave events of short 795 

duration over one urban area was not intended as a comprehensive evaluation of Noah-MP’s perfor-796 

mance using default settings over longer timescales. It is also important to consider that several phys-797 

ics schemes used by these authors differed to those used in the NARCliM2.0 physics testing, i.e. they 798 

used: PBL=MYJ; microphysics=Thompson; cumulus=Grell3D; radiation=RRTMG/RRTMG. The 799 

only similarities between these settings and those of the NARCliM2.0 physics testing are the use of 800 

Thompson microphysics and RRTMG. WRF and Noah-MP versions also differed, i.e. Imran et al. 801 

used WRF3.6.1 and a Noah-MP version prior to 3.7, whereas NARCliM2.0 uses WRF4.1.2 and No-802 

ah-MP version 4.1. 803 
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In an assessment of the performances of several WRF-LSMs for Sub-Saharan Africa, Glotfelty et 804 

al. (2021) noted deficiencies in the simulation of land use and land cover change (LULCC) parame-805 

ters such as surface albedo by Noah-MP. Despite these deficiencies, the spatial patterns and magni-806 

tudes of temperature and precipitation were well-represented by Noah-MP. However, the land surface 807 

parameter errors impacted the magnitude and sign of LULCC-induced changes in temperature and 808 

precipitation. These deficiencies were linked to substantial underestimations of surface albedo in arid 809 

areas due to inaccurate soil albedo treatments by Noah-MP. Moreover, errors in Noah-MP’s LAI pro-810 

files may occur because it was developed principally for application in Northern Hemisphere mid-811 

latitudes. It is possible that modifying/tuning Noah-MP to specific aspects of the Australian context 812 

would yield performance benefits for follow-up dynamical downscaling. Overall, these authors con-813 

cluded that “Noah-MP is least flawed of the [WRF] default LSMs”. Additionally, there are also sever-814 

al studies that have reported benefits of using Noah-MP with default parameters relative to other 815 

LSMs e.g. Chen et al. (2014b), Chen et al. (2014a) and Salamanca et al. (2018).  816 

The NARCliM2.0 physics testing found that the optimal LSM configuration for simulation of 817 

minimum temperature used Noah-MP with dynamic vegetation cover activated, even though the per-818 

formance gain relative to Noah-MP with default settings was small. Constantinidou et al. (2020) ran 819 

WRF coupled with four LSMs (Noah-Unified, Noah-MP, CLM and, Rapid Update Cycle) over Mid-820 

dle East North Africa CORDEX domain. Their study compared the performance of Noah-MP with 821 

dynamic vegetation cover turned on and off. They showed that air and land temperatures were best 822 

simulated using Noah-MP with dynamic vegetation cover activated.  823 

Overall, Noah-MP performed well in the NARCliM2.0 physics tests, conferring some clear ad-824 

vantages over RCMs using Noah-Unified. However, given the nature of its development and perfor-825 

mance characteristics, it may be more suited to application over the temperate regions of Australia 826 

rather than the semi-arid interior. 827 

In terms of PBL parameterisations, by the completion of Phase I physics testing, only 3 of 12 828 

RCMs shortlisted for further testing use the YSU scheme. By the completion of Phase II testing, all 829 

remaining RCMs using YSU are discarded, with only RCMs using PBL schemes other than YSU re-830 

maining (i.e. ACM2 and MYNN2). YSU PBL is a first-order closure scheme that expresses turbulent 831 

mixing via mean variables rather than prognostic variables (Hong et al., 2006). It is classed as a 'non-832 

local' scheme because it estimates turbulent mixing by small-scale eddies as well as representing 833 

transport caused by convective large eddies. Two previous studies evaluating convection permitting 834 

WRF simulations using different parameterisations that included YSU for the PBL scheme found that, 835 

relative to other PBL schemes, YSU produced the highest bias for simulated precipitation (Huang et 836 

al., 2023; Nuryanto et al., 2019). However, these studies focused on different regions globally, and 837 

used various experimental setups that are not directly comparable to those used here. Hence, a sepa-838 

rate study investigating sensitivities of the NARCliM2.0 RCMs to the different PBL schemes is cur-839 

rently underway. 840 
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8.2 CMIP6-NARCliM2.0: historical evaluation and climate change 841 

projections 842 

We characterised the improvements conferred by NARCliM2.0 over its predecessors in simulating the 843 

present-day Australian climate. NARCliM2.0 simulates mean maximum temperature and precipitation 844 

more accurately than NARCliM1.x. Specifically, NARCliM1.x has strong maximum temperature cold 845 

biases which are in keeping with other downscaling projects of the CMIP3-CMIP5 eras, e.g. (Andrys 846 

et al., 2016; Evans et al., 2020b), but these are substantially reduced in NARCliM2.0. A contributing 847 

cause of CMIP5-forced RCM cold biases of maximum temperature is their overestimation of precipi-848 

tation (Evans et al., 2020). This relationship was also noted in ERA-Interim forced RCMs of this 849 

modelling era (Di Virgilio et al. 2019). In NARCliM2.0, the widespread wet biases that characterise 850 

the NARCliM1.x RCMs are greatly reduced in magnitude. NARCliM2.0 produces smaller wet biases 851 

over eastern Australia, and smaller dry biases elsewhere, except for Australia’s tropical north. This 852 

marked reduction in wet bias magnitudes is a plausible contributing cause for the reduction in maxi-853 

mum temperature cold bias for the NARCliM2.0 RCMs. The CMIP6 and CMIP5 GCMs used to drive 854 

NARCliM2.0 and 1.5 RCMs generally show similar magnitudes of maximum temperature cold bias. 855 

This suggests that the underlying nature of the CMIP6 driving data is not a principal factor underlying 856 

the observed improvements for NARCliM2.0’s simulation of maximum temperature. In fact, the 857 

RCMs appear to have a substantial influence on the reduced maximum temperature biases. 858 

That NARCliM2.0 underestimates precipitation over tropical northern Australia during the 859 

wet season (summer) to a similar degree of magnitude to the NARCliM1.5 RCMs indicates that the 860 

newer models still struggle to accurately capture the strength of the Australian monsoon. However, 861 

whereas NARCliM1.x strongly overestimates precipitation over south-eastern and southern Australia, 862 

wet biases over these regions are reduced for NARCliM2.0 RCMs. This indicates that the newer mod-863 

els may confer an improved simulation of broad-scale processes associated with synoptic-scale sys-864 

tems interacting with the extratropical storm track over Australia (Grose et al., 2019).    865 

 NARCliM2.0 RCMs overestimate minimum temperatures across Australia, and these biases 866 

are larger relative to NARCliM1.5 but comparable to those of NARCliM1.0. The CMIP6 GCMs used 867 

to force NARCliM2.0 show substantially stronger warm biases for minimum temperature than the 868 

CMIP5 GCMs used for NARCliM1.5. This suggests that the increased warm bias for minimum tem-869 

perature in NARCliM2.0-RCMs is partially inherited from the driving GCMs. However, as noted 870 

above, the Noah-MP LSM simulation of factors such as LAI and other aspects of vegetation as well as 871 

surface albedo in arid areas may contribute to the biases shown by the NARCliM2.0 RCMs. Moreo-872 

ver, the NARCliM2.0 ensemble mean reduces the overall minimum temperature bias of the CMIP6 873 

GCM ensemble by almost half, attesting to the added value conferred by the NARCliM2.0 RCMs 874 

with respect to near-surface temperature variables. 875 
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In terms of NARCliM2.0 future climate projections, major changes between NARCliM genera-876 

tions such as differences in GHG scenarios mean that NARCliM2.0 projected temperature changes 877 

differ in some respects to those of its predecessors. Overall, as is expected, projected warming is less 878 

intense in NARCliM2.0 under SSP3-7.0 than for NARCliM1.5 under RCP8.5. Other differences in 879 

the projections between NARCliM generations require further investigation in order to explain, such 880 

as NARCliM1.5’s latitudinal warming gradient for maximum temperature that contrasts with NAR-881 

CliM2.0’s band of faster warming over central Australia relative to northern and southern regions. 882 

Irrespective of these differences, all three NARCliM ensembles show statistically significant-agreeing 883 

results for warming projections. 884 

Precipitation projections for the different NARCliM generations show some key similarities, 885 

such as reductions in mean annual precipitation over eastern Australia for NARCliM2.0 and NAR-886 

CliM1.5, though a difference is that these are statistically significant only for NARCliM1.5. The 887 

NARCliM2.0-SSP3-7.0 and SSP1-2.6 ensembles differ in that the former generally projects wet 888 

changes over northern and western Australia, whereas the latter is generally dry, results that appear 889 

partially traceable to the underlying driving CMIP6-SSP data. Other notable differences are that some 890 

NARCliM2.0 RCMs produce very similar precipitation projections for certain GCM-RCM combina-891 

tions, such as for ACCESS-ESM-1-5 forced R3 versus R5 under SSP3-7.0 (i.e. widespread dry pro-892 

jections for both RCMs). Conversely, in other instances, there are marked divergences between the R3 893 

versus R5 precipitation projections when forced with the same GCM, for instance, UK-ESM-1-0-LL 894 

under SSP3-7.0 where R3 projects stronger precipitation increases that are more geographically wide-895 

spread relative to R5. This raises the question of varying sources of uncertainty in the climate projec-896 

tions, i.e. to what extent these are attributable to GCMs versus RCMs, as well as other factors. 897 

In summary, the CORDEX-CMIP6 NARCliM2.0 regional climate projections are a 10-member 898 

ensemble comprising two configurations of the WRF RCM dynamically downscaling five GCMs un-899 

der three SSPs at 20 km resolution over CORDEX-Australasia and at 4 km convection-permitting 900 

resolution over south-east Australia. The main aims of this manuscript are to describe the new 901 

CORDEX-CMIP6 NARCliM2.0 RCM ensemble, explaining how and why its design choices were 902 

made including the model test and evaluation approaches underlying these design decisions; and char-903 

acterise improvements in model skill in simulating the recent Australian climate relative to previous 904 

generations of NARCliM, as well as differences in future climate projections. In addition to several 905 

high-level model design changes, e.g. increased spatial resolution, a large (N=78) RCM-physics test 906 

suite is evaluated to select two new WRF RCM configurations for CMIP6-forced NARCliM2.0 cli-907 

mate projections. Due to resource constraints and the aim to test a large number of RCM physics pa-908 

rameterisations, the NARCliM2.0 physics tests are performed for a single year. This is one reason 909 

why the final selection of two production-grade RCMs for the CMIP6-NARCliM2.0 runs is based on 910 

the CORDEX ERA5-forced 42-year evaluation simulations. The NARCliM2.0 physics tests identified 911 

RCM configurations that generally performed well in simulating the recent Australian climate over 912 
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southeast Australia. A key finding was that WRF RCMs using the Noah-MP LSM generally out-913 

performed RCMs using other WRF LSMs in representing regional climate. Despite the performance 914 

gains evident for RCMs using Noah-MP, RCM skill was superior over the temperate/coastal regions 915 

of southeast Australia, relative to the semi-arid interior. These performance characteristics might be 916 

linked to Noah-MP's development being focused on Northern Hemisphere mid-latitudes, including 917 

assumptions such as accounting for differences in seasonality in the Northern versus Southern Hemi-918 

spheres by shifting the Northern Hemisphere LAI profiles by 6 months. For the southeast Australian 919 

context, noting its distinctive coastal dry-sclerophyll and expansive inland grassland biomes, such 920 

assumptions might lead to discontinuities in quantities such as LAI. Hence, future investigation into 921 

processes such as land-surface coupling in NARCliM2.0 RCMs is warranted. 922 

Overall, the CMIP6-NARCliM2.0 ensemble produces a good representation of recent mean cli-923 

mate that in several key respects improves upon the model skill of earlier NARCliM generations. This 924 

study provides a foundation for more detailed investigations of the model biases and future climate 925 

changes described here, including process-focused studies exploring their mechanisms. CORDEX-926 

CMIP6 NARCliM2.0 RCM data provide valuable resources to investigate projected climate changes, 927 

their impacts on societies and natural systems, and potential climate change mitigation and adaptation 928 

actions for the CORDEX-Australasia region. 929 

9. Code Availability 930 

The Weather Research and Forecasting (WRF) version 4.1.2 used in this study is freely available 931 

from: https://github.com/coecms/WRF/tree/V4.1.2. A static copy of all scripts used for this study can 932 

be found at: https://bitbucket.org/oehcas/narclim2-933 

0_design_and_evaluation_2024_support_materials/src/main/ 934 

10. Data Availability 935 

Data for the NARCliM2.0 CMIP6-forced R3 and R5 RCMs are being made available via National 936 

Computing Infrastructure (NCI). WRF namelist settings for the NARCliM2.0 CMIP6-forced R3 and 937 

R5 RCMs are shown in Supplementary Material Figure S1 and are also available at: 938 

https://bitbucket.org/oehcas/narclim2-0_design_and_evaluation_2024_support_materials/src/main/. 939 

Data NARCliM1.5 RCMs are available via the New South Wales Climate Data Portal and CORDEX-940 

DKRZ. Data for NARCliM1.0 RCMs are available via the New South Wales Climate Data Portal. 941 

CMIP6 GCM data are available via the Earth System Grid Federation. 942 
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