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Abstract. NARCliM2.0NARCliM 2.0 comprises two Weather Research and Forecasting (WRF) 1 

regional climate models (RCMs) downscaling five CMIP6 global climate models contributing to the 2 

Coordinated Regional Downscaling Experiment over Australasia at 20 km resolution, and south-east 3 

Australia at 4 km convection-permitting resolution. We first describe NARCliM2.0NARCliM 2.0’s 4 

design, including selecting two, definitive RCMs via testing seventy-eight RCMs using different 5 

parameterisations for planetary boundary layer, microphysics, cumulus, radiation, and land surface 6 

model (LSM). We then assess NARCliM2.0NARCliM 2.0's skill in simulating the historical climate 7 

versus CMIP3-forced NARCliM1.0NARCliM 1.0 and CMIP5-forced NARCliM1.5NARCliM 1.5 8 

RCMs and compare differences in future climate projections. RCMs using the new Noah-MP LSM in 9 

WRF with default settings confer substantial improvements in simulating temperature variables versus 10 

RCMs using Noah-Unified. Noah-MP confers smaller improvements in simulating precipitation, 11 

except for large improvements over Australia’s southeast coast. Activating Noah-MP’s dynamic 12 

vegetation cover and/or runoff options primarily improve simulation of minimum temperature. 13 

NARCliM2.0NARCliM 2.0 confers large reductions in maximum temperature bias versus 14 

NARCliM1.0NARCliM 1.0 and 1.5 (1.x), with small absolute biases of ~0.5K over many regions 15 

versus over ~2K for NARCliM1.x. NARCliM2.0NARCliM 2.0 reduces wet biases versus 16 

NARCliM1.x by as much as 50%, but retains dry biases over Australia’s north. 17 
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NARCliM2.0NARCliM 2.0 is biased warmer for minimum temperature versus 18 

NARCliM1.5NARCliM 1.5 which is partly inherited from stronger warm biases in CMIP6 versus 19 

CMIP5 GCMs. Under shared socioeconomic pathway (SSP)3-7.0, NARCliM2.0NARCliM 2.0 20 

projects ~3K warming by 2060-79 over inland regions versus ~2.5K over coastal regions. 21 

NARCliM2.0NARCliM 2.0-SSP3-7.0 projects dry futures over most of Australia, except for wet 22 

futures over Australia’s north and parts of western Australia which are largest in summer. 23 

NARCliM2.0NARCliM 2.0-SSP1-2.6 projects dry changes over Australia with only few exceptions. 24 

NARCliM2.0NARCliM 2.0 is a valuable resource for assessing climate change impacts on societies 25 

and natural systems and informing resilience planning by reducing model biases versus earlier 26 

NARCliM generations and providing more up-to-date future climate projections utilising CMIP6. 27 

Keywords: 

Climate change; climate impact adaptation; dynamical downscaling; CORDEX-CMIP6; model 28 

design; model evaluation  29 
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1. Introduction 30 

Climate projections are foundational to informing climate change mitigation and adaptation planning 31 

at various spatial scales (IPCC, 2021). Regional climate models (RCMs) dynamically downscale 32 

global climate models (GCMs) at ~100-200 km resolution to simulate higher resolution climate 33 

projections that better resolve local-scale influences on regional climate, such as mountain ranges, 34 

land-use variation, land-sea contrasts, and convective processes (Torma et al., 2015; Giorgi, 2019). As 35 

such, whilst GCMs are the best tools for investigating climate at global scales, RCMs provide 36 

improved guidance for climate policy at regional scale, which is the scale at which climate change 37 

impacts are experienced (Hsiang et al., 2017). 38 

The NARCliM programme (New South Wales and Australian Regional Climate Modelling) is 39 

now in its third generation. Like its predecessors, NARCliM version 2.0 (‘NARCliM2.0NARCliM 40 

2.0’), aims to produce robust, detailed regional climate projections at spatial scales relevant for use in 41 

local-scale climate change analysis. A key feature of all NARCliM generations is to simulate the 42 

climate over the Coordinated Regional Downscaling Experiment (CORDEX)-Australasia domain, and 43 

a higher resolution inner domain over southeast Australia via one-way nesting (Figure 1). With one-44 

way nesting the inner domain obtains its initial and lateral boundary conditions from the simulation 45 

over CORDEX-Australasia. NARCliM1.0NARCliM 1.0 simulated the climate of Australasia for three 46 

periods (1990-2009, 2020-2039, 2060-2079) at 50 km resolution and southeast Australia at 10 km 47 

using three configurations of the weather research and forecasting (WRF) RCM (Skamarock et al., 48 

2008) to downscale GCMs from Coupled Model Intercomparison Project phase three (CMIP3) under 49 

the SRES A2 greenhouse gas (GHG) scenario (Evans et al., 2014). NARCliM1.5NARCliM 1.5 used 50 

CMIP5 GCMs under representative concentration pathways (RCP) 4.5 and 8.5 to simulate 51 

continuously for 1950-2100 on the same grids as NARCliM1.0NARCliM 1.0 using two of its RCMs 52 

(Nishant et al., 2021). 53 

NARCliM2.0NARCliM 2.0 aims to improve performance in simulating the Australian climate 54 

relative to previous NARCliM generations with the goal of better informing community resilience to 55 

climate change (New South Wales Government, 2022, 2023). All NARCliM projects include a 56 

bottom-up design ethos involving multi-sectoral end-user engagement in specifying model 57 

requirements to ensure model performance and outputs meet end-user needs. Key requirements from 58 

the NARCliM2.0NARCliM 2.0 user-consultation include providing increased detail in climate 59 

simulations via higher resolution and improving the simulation of precipitation and temperature as 60 

these are fundamental inputs to climate impact studies. Whilst NARCliM1.0NARCliM 1.0 and 1.5 61 

(1.x) confer the expected level of performance in simulating the Australian climate (Di Virgilio et al., 62 

2019; Evans et al., 2020b), recent technological and scientific advancements mean that aspects of 63 

their performance might now be improved. NARCliM1.x RCMs show widespread cold biases in 64 

maximum temperature exceeding −5K for some RCMs. Conversely, minimum temperature is 65 
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simulated more accurately with biases in the range of ±1.5K. NARCliM1.x RCMs overestimate 66 

precipitation, particularly over Australia’s socio-economically important eastern seaboard (Di Virgilio 67 

et al., 2019).  68 

As they are expensive to run from both computational and data storage perspectives, dynamical 69 

downscaling projects like NARCliM2.0NARCliM 2.0 use a subset of available GCMs as driving data, 70 

necessitating careful model selection. Similarly, a large combination of different physical 71 

parametrisations available for the WRF RCM enables many structurally different RCMs to be 72 

potentially used to downscale GCMs. A key component of NARCliM2.0NARCliM 2.0’s design is 73 

testing the viability of alternative RCM parameterisations via a three-phase approach, with each phase 74 

building on the preceding phase to identify the RCM parameterisations that perform well during 75 

testing to meet NARCliM2.0NARCliM 2.0’s aim of improving the simulation of Australia’s climate. 76 

GCM and RCM statistical independence are also sought to avoid creating a biased sample of climate 77 

change. Hence, the aims of this paper are to: 78 

 1) describe how and why NARCliM2.0NARCliM 2.0 differs from its predecessors in terms of 79 

its design and production processes, explaining the model test and evaluation approaches underlying 80 

its design decisions. A key focus is on the design and testing of seventy-eight structurally different 81 

WRF RCMs and their evaluation to identify a subset of RCMs for use in NARCliM2.0NARCliM 2.0;  82 

2) characterise the performance improvements of CMIP6-NARCliM2.0NARCliM 2.0 RCMs in 83 

simulating the Australian climate relative to previous NARCliM generations by evaluating their skill 84 

in simulating mean maximum and minimum temperature and precipitation versus observations; 85 

 and 3) summarise the climate projections produced by CMIP6-NARCliM2.0NARCliM 2.0 and 86 

how these differ from previous CMIP3-5-NARCliM generations.  87 

 The following section summarises the basic design features of each NARCliM generation; 88 

section 3. describes NARCliM2.0’s design process with a focus on its RCM physics testing, as well as 89 

a brief overview of its production process; sSection 43. describes evaluation methods and metrics; 90 

Section 4. describes NARCliM 2.0’s design process with a focus on its RCM physics testing, as well 91 

as a brief overview of its production process; Ssection 5. summarises the RCM physics test results; 92 

sSection 6. evaluates the performance of all NARCliM models in simulating the recent Australian 93 

climate; sSection 7. provides an overview of their future projections; and Ssection 8. discusses key 94 

results and summarises this paper. 95 



5 
 

 96 

Figure 1. Model domains for NARCliM regional climate simulations. The southeast inner domain for 97 

NARCliM2.0NARCliM 2.0 is delineated with a solid black rectangle; the corresponding inner domain for 98 

NARCliM1.0NARCliM 1.0 and 1.5 is delineated with a dashed black line. The elevated terrain of the Australian 99 

Alps which form part of the Great Dividing Range is in eastern Australia. Inset shows the CORDEX-Australasia 100 

outer domain. 101 

2. Three generations of NARCliM: model overviews 102 

The design of NARCliM1.0NARCliM 1.0 is described in Evans et al. (2014); NARCliM1.5NARCliM 103 

1.5 used the same design approach but used CMIP5 rather than CMIP3 GCMs. All generations of 104 

NARCliM use different versions of the WRF model (Skamarock et al., 2008) to perform dynamical 105 

downscaling of GCMs since the WRF model goes through regular updates. The southeast Australian 106 

inner domain captures five of Australia’s eight capital cities (Figure 1) and over 75% of the Australian 107 

population (Australian Bureau Statistics, 2024). Additionally, the inner domain captures coastal 108 

regions that are characterised by topographic complexity and land-use class variation. Regions east of 109 

the Great Dividing Range mountains in southeast Australia (Figure 1) show different responses to 110 

oceanic climate modes compared to inland semi-arid regions (Murphy and Timbal, 2008) and are 111 

impacted by events such as rapidly developing storms, including east coast lows (Pepler and Dowdy, 112 

2021). Such atmospheric processes are not adequately resolved by GCMs due to coarse resolutions 113 

(Di Virgilio et al., 2022; Grose et al., 2020).  114 

 NARCliM2.0NARCliM 2.0 encompasses several design advancements over its predecessors 115 

(Table 1). NARCliM2.0NARCliM 2.0 RCMs have a 20 km resolution CORDEX-Australasia domain 116 
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(versus 50 km) and 4 km (versus 10 km) domain over southeast Australia and use 45 (versus 30) 117 

vertical levels. The aim of increasing the resolution of this inner domain from 10 km to 4 km is to 118 

render these simulations convection-permitting (Kendon et al., 2021; Lucas-Picher et al., 2021). 119 

Hence, whilst the 20 km-resolution outer domain uses cumulus parametrisation, simulations over the 120 

4 km domain do not use cumulus parametrisation. NARCliM2.0NARCliM 2.0 also includes a new 121 

collaboration with the Western Australian government, with separate 4 km simulations being 122 

performed over south-west and north-west Western Australia (not shown in Figure 1) as part of the 123 

Western Australian climate science initiative (DWER, 2023). Boundary conditions derived from the 124 

20 km NARCliM2.0NARCliM 2.0 CORDEX Australasia domain are used to drive these simulations. 125 

Additional major differences in model setup for NARCliM2.0NARCliM 2.0 include: 126 

▪ NARCliM1.0NARCliM 1.0 RCMs use different parameterisations for planetary boundary 127 

layer (PBL) physics, surface physics, cumulus physics, land surface model (LSM), and radia-128 

tion (Evans et al., 2014). These RCM parameterisations were also used for NAR-129 

CliM1.5NARCliM 1.5. Owing to the project aims stated above, RCM parameterisations for 130 

NARCliM2.0NARCliM 2.0 differ to those of NARCliM1.x (see sSect. 34). 131 

▪ NARCliM2.0NARCliM 2.0 increases the number of driving GCMs to 5 and simulates for a 132 

wider range of plausible future climates via three shared socioeconomic pathways (SSP). 133 

SSP1-2.6 is selected as a low GHG scenario envisaging a future climate with CO2 emissions 134 

cut to net zero by around 2075 and warming held to below 2˚C by 2100; SSP2-4.5 estimates 135 

projected warming under a ‘middle of the road’ scenario where temperatures increase to 136 

~2.7˚C by 2100; and SSP3-7.0 is a high GHG scenario which assumes warming of ~4˚C by 137 

2100 (IPCC, 2021). 138 

▪ Urban physics is activated in NARCliM2.0NARCliM 2.0 (WRF setting: sf_urban_physics=1) 139 

to represent surface energy balance in urban areas via a single layer urban canopy model 140 

(Kusaka and Kimura, 2004). 141 

▪ Input of different aerosol species is activated for the RCM radiation scheme using the Tegen 142 

et al. (1997) climatology available in WRF (aer_opt=1). This aerosol forcing is the same for 143 

all GCMs, and not model-specific. 144 

▪ The eastern boundary of the NARCliM2.0NARCliM 2.0 inner domain is located further 145 

westward relative to that of NARCliM1.x (Figure 1). 146 
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Table 1. High-level design features of three generations of NARCliM regional climate models 147 

 

Model Generation 

  NARCliM1.0NARCliM 1.0 NARCliM1.5NARCliM 1.5 NARCliM2.0NARCliM 2.0  

Release date 2014 2020 2023-2024 

Years simulated 
1990-2009, 2020-2039, 

2060-2079 
1950-2100 1950-2100 

Grid resolutions: 

CORDEX-Australasia; 

NARCliM inner domains 

50 km; 10 km 50 km; 10 km 20 km; 4 km 

Vertical levels 30 30 45 

Global Climate Models 4 CMIP3 GCMs 3 CMIP5 GCMs 5 CMIP6 GCMs 

Regional Climate Models 
3 RCM configurations 

(WRF3.3) 

2 RCM configurations 

 (WRF3.6.0.5) 

2 RCM configurations 

(WRF4.1.2) 

Future emission scenarios SRES A2 RCP4.5, RCP8.5 
SSP1-2.6, SSP2-4.5,  

SSP3-7.0 

Reanalysis-driven 

(CORDEX Evaluation) 
NCEP: 1950-2009 ERA-Interim: 1979-2013 ERA5: 1979-2020 

Computational resources 

(core hours) 
30M 30M 1060M 

3. Evaluation methods  148 

This section largely focuses on the methods and metrics used for the NARCliM 2.0 RCM physics test-149 

ing and comparisons of model biases and future climate projections against previous generations of 150 

NARCliM. Details on methods and results for the CMIP6 GCM evaluation used to select driving 151 

GCMs and the ERA5-NARCliM 2.0 RCM evaluation used to select two, definitive RCMs for the 152 

GCM-driven simulations are available in Di Virgilio et al. (2022) and Di Virgilio et al. (in review), 153 

respectively, with overviews of these components of NARCliM 2.0 design provided in Sections 4.2 154 

and 4.4 below. 155 



8 
 

3.1 Observations 156 

Australian Gridded Climate Data (AGCD version 1.0; (Evans et al., 2020a) are the observational data 157 

used to evaluate the NARCliM 2.0 RCM physics test RCMs. These daily gridded data for maximum 158 

and minimum temperature and precipitation are obtained from an interpolation of station observations 159 

across Australia. AGCD data are on a regular WGS84 grid with a grid-averaged resolution of 0.05°. 160 

For the NARCliM 2.0 RCM physics tests, the AGCD data were re-gridded to correspond with the 161 

RCM data from the inner domain on their native grids using a conservative area-weighted re-gridding 162 

scheme. All data (RCM and AGCD) were restricted to a common extent contained within the inner 163 

domain over southeast Australia, and a land mask was applied so that statistics were computed using 164 

only land pixels. Treatment of AGCD for the CMIP6 GCM evaluation and the ERA5-NARCliM 2.0 165 

RCM evaluation is described in Di Virgilio et al. (2022) and Di Virgilio et al. (in review), respective-166 

ly.  167 

3.2 Methods and metrics: phase I-III NARCliM2.0 physics tests 168 

Test RCM performances in reproducing observations for daily maximum and minimum temperature 169 

and daily precipitation were assessed by calculating the model bias, i.e., model outputs minus AGCD, 170 

and the RMSE of modelled versus observed fields. Model biases and RMSEs were calculated at an-171 

nual and seasonal timescales. The model representations of the hottest and the wettest day on an an-172 

nual time scale over the study region were also compared with AGCD. Probability density functions 173 

(PDFs) were calculated for each variable using daily data. The Perkins skill score (PSS) (Perkins et 174 

al., 2007) was calculated to assess the overall degree of overlap between modelled and observed dis-175 

tributions, with PSS = 1 indicating that distributions overlap perfectly. 176 

 There are several methods to evaluate the overall performance of RCMs. In this study, we 177 

ranked the RCMs individually based on their bias, RMSE, and PSS for maximum temperature, mini-178 

mum temperature, and precipitation. Each variable was ranked separately for each metric. The ranks 179 

were then summed to determine the overall ranking for each RCM. 180 

3.3 Independence assessments 181 

We used the method of Bishop and Abramowitz (2013) as one of two methods of assessing the inde-182 

pendence of physics test RCMs and the target CMIP6 GCMs under evaluation for use in NARCliM 183 

2.0. This approach uses the covariance in model errors as the basis to define model dependence; spe-184 

cifically, independence coefficients are derived from the error covariance matrix of the RCMs or 185 

GCMs. Model independence is quantified using the correlation of model errors. For the physics test 186 

RCMs, errors are computed by comparing the climatology of maximum and minimum temperature 187 

and precipitation over the south-east Australia inner domain for 2016 with corresponding AGCD ob-188 
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servations. The same calculation is performed for the CMIP6 GCMs, except for the Australian conti-189 

nent. Daily timeseries of precipitation, maximum and minimum temperature are calculated individual-190 

ly for each RCM and for AGCD. The simulated and observed daily timeseries of each variable are 191 

then normalised by the standard deviation of the corresponding observed variable. These normalised 192 

variables are concatenated for each RCM (GCM) and AGCD. An anomaly time series for each grid 193 

cell is then produced. These time series are used to create a model error covariance matrix containing 194 

the errors for all RCMs (GCMs). The coefficients of a linear combination of the RCMs (GCMs) that 195 

optimally minimises the mean square error depends on both model performance and model depend-196 

ence (Bishop and Abramowitz, 2013). The result of this minimisation problem is written in terms of 197 

the covariance matrix. The magnitude of coefficients assigned to each RCM (GCM) reflects a combi-198 

nation of their performance and independence. Highly independent models have different errors when 199 

simulating the recent climate. Models with the largest coefficients have the most independent errors 200 

versus observations. 201 

 The Herger method of subset selection (Herger et al., 2018), as implemented here, uses quad-202 

ratic integer programming to find the subset of models whose equally-weighted subset mean (EWSM) 203 

minimises a quadratic cost function. This cost function is chosen to measure the performance of the 204 

EWSM in comparison to a given observational product. The two cost functions used here are: the 205 

mean squared error (MSE) between the EWSM and the observational product (Herger et al. 2018, Eq. 206 

1); and another which measures a combination of the MSE of the EWSM, the average MSE of each 207 

subset member, and the average pairwise mean squared distance between subset members (Herger et 208 

al. 2018, Eq. 2). 209 

3.4 NARCliM2 CMIP6-RCMs: historical evaluation and climate change 210 

projections 211 

Performances of NARCliM 2.0 versus NARCliM1.x RCMs in reproducing the recent Australian cli-212 

mate are evaluated by calculating the model biases (model outputs minus AGCD observations) for 213 

mean maximum and minimum temperature and precipitation for 1990-2009. To enable comparison of 214 

future projections between NARCliM 1.0, NARCliM 1.5 and NARCliM 2.0 (where NARCliM 1.0 215 

modelled for 1990-2009, 2020-2039, and 2060-2079), all NARCliM ensemble projected changes are 216 

shown as far future (2060–2079) minus present day (1990–2009). 217 

3.5 Statistical significance 218 

When quantifying RCMs’ future climate change projections (compared to the historical period) and 219 

biases in maximum and minimum temperature, the statistical significance is calculated for each grid 220 

cell using t-tests assuming equal variance. The Mann–Whitney U test is used for precipitation given 221 

its non-normality. Significance thresholds were adjusted to account for multiple testing using Walk-222 
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er’s test (Eq.2 in Wilks, 2016). For individual RCMs, grid cells showing statistically significant 223 

changes are stippled, otherwise they are shown in colour where change is statistically insignificant. 224 

Results on the statistical significance of each ensemble mean are separated into three categories fol-225 

lowing Tebaldi et al. (2011): 1) statistically insignificant areas are shown in colour, denoting that less 226 

than 50% of RCMs are significantly biased/different; 2) in areas of significant agreement (stippled), at 227 

least 50% of RCMs are significantly biased/different and at least 70% of significant models in the 228 

CMIP6-NARCliM 2.0 RCM ensemble agree on the sign of the bias/difference. In such areas, many 229 

ensemble members have the same bias sign which is an undesirable outcome; and 3) areas of signifi-230 

cant disagreement, where at least 50% of RCMs are significantly biased/different and fewer than 70% 231 

of significant models agree on the bias sign, are shown with diagonal hatching for the CMIP6-232 

NARCliM 2.0 historical evaluation and climate change signals. 233 

34. NARCliM2.0NARCliM 2.0 design and production process 234 

overview 235 

The NARCliM2.0NARCliM 2.0 design and production processes are summarised below in reference 236 

to Figure 2. The design process is an adaptation of that introduced in Evans et al. (2014). Two 237 

companion manuscripts describe elements shown in Figure 2, and which are therefore only 238 

summarised briefly in this manuscript: Di Virgilio et al. (2022) describes the CMIP6 GCM selection 239 

process summarised in Box 2, and Di Virgilio et al. (in review) describes the ERA5-RCM evaluation 240 

undertaken in Boxes 5 and 6. 241 

I. Design Phase: 242 

i) Box 1: model design requirements are identified via consultation between NAR-243 

CliM2.0NARCliM 2.0 modelling groups and multi-sectoral end-users, as well as adher-244 

ence to CORDEX-CMIP6 design requirements (WCRPcrp, 2020). 245 

ii) Box 2: NARCliM1.x selected driving CMIP3-5 GCMs (respectively) via literature review 246 

of existing GCM evaluations. During NARCliM2.0NARCliM 2.0 design, there were no 247 

pre-existing comprehensive evaluations of individual CMIP6 GCMs for the Australian 248 

region, including assessments of climate change signals and GCM statistical independ-249 

ence. Hence, an evaluation and selection of CMIP6 GCMs was conducted (see Di Virgilio 250 

et al. 2022). This evaluation selected five GCMs to force two NARCliM2.0NARCliM 2.0 251 

RCMs (see Ssect 4.2 and 4.4). The relative contribution to uncertainty/variation in climate 252 

projections can be larger for GCMs than for RCMs (e.g. Lee et al., 2023). 253 

iii) Boxes 3-4: a new WRF RCM multi-physics test ensemble is created for NAR-254 

CliM2.0NARCliM 2.0: RCM physics testing is conducted via a three-phase approach, 255 

with each phase building on the findings of the preceding phase to identify the RCM pa-256 
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rameterisations that perform well during testing with the aim of improving the simulation 257 

of the Australian climate. In this way, RCMs are parameterised with different physics set-258 

tings via each test phase, systematically removing poor performing options while facilitat-259 

ing the fine tuning and improvement of the parameterisations that perform well during 260 

testing to build a total ensemble size of seventy-eight structurally different test RCMs. 261 

The performances of the different test RCM configurations are is evaluated, ultimately 262 

leading to the selectiong of a subset of seven RCMs for subsequent downscaling of ERA5 263 

reanalysis and comprisingas part of the CORDEX evaluation experiment. 264 

iv) Boxes 45-6: These seven RCMs are used to downscale ERA5 reanalysis over the 20 km 265 

and 4 km domains for 1979-2020. Evaluating these ERA5-forced simulations informs se-266 

lection of two definitive, ‘production’ RCMs for CMIP6-forced downscaling (see sSect. 267 

4.4 and Di Virgilio et al. in review).  268 

II. Production Phase: 269 

i) Boxes 7-8: CMIP6 GCM data are pre-processed to create initial and boundary conditions 270 

to drive simulations for the historical (1950-2014) and SSP experiments (2015-2100). A 271 

code repository used for this GCM preprocessing is available on Zenodo at: 272 

https://doi.org/10.5281/zenodo.11184830https://bitbucket.org/oehcas/narclim2-273 

0_design_and_evaluation_2024_support_materials/src/main/ within the 274 

WRF/repo_snapshots subdirectory. Quality assurance/quality control (QA/QC) is per-275 

formed on these data before initiating the simulations (e.g. variables are checked to con-276 

firm data do not contain significant outliers across ensemble members). 277 

ii) Boxes 9-11: the 151-year CMIP6-forced NARCliM2.0NARCliM 2.0 RCM simulations 278 

are run using National Computational Infrastructure at Canberra, Australia (NCI, 279 

https://nci.org.au/). File integrity verification and QA/QC are performed on each year of 280 

raw WRF output throughout the simulation lifecycle and prior to post-processing to 281 

CORDEX-compliant format climate variables. QA/QC tests include calculating the min-282 

imum, maximum, mean and standard deviation for key variables over consecutive periods 283 

of six simulation days. Variables are categorised as either normally distributed or other-284 

wise. Normally distributed variables (e.g. surface temperature) are deemed potentially er-285 

roneous if their minima/maxima are greater than five standard deviations away from the 286 

global mean of the relevant statistic of the rolling six-day period. Non-normally distribut-287 

ed variables (e.g., snow depth and precipitation) are checked only for global minima and 288 

maxima only. 289 

iii) Boxes 12-13: after each year of simulation raw output is generated, their post-processing 290 

is initiated to produce CORDEX CORE, Tier 1 and Tier 2 variables (WCRP, 2022). A 291 

statistical QA/QC process is automatically applied to each year of post-processed 292 

https://doi.org/10.5281/zenodo.11184830
https://nci.org.au/
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CORDEX CORE variables as they are generated throughout the simulations. QA/QC 293 

tests include: 294 

▪ Check for presence of missing values. 295 

▪ Check that all values are within realistic ranges for minima and maxima.  296 

▪ Check minima and maxima are not equal at any timestep with exceptions (e.g., 297 

snow depth which can be zero everywhere in the outer domain). 298 

▪ Check that changes over time are within realistic ranges (i.e.i.e., assess temporal 299 

gradients). 300 

▪ Check that changes between neighbouring data points are within realistic ranges 301 

(i.e.i.e., assess spatial gradients). 302 

▪ Check the number of grid cells with NaN (non-numerical) values do not exceed 303 

the threshold set for the variable. 304 

Reasonable ranges for variables are determined using a series of threshold values that are 305 

based on historical records and/or empirical analysis. QA/QC computer scripts generate 306 

'exceedance files' which output every data point that surpasses the threshold values, and 307 

these exceedance files are then manually reviewed to determine whether an issue is a true 308 

or false positive, etc. 309 

iv) Box 14: Once each year of WRF raw files are is post-processed, raw files are transferred 310 

to a tape facility for long-term storage. 311 

 312 

Figure 2. Simplified overview of NARCliM2.0NARCliM 2.0 (N2.0) design and production processes. ERA5 = 313 

ECMWF Reanalysis v5 data; BDY = boundary conditions; IC = Initial conditions; QA/QC = Quality Assurance 314 

/ Quality Control; NCI = National Computationaling Infrastructure (high performance computer used for to run 315 

N2.0 production simulations). 316 

These model design and production stages are now described in more detail: 317 
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43.1 Model evaluation and selection 318 

Practical constraints such as available compute and data storage resources enforce an upper limit on 319 

GCM-RCM ensemble size. Thus, NARCliM2.0NARCliM 2.0 uses a subset of available CMIP6 320 

GCMs and WRF RCM configurations, necessitating careful GCM and RCM selection to create a 321 

subset of GCM-RCMs that provide robust climate simulations whilst also adequately sampling model 322 

uncertainty. In selecting a subset of GCMs and RCMs for dynamical downscaling, it is desirable to 323 

reject models that perform consistently poorly relative to their peers in simulating the current climate, 324 

as this provides lower confidence in the projected change (Evans et al., 2020b; Di Virgilio et al., 325 

2022; Grose et al., 2023). Furthermore, the modelled climate space sampled is reduced when selecting 326 

a subset of GCMs, which can create a biased view of the climate, as well as the plausible change in 327 

climate. Care must therefore be taken to ensure that the subset of models used for downscaling are 328 

representative of the full range of possible climates, and that model errors are uncorrelated, i.e.i.e., 329 

that models are statistically independent. The steps taken to evaluate and select GCMs and RCMs for 330 

NARCliM2.0NARCliM 2.0 are described next. 331 

43.2 CMIP6 GCM evaluation 332 

A three-phase process was used to evaluate individual CMIP6 GCMs (for further details see Di 333 

Virgilio et al. 2022): 334 

43.2.1 CMIP6 GCM Performance 335 

The We evaluated the performances of individual CMIP6 GCMs in simulating the Australian climate 336 

were assessed with respect to climate means, extremes, climate modes, and daily climate variable 337 

distributions their skill in simulating the following aspects of the observed historical climate of 338 

Australia:  339 

▪ annual and seasonal climatologies and daily distributions of maximum and minimum temper-340 

atures and precipitation.  341 

▪ climate extremes, such as the 99th percentiles of daily maximum temperature and precipita-342 

tion, and the 1st percentile of minimum temperature.  343 

▪ teleconnections of oceanic climate modes and Australian regional rainfall.  344 

Temperature and precipitation variables are chosen for evaluation because, being well-represented in 345 

high-quality gridded observational data sets for the Australian continent, they provide the most direct 346 

comparison to observations (King et al., 2013). They are also often prioritised for impact studies. 347 

Given variables such as winds (U, V), air temperature (T), water mixing ratio (Q), geopotential height 348 

(Z), sea surface temperature (SST), and sea level pressure (PSL) serve as boundary conditions for 349 
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driving RCMs, these could be incorporated into future GCM evaluation studies. However, evaluating 350 

such variables would require use of re-analysis data as surrogate observations. 351 

A set of GCMs that performed consistently poorly across the variables and statistics 352 

considered were identified. These models, as well as those with insufficient data to enable dynamical 353 

downscaling using the WRF RCM, were excluded from further evaluation leaving 27 GCMs for 354 

subsequent assessment.  355 

43.2.2 CMIP6 GCM Independence 356 

The retained 27 GCMs were subjected to the Bishop and Abramowitz (2013) and Herger et al. (2018) 357 

independence analyses (see sSect. 3.5). The GCMs were then ranked according to their relative level 358 

of statistical independence. 359 

43.2.3 Sampling CMIP6 GCM Climate Change Spread 360 

For climate change risk assessments, climate projections should reflect as much of the range of 361 

plausible future climate changes as possible (Whetton and Hennessy, 2010). The subset of CMIP6 362 

GCMs selected for NARCliM2.0NARCliM 2.0 spanned a wide range of future changes in annual 363 

mean temperature and precipitation. Climate change signals were calculated for 2080-2099 minus 364 

1995-2014 for the Australian continent and south-east Australia under SSP3-7.0 (for the latter, see 365 

Figure 3). The GCM independence rankings were placed within this climate change space, with 366 

higher independence rankings viewed as favourable, along with consideration of the following 367 

criteria:  368 

i) A balanced range of GCM Equilibrium Climate Sensitivities (ECS) were sampled. ECS is the 369 

long-term increase in global mean surface air temperature in response to the radiative forcing 370 

caused by a doubling of pre-industrial CO2 concentrations. ECS is related to global tempera-371 

ture change, not just changes over Australia, however, it correlates strongly with regional 372 

warming. Around one third of CMIP6 GCMs show ECS values higher than the upper end of 373 

the likely range of 2.5°C to 4°C (IPCC, 2021). An upper range of > ~5°C cannot be ruled out 374 

(Meehl et al., 2020; Bjordal et al., 2020; Sherwood et al., 2020). 375 

ii) Some CMIP6 GCMs that are favourable in terms of model performance and independence 376 

could not be selected as input to WRF for NARCliM2.0NARCliM 2.0 owing to insufficient 377 

data availability for key variables/variable, where ideally, WRF requires sub-daily data for the 378 

variables shown in Supporting Information, Table S1. 379 

As a result of the above process, the five CMIP6 GCMs listed in Table 2 are selected to force each of 380 

the two definitive NARCliM2.0NARCliM 2.0 RCMs selected via the RCM physics testing and ERA5 381 

evaluation processes.  382 
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Table 2. Basic details of the CMIP6 GCMs used to  force the two definitive NARCliM2.0 simula-383 

tionsRCMs comprising the NARCliM 2.0 CORDEX-CMIP6 ensemble. 384 

CMIP6 GCM Institution Variant/Run 
Atmosphere 

lat/lon grid (o) 

ACCESS-ESM1-5 CSIRO r6i1p1f1 1.2 × 1.8 

EC-Earth3-Veg EC-EARTH consortium r1i1p1f1 0.7 × 0.7 

MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI) r1i1p1f1 ~0.9 

NorESM2-MM Norwegian Climate Centre r1i1p1f1 0.9 × 0.9 

UKESM1-0-LL UK Met Office and NERC research centres r1i1p1f2 1.3 × 1.9 

 385 
Figure 3. CMIP6 GCM climate change signals (2080-2099 versus 1995-2014) over south-east Australia for the 386 
subset of GCMs retained following the model performance evaluation in Di Virgilio et al. (2022), and that 387 
simulated at least monthly mean near surface air temperature and precipitation for the SSP-3.70 scenario. Boxed 388 
GCMs are selected to force NARCliM2.0NARCliM 2.0 RCMs. Marker shapes indicate overall GCM 389 
performance; markers are coloured according to their global equilibrium climate sensitivity (ECS) values; Red 390 
numbers represent the smallest Herger Method 1 set for that GCM. 391 

43.3 NARCliM2.0NARCliM 2.0 RCM physics testing 392 

The NARCliM2.0NARCliM 2.0 RCM physics testing aims to identify and exclude RCMs that 393 

perform consistently poorly in simulating the southeast Australian climate and to select RCMs that 394 

have high statistical independence. The selection of RCMs in NARCliM2.0NARCliM 2.0 involves 395 

the creation of a multi-physics ensemble where each RCM uses different physical parametrisations for 396 

PBL, microphysics, cumulus, radiation, and LSM. This enables many structurally different RCMs to 397 

be constructed and tested. In NARCliM1.0NARCliM 1.0, 36 WRF RCM configurations were 398 
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designed, tested, and evaluated (Evans et al. 2014). NARCliM2.0NARCliM 2.0 physics testing 399 

assesses 78 RCM configurations which are progressively tested via three phases, where each test 400 

phase is informed by the outcomes of the preceding phase to systematically remove poor performing 401 

RCM options while facilitating the selection of parameterisations that perform well during testing. 402 

The N=36 RCMs tested for NARCliM1.0NARCliM 1.0 were evaluated based on eight representative 403 

storm event simulations each of two-weeks duration (Evans et al. 2014). NARCliM2.0NARCliM 2.0 404 

physics simulations were run over an entire annual cycle (2016) with a two-month spin-up period 405 

commencing 1 November 2015. Australia experienced a range of weather extremes during 2016 406 

driven by a range of climatic influences making 2016 a suitable target year (Bureau of Meteorology, 407 

2017). Whilst assessing RCMs for an entire year improves on assessing for discrete storm events as 408 

per physics testing for NARCliM1.0NARCliM 1.0, it was not feasible to run a large RCM physics 409 

ensemble for a longer duration. Initial and boundary conditions for all phases of the 410 

NARCliM2.0NARCliM 2.0 RCM physics test simulations were derived from the ERA-Interim 411 

reanalysis data set (Dee et al., 2011). ERA-Interim was used because ERA5 was not available at the 412 

time. The three phases of NARCliM2.0NARCliM 2.0 physics testing are as follows: 413 

43.3.1 Phase I (N=36) 414 

Thirty-six RCMs wewere evaluated in Phase I. One radiation scheme (RRTMG) iwas tested for both 415 

long and short-wave radiation (it wais held fixed for all RCMs), whereas physics settings for PBL, 416 

microphysics, cumulus, and LSM weare varied. Of the 36 simulations, 18 used the Noah-Unified 417 

LSM, whilst the remainder used Community Land Model version 4.0 (CLM4). The physics options 418 

tested are listed in Table 3, where these were selected based on literature review. Each physics test 419 

simulation is denoted by a 12-digit identifier which comprises 6 pairs of digits, with each pair 420 

corresponding to the choice of a specific physics option as specified in the WRF namelist.input file. 421 

These pairs of digits follow the order: planetary boundary layer (pbl) ¦ cloud microphysics (mp) ¦ 422 

cumulus convection (cu) ¦ shortwave radiation (sw) ¦ longwave radiation (lw) ¦ LSM (sf) and 423 

correspond to the WRF namelist options shown in Table 3. For example, the simulation 424 

‘050601040402’ is interpreted as: 05 ¦ 06 ¦ 01 ¦ 04 ¦ 04 ¦ 02 and denotes that this simulation uses the 425 

following physics settings: 426 

bl_pbl_physics = 05 (MYNN2) 

mp_physics  = 06 (WSM6) 

cu_physics  = 01 (Kain-Fritsch) 

ra_sw_physics = 04 (RRTMG) 

ra_lw_physics  = 04 (RRTMG) 

sf_surface_physics = 02 (Noah Unified) 
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The complete set of WRF RCM configurations tested in Phase I is shown in Supporting Information 427 

Table S2. 428 

Table 3. Physics options used in phase I (N=36) tests. 429 

Physics Option Description WRF Namelist Options Tested Reference 

Planetary boundary layer bl_pbl_physics 

01 = YSU Hong et al. (2006) 

05 = MYNN2 Nakanishi & Niino (2009) 

07 = ACM2 Pleim (2007) 

Microphysics mp_physcis  
06 = WSM6 Hong and Lim (2006) 

08 = Thompson  Thompson et al. (2008)  

Cumulus parameterisation cu_physics 

01 = Kain-Fritsch Kain (2004) 

02 = BMJ Janjić (2000) 

06 = Tiedtke Tiedtke (1989)  

Shortwave radiation ra_sw_physics 04 = RRTMG Iacono et al. (2008)  

Longwave radiation ra_lw_physics 04 = RRTMG   

Land surface model sf_surface_physics 
02 = Noah-Unified Tewari et al. (2016)  

05 = Community Land Model V4 Oleson et al. (2010)  

 430 

Physics Option Description WRF Namelist Options Tested 

Planetary boundary layer bl_pbl_physics 

01 = YSU 

05 = MYNN2 

07 = ACM2 

Microphysics mp_physcis  
06 = WSM6 

08 = Thompson  

Cumulus parameterisation cu_physics 

01 = Kain-Fritsch 

02 = BMJ 

06 = Tiedtke 

Shortwave radiation ra_sw_physics 04 = RRTMG 

Longwave radiation ra_lw_physics 04 = RRTMG 

Land surface model sf_surface_physics 
02 = Noah-Unified 

05 = Community Land Model V4 

34.3.2 Phase II (N=60): additional LSM and radiation scheme tests 431 

Phase I RCMs using CLM4.0 were omitted from further testing because they did not consistently im-432 

prove performance in simulating the Australian climate relative to RCMs using Noah-Unified. In ad-433 

dition, RCMs using CLM4.0 had increased simulation times (by approximately twice when compared 434 

to Noah-Unified). Hence, Phase II focuseds exclusively on further testing of the RCM configurations 435 

that used the Noah-Unified LSM. 436 

The physics settings tested in Phase II are an alternative LSM to Noah-Unified (Noah Multi-437 

Parameterisation; ‘Noah-MP’, Niu et al., 2011) and New Goddard radiation (Chou et al., 2001). Ow-438 
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ing to time/resource constraints, testing all eighteen Phase I RCMs using Noah-Unified was not feasi-439 

ble. To reduce the number of RCMs for further testing, the worst-performing Noah-Unified based 440 

RCM configurations identified in Phase I were excluded. The N=18 RCMs using Noah-Unified are 441 

listed along with their overall performance total scores in Table 4 where the lowest scores under 442 

‘Rank totals’ indicate the RCMs that overall perform relatively well versus their peers (see sSect. 3 443 

Evaluation Methods). Note that the ‘Overall rank’ denotes the RCMs’ relative ranking among all 444 

Phase I RCMs. There is a sharp reduction in rank totals for RCMs #13-18 inclusive, relative to RCMs 445 

#1-12. Therefore, RCMs #13-18 are excluded from further testing, and RCMs #1-12 are retained. 446 

Table 4. RCM physics combination ranks of the Phase I, N=18 Noah Unified (NU) based RCMs. 447 

Scores/ranks are based on model bias and root mean square error for annual and seasonal precipita-448 

tion, minimum temperature, maximum temperature, climate extremes (wettest and hottest days), and 449 

Perkins Skill Scores (see sSect. 3). RCMs #1-12 are selected for further testing. 450 

RCM 

# 
RCM ID 

Physics combination  
Rank 

total 

Overall 

rank in 

N=36 

Phase I 
PBL MP Cumulus SW/LW LSM 

1 070801040402 ACM2 Thom KF RRTMG NU 484 1 

2 070601040402 ACM3 WSM6 KF RRTMG NU 495 2 

3 070802040402 ACM4 Thom BMJ RRTMG NU 527 3 

4 070602040402 ACM5 WSM6 BMJ RRTMG NU 559 4 

5 010802040402 YSU Thom BMJ RRTMG NU 574 7 

6 050801040402 MYNN2 Thom KF RRTMG NU 583 8 

7 010801040402 YSU Thompson KF RRTMG NU 617 11 

8 050802040402 MYNN2 Thompson BMJ RRTMG NU 630 12 

9 070606040402 ACM2 WSM6 Tiedtke RRTMG NU 639 13 

10 050601040402 MYNN2 WSM6 KF RRTMG NU 662 16 

11 070806040402 ACM2 Thompson Tiedtke RRTMG NU 662 16 

12 010602040402 YSU WSM6 BMJ RRTMG NU 674 19 

13 010601040402 YSU WSM6 KF RRTMG NU 702 23 

14 010606040402 YSU WSM6 Tiedtke RRTMG NU 759 25 

15 050606040402 MYNN2 WSM6 Tiedtke RRTMG NU 766 27 

16 050602040402 MYNN2 WSM6 BMJ RRTMG NU 811 31 

17 010806040402 YSU Thompson Tiedtke RRTMG NU 830 34 

18 050806040402 MYNN2 Thompson Tiedtke RRTMG NU 857 35 

This gives two sets of physics combinations for additional testing: 1) one replaces only RRTMG 451 

(|04|04|) for short and longwave radiation with New Goddard (|05|05|) making no other changes; and 452 

2) RRTMG radiation is retained, but Noah-MP (|04|) replaces Noah-Unified (|02|). This creates an 453 
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additional 24 RCM configurations for assessment, bringing the total RCMs tested to 60. Although 454 

Noah-MP has several parameter options, Phase II uses its default settings. 455 

34.3.3 Phase III (N=78): parameterising Noah-MP 456 

Phase II shows that RCM performance using New Goddard radiation is generally inferior to the same 457 

RCMs using RRTMG (see sSect. 5. RCM Physics test results). Consequently, RRTMG radiation is 458 

re-adopted for Phase III. Conversely, a general performance improvement is conferred by using Noah-459 

MP over Noah-Unified (sSect. 5). Given this performance improvement using Noah-MP with default 460 

settings, Phase III assesses RCM performances using specific parameter settings for Noah-MP.  461 

Noah-MP provides a ‘dynamic vegetation cover’ model option (referred to as dynamic vege-462 

tation in the WRF users’ guide) (Niu et al., 2011). When deactivated (the default), monthly leaf area 463 

index (LAI) is prescribed for various vegetation types and the greenness vegetation fraction (GVF) 464 

comes from monthly GVF climatological values. Conversely, when dynamic vegetation cover is acti-465 

vated, LAI and GVF are calculated using a dynamic leaf model. We clarify here that dominant plant-466 

functional types do not change when using this option, but only the LAI and GVF, i.e.i.e., only the 467 

amount of green cover changes.  468 

 Noah-MP also provides several options for modelling surface run-off and groundwater pro-469 

cesses including a TOPMODEL (TOPography based hydrological MODEL)-based surface runoff 470 

scheme and a simple groundwater model (SIMGM; Niu et al., 2011). Some studies have shown that 471 

using this option improves the modelling of soil moisture (e.g. Zhuo et al., 2019). Thus, three new sets 472 

of physics configurations are tested using Noah-MP where default options for specific settings are 473 

changed as follows:  474 

3.4. activate dynamic vegetation cover (dveg=2 in the WRF namelist); no other changes.  475 

4.5. activate TOPMODEL runoff with simple groundwater (opt_run=1); no other changes.  476 

5.6. activate both dynamic vegetation and TOPMODEL runoff with simple groundwater;, no other 477 

changes. 478 

As above, the worst performing RCMs in Phase II are excluded from Phase III testing. Based 479 

on the RCM configuration performance rankings (Table 5), there is a sharp reduction in performance 480 

starting from RCM #7 inclusive. Therefore, RCMs #7-12 are excluded from further testing. Phase III 481 

thus comprises 18 new test simulations (sets 1-3 each comprising 6 RCMs) bringing the total RCMs 482 

tested to N=78. Phase III physics tests are denoted using the same RCM identification schemes distin-483 

guished by appending ‘set_1’, ‘set_2’, ‘set_3’ to identifiers. 484 

Table 5. RCM physics combination ranks of the Phase II Noah-MP RCMs. Scores/ranks are based on model 485 

bias and root mean square error for annual and seasonal precipitation, minimum temperature, maximum temper-486 

ature, climate extremes (wettest and hottest days), and Perkins Skill Scores (see sSect. 3). 487 

No. Physics combination Rank total 
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1 50801040404 721 

2 70806040404 822 

3 50802040404 848 

4 70802040404 872 

5 70601040404 880 

6 50601040404 891 

7 10802040404 988 

8 70602040404 1005 

9 70606040404 1028 

10 10801040404 1042 

11 70801040404 1056 

12 10602040404 1264 

43.3.4 Shortlisting Physics Test RCMs for ERA5-NARCliM2.0NARCliM 2.0 evaluation 488 
simulations 489 

Considering the complete NARCliM2.0NARCliM 2.0 N=78 physics test ensemble, to identify phys-490 

ics test RCMs that perform poorly overall, RCMs are eliminated if they are in the lowest 1/3 for RCM 491 

performance ranks for any of maximum temperature, minimum temperature, precipitation, or for the 492 

overall model performance rank across these variables (see sSect. 5. RCM Physics test results). Under 493 

this scheme, 20 RCMs remain. The independence measures are then applied to the remaining 20 494 

RCMs to choose a final subset of 7 RCMs for ERA5-forced evaluation simulations (see sSect. 4.4). 495 

The ensemble size limit of N=7 is determined by available compute resources. These 7 candidate 496 

RCMs are assessed for potential use in the CMIP6 GCM-forced downscaling phase of NAR-497 

CliM2.0NARCliM 2.0 (sSect. 4.4 and Di Virgilio et al. in review).  498 

34.4 CORDEX ERA5-NARCliM2.0NARCliM 2.0 evaluation simulations 499 

NARCliM1.x performed production climate simulations using a two-phase process. Its RCM physics 500 

testing selected definitive ‘production-grade’ RCMs which were then used to downscale both reanaly-501 

sis data and CMIP3/5 GCMs. In contrast, for NARCliM2.0NARCliM 2.0, as described above the 502 

N=78 RCM physics testing culminates in shortlisting 7 ‘production-candidate’ RCMs which are used 503 

to downscale the ERA5 reanalysis for 42-years (1979-2020). This enables assessment of shortlisted 504 

RCM the performances of these 7 shortlisted RCMs over a climatological period rather than the single 505 

year (2016) of the physics testing, which helps ascertain that performance differences between 506 

shortlisted RCMs are robust across a multi-decadal timescale capturing climatologically diverse years. 507 

The aim is that two definitive production-grade RCMs can be selected for CMIP6-forced downscaling 508 

from these ERA5-forced CORDEX ‘evaluation’ simulations. Thus, the seven ERA5-509 

NARCliM2.0NARCliM 2.0 RCMs were driven by ERA5.0 boundary conditions for January 1979 to 510 
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December 2020 using the model and nested domain setups described above for NAR-511 

CliM2.0NARCliM 2.0. The skill of these RCMs in simulating the recent Australian climate was as-512 

sessed as follows (see Di Virgilio et al. in review): annual and seasonal means were calculated for 513 

maximum and minimum temperature and precipitation using monthly means for temperature varia-514 

bles, and the monthly sum for precipitation. Extremes of maximum temperature and precipitation (99th 515 

percentiles) and extreme minimum temperature (1st percentile) were calculated using daily data. RCM 516 

performances in reproducing observations over these timescales were assessed by calculating model 517 

outputs minus observations (i.e.i.e., model bias), and the RMSE of modelled versus observed fields. 518 

RCM skill in simulating distributions of observed variables was assessed by comparing the PDFs for 519 

daily mean observations versus those of the RCMs. The ultimate outcome of these ERA5-forced sim-520 

ulations and their evaluation is the selection of two definitive RCM configurations, R3 and R5, to run 521 

the CMIP6-forced phase of NARCliM2.0NARCliM 2.0, see Di Virgilio et al. (in review) for further 522 

details on the evaluation methods and results. Supporting Information Figure S1 shows the WRF 523 

namelist settings for the R3 and R5 RCMs (see also sSect. 9. Code Availability).  524 

43.5 CORDEX CMIP6-forced NARCliM2.0NARCliM 2.0 simulations 525 

The ideal CMIP6 GCM variables and their frequencies required to run the WRF RCM are listed in 526 

Table S1. A minority of variables in Table S1 are not available at sub-daily frequencies for every tar-527 

get GCM. This necessitates assumptions/data proxies to be made. For instance, soil moisture and soil 528 

temperature variables were unavailable for some selected GCMs; hence, surrogate data, such as sur-529 

face temperature, were used for initialisation (noting that soil data are only used by the RCM at ini-530 

tialisation). In these cases, we investigated how long it took for uncertainty in the initial conditions to 531 

disappear from the WRF output by analysing the regionally averaged soil moisture time series. The 532 

data were regionalised according to the four Australian Natural Resource Management (NRM) re-533 

gions / climate zones (Supporting Information Figure S2) which are broadly aligned with climatologi-534 

cal boundaries (Fiddes et al., 2021) and with the IPCC reference regions (Iturbide et al., 2020). Time 535 

series plots (Figure S3) show that soil moisture equilibrates to be within a normal range following 536 

initialisation, indicating that the 12-month spin-up year (1950) is sufficient to account for the assump-537 

tions made at model initialisation. 538 

Boundary and initial conditions were prepared using selected GCM data to run the 151-year 539 

GCM-driven simulations using WRF version 4.1.2. The GCM-driven simulations were run and com-540 

pleted using the pre-defined RCM settings for the two definitive RCM configurations using the WRF 541 

namelists in Supporting Information Figure S1 (see also sSect. 9. Code Availability). A cold restart 542 

was performed on the last Historical experiment year (2014), thus enabling the SSP1-2.6 and SSP3-543 

7.0 experiments to be run for 2015-2100 concurrently with the Historical experiment. Testing the time 544 
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duration required for soil moisture to equilibrate from the cold start showed that 1 year is sufficient. 545 

The 2014 cold start year is eventually overwritten by Historical runs initiated in 1950. 546 

6.5. RCM Physics test results 547 

5.1 Phase I RCM performance summary 548 

The spatial variation and magnitudes for Phase I RCM biases and RMSEs for annual mean maximum 549 

and minimum temperature and precipitation are shown in Figures 4-5, respectively. Overall, RCMs 550 

are biased cold for maximum temperature (mean absolute bias for the ensemble mean = 1.18 K), and 551 

warm-biased for minimum temperature (mean absolute bias = 1.31 K; Figure 4a-b). Maximum tem-552 

perature RMSE magnitudes are large over the elevated terrain of the southeast coast and over western 553 

regions (Figure 5a). The simulation of precipitation shows biases of varying sign, with wet biases that 554 

are strongest over eastern coastal regions (Figure 4c). Precipitation RMSEs are particularly large 555 

along the eastern coastline (>15 mm), and generally show an east-west gradient, i.e.i.e., progressively 556 

decreasing further inland from the coast (Figure 5c). 557 

5.2 Comparing Phase II Physics Test RCM performances versus Phase I 558 

5.2.1 Climate Means 559 

Overall, the RCM ensemble using New Goddard (NG) radiation has inferior performance to the corre-560 

sponding RCMs using RRTMG in terms of annual/seasonal mean maximum temperature biases, 561 

RMSEs, and PSS (Table 7). In contrast, NG confers superior performance for annual/seasonal mean 562 

minimum temperature for these statistics. RCMs using NG show reduced biases for annual mean and 563 

spring-time precipitation, but larger errors for DJF and JJA (Table 7). RMSEs for annual and seasonal 564 

precipitation are similarly variable. 565 

Table 7. Climate means performance: phase II physics tests (i.e.i.e., N=12 set 1 changing only RRTMG to New 566 

Goddard (NG) and N=12 set 2 changing only land surface model (LSM) from Noah-Unified to Noah-MP 567 

(NMP) compared with the phase I physics test RCMs that were shortlisted for further testing (N=12). 568 

  
Bias RMSE PSS 

Variable Timescale 

Phase I  

(N=12) 

ensemble 

mean 

Phase II 

(NG 

rad.) 

ensemble 

mean 

Phase II 

(NMP 

LSM) 

ensemble 

mean 

Phase I  

(N=12) 

ensemble 

mean 

Phase II 

(NG 

rad.) 

ensemble 

mean 

Phase II 

(NMP 

LSM) 

ensemble 

mean 

Phase I  

(N=12) 

ensemble 

mean 

Phase II 

(NG 

rad.) 

ensemble 

mean 

Phase II 

(NMP 

LSM) 

ensemble 

mean 

Temp. 

Max. (K) 

Annual 0.87 1.27 0.58 3.56 3.73 3.50 0.950 0.936 0.955 

DJF 0.74 1.29 0.63 4.41 4.70 4.43 
- - - 

MAM 1.40 2.06 0.83 3.68 3.92 3.55 
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JJA 0.62 0.81 0.52 2.64 2.66 2.65 

SON 0.87 1.04 0.66 3.25 3.32 3.20 

 
 

           

Temp. 

Min. (K) 

Annual 1.35 0.95 1.2 3.53 3.41 3.42 0.927 0.941 0.931 

DJF 1.50 1.08 0.87 3.86 3.82 3.66 

- - - 
MAM 1.21 0.84 0.92 3.55 3.45 3.50 

JJA 0.82 0.51 0.91 3.00 2.92 3.00 

SON 1.88 1.47 1.92 3.63 3.40 3.58 

 
 

           

Prec.  

(mm) 

Annual 0.25 0.24 0.25 7.21 7.32 6.78 0.943 0.950 0.946 

DJF 0.41 0.53 0.49 8.28 8.83 8.85 

- - - 
MAM 0.32 0.32 0.25 5.91 6.47 5.53 

JJA 0.37 0.53 0.44 7.63 7.34 7.65 

SON 0.34 0.22 0.39 6.68 6.18 6.92 

Phase II RCMs using Noah-MP with RRTMG retained show improved performance in simu-569 

lating mean maximum and minimum temperature at annual timescales and most seasons relative to 570 

corresponding Phase I RCMs using Noah-Unified (Table 7; Figure 4-5). For instance, the mean abso-571 

lute bias for annual mean maximum temperature is 0.58 K for the Noah-MP ensemble mean versus 572 

1.18 K for the Noah-Unified ensemble. In particular, cold bias magnitudes for maximum temperature 573 

are considerably lower over eastern and southern regions for the RCMs using Noah-MP (Figure 4d). 574 

RMSE magnitudes for maximum temperature are substantially reduced over the topographically com-575 

plex regions of the southeast, and southwest and central regions (Figure 5d).  576 

Overall, the magnitude of warm biases for minimum temperature are broadly similar for 577 

Phase I and Phase II RCMs (Figure 4b,c). Conversely, while RCMs in both Phases show large 578 

RMSEs for minimum temperature over several eastern regions, RMSEs are smaller for the Noah-MP 579 

ensemble over some southern areas (Figure 5b,c). 580 

In contrast to the above results for the simulation of maximum temperature, overall, Phase II 581 

RCMs using Noah-MP show smaller performance improvements for the simulation of precipitation 582 

relative to the Phase I RCMs (Table 7). However, precipitation bias magnitudes are smaller for the 583 

Noah-MP ensemble over specific regions, e.g., north-eastern coastal regions and the elevated terrain 584 

of the south-east (Figure 4c,f). 585 
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 587 

Figure 4. Phase I (N=36), Phase II (N=60) and Phase III (N=78) ensemble mean biases for annual mean maxi-588 

mum temperature, minimum temperature and precipitation with respect to Australian Gridded Climate Data 589 

(AGCD) observations for NARCliM2.0NARCliM 2.0 Phase I physics test RCMs using Noah-Unified as the 590 

land surface model (LSM) (a-c); Phase II physics test RCMs using Noah-MP as the LSM and its default settings 591 

(d-f); Phase III ‘set 1’ physics test RCMs using Noah-MP with dynamic vegetation cover activated (g-i); Phase 592 

III ‘set 2’ physics test RCMs using Noah-MP with TOPMODEL surface runoff and simple groundwater activat-593 
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ed (j-l); and Phase III ‘set 3’ physics test RCMs using Noah-MP with both dynamic vegetation cover and TOP-594 

MODEL runoff activated (m-o). 595 
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 597 

Figure 5. As per Figure 4 but showing RMSEs. 598 

5.2.2. Climate Extremes 599 

Climate extreme analysis assesses RCM representations of the hottest and the wettest day versus 600 

AGCD. For both extremes and for RCM biases and RMSEs, Phase II RCMs using NG radiation 601 
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showed inferior performance relative to phase I RCMs using RRTMG (Table 8). Conversely, Phase II 602 

RCMs using Noah-MP show substantial reductions in bias for both the hottest and wettest days (Table 603 

8). Phase II Noah-MP RCMs show a small increase in RMSE for the hottest day (Phase I bias=3.59 604 

K; Phase II bias=3.74 K); however, RMSEs are smaller for the wettest day (i.e.i.e., Phase I 605 

RMSE=19.20 mm; Phase II RMSE=18.47 mm) (Table 8). 606 

Table 8 Climate extremes performance: comparing phase I RCMs (N=12) with phase II RCMs 607 

(i.e.i.e., 12 RCMs changing radiation from RRTMG to New Goddard (NG) and 12 RCMs changing 608 

land surface model (LSM) from Noah-Unified to Noah-MP; NMP). 609 

 
Bias RMSE 

Variable 

Phase I  

(N=12) 

ensemble 

mean  

Phase II 

(NG 

rad.) 

ensemble 

mean  

Phase II 

(NMP 

LSM) 

ensemble 

mean  

Phase I  

(N=12) 

ensemble 

mean  

Phase II 

(NG 

rad.) 

ensemble 

mean  

Phase II 

(NMP 

LSM) 

ensemble 

mean  

Temp. max: hottest 

(K) 
1.11 1.93 0.81 3.59 3.97 3.74 

Prec.: wettest 

(mm) 
3.08 3.21 2.60 19.20 20.52 18.47 

5.3 Phase III RCM performance summary and shortlisting N=7 RCMs for 610 

ERA5-NARCliM2.0NARCliM 2.0 evaluation simulations 611 

Overall, RCM biases for mean maximum temperature do not show marked improvements once the 612 

dynamic vegetation cover and surface runoff options are activated for Noah-MP (Figure 4 g,j,m) rela-613 

tive to RCMs using Noah-MP with default settings (Figure 4d). However, specifically for the RCM 614 

ensemble with dynamic vegetation cover activated for Noah-MP, RMSE magnitudes for maximum 615 

temperature are lower over some eastern coastal regions (Figure 5g).  616 

 The simulation of mean minimum temperature shows clear performance improvements for 617 

Phase III RCMs using options activated for Noah-MP, relative to RCMs using Noah-MP defaults. 618 

Overall, both biases and RMSEs for minimum temperature are reduced in magnitude for RCMs using 619 

the either or both of dynamic vegetation cover and runoff/groundwater options activated for Noah-620 

MP, relative to the default parameters (Figure 4-5). These performance improvements are largest over 621 

eastern and southern regions. 622 

There are no substantial overall performance improvements in the simulation of precipitation 623 

for Phase III RCMs relative to Phase II RCMs (Figures 4-5 f,i,l,o). However, using Noah-MP with 624 
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specific LSM options remains favourable to using RCMs with Noah-Unified, albeit the performance 625 

gains are generally small, except for some coastal regions and especially the north-east. 626 

All 78 RCMs in the complete RCM physics test ensemble are ranked for performance as de-627 

scribed in sSect. 34.2. Once the poor-performing RCMs are excluded, there are 20 RCMs remaining 628 

(Table 9; Figures 6-8). In Table 9, we see that 16 Noah-MP-based RCMs from Phase II and Phase III 629 

comprise this set of 20 RCMs, with 3 of the 20 RCMs using Noah-Unified, and 1 using CLM4.0. For 630 

maximum temperature, some shortlisted RCMs show large substantial RMSEs over north-western and 631 

inland areas (e.g., Figure 6 d-f) that are of similar larger magnitude over these areas to those ofthan 632 

the ensemble means of Phase I-III RCMs (Figure 5). Conversely, several shortlisted RCMs show very 633 

low RMSEs for maximum temperature across eastern and southern regions, especially along the east-634 

ern coast (Figure 6, e.g., RCMs in panels d,l,n,o,q). For minimum temperature, a subset of the twenty 635 

shortlisted RCMs show substantially reduced RMSEs over many regions relative to the Phase I-III 636 

ensemble means (Figure 7, e.g., RCMs in panels: b,h,i). Additionally, several shortlisted RCMs show 637 

reduced RMSEs for precipitation over the eastern coast and north-east (Figure 8, e.g., RCMs in pan-638 

els: c, l, m, n, o) relative to the Phase I-III RCM ensemble means in Figure 5c,f,i,l,o. 639 

These 20 RCMs are assessed for statistical independence and 7 RCMs from this RCM set are 640 

shortlisted for the ERA5-forced RCM simulations considering both their performance and independ-641 

ence scores (Table 9). These 7 shortlisted RCMs are listed in bold in Table 9 and are identified as R1-642 

R7 in the ERA5-forced evaluation simulations (Table 9; final column). RCMs are shortlisted from the 643 

set of 20 if they rank highly for both performance and independence. For instance, RCM 644 

050801040404_set_3 (top row, Table 9) is top-ranked for performance, however, its independence 645 

scores/ranks are low, hence it is not shortlisted. It is important to note that, while a general perfor-646 

mance gain is observed in the physics testing when using Noah-MP, there are some specific RCM 647 

configurations using Noah-Unified that perform well in simulating the Australian climate. For in-648 

stance, the RCM 010602050502 (row 7; Table 9; ‘R1’) uses Noah-Unified and performs well overall 649 

(its overall performance rank=7), and especially for the simulation of maximum temperature (Figure 650 

6a). It is also the only RCM in this set of 20 RCMs to use YSU for PBL. Importantly, this RCM is 651 

highly ranked for statistical independence, hence, this RCM is shortlisted for the N=7 set. We note 652 

here that R1-R7 are simply a chronological naming convention and do not imply any ranking for these 653 

7 RCM configurations. 654 

Table 9. The 20 NARCliM2.0NARCliM 2.0 physics test RCMs shortlisted from the ensemble of 78 RCMs 655 

based on their performance in simulating the Australian climate and independence (Ind.). N=7 ‘R1-R7’ RCMs 656 

shortlisted for ERA5-forced evaluation simulations shown in bold. R1-R7 are a naming convention and do not 657 
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imply a ranking for these 7 RCMs. NU=Noah Unified; NMP=Noah-MP; DV=dynamic vegetation cover; 658 

TOP=topmodel runoff. 659 

# 
RCM Physics  

Combination 
PBL MP Cumulus SW/LW LSM 

Test 

Phase 

Overall 

Performance 

Rank 

Bishop 

Abramowitz 

Ind. Rank 

Herger 

Ind. 

Set 1 

Herger 

Ind. 

Set 2 

ERA5-

forced RCM 

Identifier 

1 050801040404_set_3 MYNN2 Thom KF RRTMG 
NMP 

DV+TOP 
III 1 19 20 20  

2 070806040404_set_1 ACM2 Thom Td RRTMG 
NMP 

DV 
III 2 8 5 6 R6 

3 50801040404 MYNN2 Thom KF RRTMG NMP II 3 16 12 13  

4 070802040404_set_1 ACM2 Thom BMJ RRTMG 
NMP 

DV 
III 4 4 3 3 R5 

5 070802040404_set_2 ACM2 Thom BMJ RRTMG 
NMP 

TOP 
III 5 15 13 12  

6 050601040404_set_1 MYNN2 WSM6 KF RRTMG 
NMP 

DV 
III 6 7 10 10 R2 

7 10602050502 YSU WSM6 BMJ NG NU II 7 1 3 3 R1 

8 070806040404_set_2 ACM2 Thom Td RRTMG 
NMP 

TOP 
III 8 9 9 5 R7 

9 70806040404 ACM2 Thom Td RRTMG NMP II 9 11 14 14  

# 50802040404 MYNN2 Thom BMJ RRTMG NMP II 10 20 19 19  

# 050802040404_set_1 MYNN2 Thom BMJ RRTMG 
NMP 

DV 
III 11 5 2 2 R3 

# 070806040404_set_3 ACM2 Thom Td RRTMG 
NMP 

DV+TOP 
III 14 12 10 10  

# 70802040404 ACM2 Thom BMJ RRTMG NMP II 17 13 15 15  

# 070601040404_set_3 ACM2 WSM6 KF RRTMG 
NMP 

DV+TOP 
III 22 14 16 16  

# 050802040404_set_2 MYNN2 Thom BMJ RRTMG 
NMP 

TOP 
III 23 2 4 4 R4 

# 70802050502 ACM2 Thom BMJ NG NU II 24 18 18 18  

# 50801040405 MYNN2 Thom KF RRTMG CLM4 I 28 17 17 17  

# 070601040404_set_1 ACM2 WSM6 KF RRTMG NMP DV III 29 6 7 8  

# 70801040404 ACM2 Thom KF RRTMG NMP II 30 3 1 1  

# 50801040402 MYNN2 Thom KF RRTMG NU I 31 10 6 7   
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 660 

Figure 6. RMSEs for modelled mean maximum temperature (tmax) versus observations for the twenty 661 
NARCliM2.0NARCliM 2.0 physics test RCMs shortlisted from the full ensemble of seventy-eight RCMs based 662 
on their performance in simulating the recent south-east Australian climate. Overall (final) performance ranks 663 
and Bishop and Abramowitz (2013) method independence (Ind.) scores are shown. 664 

  665 
Figure 7. As per Figure 6 but for mean minimum temperature (tmin). 666 



33 
 

667 

 668 

Figure 8. As per Figure 6 but for mean precipitation (precip.). 669 
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7.6. CORDEX-CMIP6 NARCliM2.0NARCliM 2.0 historical 670 

evaluation 671 

6.1 Maximum temperature 672 

NARCliM2.0Overall, NARCliM 2.0 RCMs simulate maximum temperature more accurately than 673 

NARCliM1.x, with widespread, statistically significant reductions in cold biases in the ensemble 674 

mean (Figure 9), as well as for many individual RCMs (Supporting Information Figure S4-S6). These 675 

reductions in bias apply for all timescales but are largest for the annual mean, i.e.i.e., the area-676 

averaged mean absolute bias for the NARCliM 2.0 ensemble is 0.75 K°C (range: 0.61 to 2.03 K) for 677 

the NARCliM2.0 ensemble, 1.73 K°C (range: 1.1 to  2.37 K) for NARCliM1.5NARCliM 1.5, and 678 

1.89°C K (range: 0.55 to 4.12 K) for NARCliM1.0NARCliM 1.0 (Figure 9d,g,j and Figure S4). Nota-679 

bly, the NARCliM2.0 ensemble mean annual mean maximum temperature bias magnitudes are very 680 

small, i.e.i.e., around <0.5 K°C, over south-west WA, southern coastal regions, and several eastern 681 

regions. This may be important from a climate change adaptation and mitigation perspective as these 682 

regions are heavily populated and economically significant. NARCliM2.0NARCliM 2.0 retains warm 683 

biases of similar magnitude to NARCliM1.5NARCliM 1.5 along the north-west coast of Australia 684 

(Figure 9d,g). Moreover, these warm biases cover additional areas for NARCliM2.0NARCliM 2.0, 685 

especially during DJF (Figure 9e,h). AA wide range of bias signs are evident for the individual NAR-686 

CliM2.0NARCliM 2.0 ensemble members (Figures S4-S6) and a minority of NARCliM 2.0 RCMs 687 

retain strong cold biases, e.g., at an annual timescale NARCliM 2.0-NorESM2-MM R3 (mean abso-688 

lute bias = 2.03 K) and UKESM-1-0-LL R3 (1.77 K). Additionally, Tthe R5 RCM is generally warm-689 

er than R3, (e.g., (Figure S4c,d). Considering the forcing GCM data, overall, ensemble means for the 690 

CMIP6 and CMIP5 GCMs generally show similar patterns and magnitudes of cold bias for maximum 691 

temperature (Supporting Information S7). 692 
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 694 

Figure 9. Annual, DJF and JJA mean near-surface atmospheric maximum temperature biases for NAR-695 

CliM2.0NARCliM 2.0, 1.5 and 1.0 historical ensemble means with respect to Australian Gridded Climate Data 696 

(AGCD) observations for 1990-2009. Stippled areas indicate locations where an RCM shows statistically signif-697 

icant bias. Significance stippling for the ensemble mean bias follows Tebaldi et al. (2011) and is applied sepa-698 

rately to each RCM ensemble. Statistically insignificant areas are shown in colour, denoting that less than half 699 

of the models are significantly biased. In significant agreeing areas (stippled), at least half of RCMs are signifi-700 

cantly biased, and at least 70% of significant RCMs in each ensemble agree on the direction of the bias. Signifi-701 

cant disagreeing areas are shown in hatching, which are where at least half of the models are significantly biased 702 

and less than 70% of significant models in each ensemble agree on the bias direction - see main text for addi-703 

tional detail on the stippling regime. 704 
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6.2 Minimum temperature 705 

The simulation of mean minimum temperature by NARCliM2.0NARCliM 2.0 is generally warm bi-706 

ased at all timescales (Figure 10). Its bias magnitudes over many regions are larger versus NAR-707 

CliM1.5NARCliM 1.5, e.g., annual mean area-averaged absolute biases are 0.98 °CK and 0.79 °CK 708 

for NARCliM2.0NARCliM 2.0 and NARCliM1.5NARCliM 1.5, respectively (Figure 10 d,g). How-709 

ever, there are exceptions to this result over specific regions, for example, parts of south-west western 710 

Australia show annual mean bias magnitudes of <1 °CK for NARCliM2.0NARCliM 2.0, but these 711 

areas show biases below -2 °CK for NARCliM1.x (Figure 10d,g,j). Most individual RCMs compris-712 

ing the NARCliM2.0NARCliM 2.0 ensemble show stronger warm biases than their NAR-713 

CliM1.5NARCliM 1.5 peers at both annual and seasonal timescales (Figures S8-S10). The ACCESS-714 

ESM-1-5-forced NARCliM2.0NARCliM 2.0 RCMs are considerably more warm-biased than the oth-715 

er NARCliM2.0NARCliM 2.0 RCMs, with average absolute biases of 1.74 °CK and 1.9 °CK; Fig. 716 

S8c-d).  717 

Many of the CMIP6 GCMs used to force the NARCliM2.0NARCliM 2.0 RCMs are warmer than 718 

the CMIP5 GCMs used to force NARCliM1.5NARCliM 1.5, such that the ensemble mean bias of the 719 

former is 1.9 °CK versus 1.11 °CK (Figure S11). In particular, ACCESS-ESM-1-5 and MPI-ESM1-2-720 

HR are substantially more warm-biased relative to all other selected GCMs, with mean absolute bias-721 

es of 2.2°CK and 3.47°CK, respectively (Figure S11). This suggests that NARCliM2.0NARCliM 722 

2.0’s warm biases for mean minimum temperature are at least partially inherited from the driving da-723 

ta. However, whilst the ACCESS-ESM-1-5-forced NARCliM2.0NARCliM 2.0 RCMs are much 724 

warmer than their counterparts (i.e.i.e., 1.74 °CK and 1.9 °CK), this does not apply to the MPI-ESM1-725 

2-HR-forced RCMs, which have biases of only 1.01 °CK and 1.09 °CK. Hence, factors additional to 726 

the driving data, such as changes in RCM parameterisations between NARCliM generations and other 727 

model design changes likely contribute to the warmer biases observed for NARCliM2.0NARCliM 728 

2.0. 729 
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 731 

Figure 10. As per Figure 9 but for mean minimum temperature. 732 

6.3 Precipitation 733 

The NARCliM2.0NARCliM 2.0 ensemble shows small dry biases for mean precipitation over most 734 

regions, except for some areas mainly in the east of the country which show slight wet biases (Figure 735 

11d-f). This contrasts with stronger, statistically significant wet biases of NARCliM1.5NARCliM 1.5 736 

that are statistically significant over many regions (Figure 11g-i) and the even stronger wet biases of 737 

NARCliM1.0NARCliM 1.0 (Figure 11j-l). Area-averaged bias magnitudes are considerably smaller 738 

for NARCliM2.0NARCliM 2.0 relative to NARCliM1.x, especially for the annual mean, i.e.i.e., 8.03 739 
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mm versus 16.69 mm and 33.25 mm, respectively. Annual mean precipitation biases are particularly 740 

small over eastern regions, often being <5 mm. NARCliM2.0NARCliM 2.0 retains the strong sum-741 

mertime dry biases for precipitation over northern Australia that are also evident for NAR-742 

CliM1.5NARCliM 1.5 (Figure 11e,h), noting that this region also shows strong warm biases for max-743 

imum temperature (Figure 9). 744 

 The individual RCMs comprising NARCliM2.0NARCliM 2.0 show a range of results for an-745 

nual and seasonal mean precipitation biases (Fig S12-S14). Notably, three of the ten NAR-746 

CliM2.0NARCliM 2.0 RCMs have substantially larger bias magnitudes than their peers at annual and 747 

summer timescales, i.e.i.e., both MPI-ESM1-2-HR-R3 and R5 (absolute biases are 15.53 mm and 748 

22.45 mm for annual mean precipitation, Figure S12g-h) and EC-Earth3-Veg-R5 (Figure S12f; 18.59 749 

mm). Despite EC-Earth3-Veg-R5 being strongly dry-biased, EC-Earth3-Veg-R3 simulates precipita-750 

tion more accurately i.e.i.e., its mean absolute bias=9.53 mm (Figure S12e). Analogously to NAR-751 

CliM2.0NARCliM 2.0’s performances for temperature, R5 is drier than R3. Comparing the ensemble 752 

means of the driving GCMs, the CMPI6CMIP6 GCMs are marginally more accurate in simulating 753 

annual mean precipitation than the CMIP5 GCMs (Figure S15). Whilst the CMIP6 ensemble produces 754 

small biases over inland regionsareas, its biases are larger along the east coast. 755 



41 
 

756 



42 
 

 757 
Figure 11. As per Figure 9 but for mean precipitation (precip.). 758 

8.7. CORDEX-CMIP6 NARCliM2.0NARCliM 2.0 climate 759 

change projections 760 

Dependent on location, the largest maximum temperature projected increases for NAR-761 

CliM2.0NARCliM 2.0 under SSP3-7.0 are over ~3 °CK, and over ~1.5 °CK under SSP1-2.6 (Figure 762 

12a,d). SSP3-7.0-NARCliM2.0NARCliM 2.0 shows faster warming over inland than coastal regions, 763 

with greater warming across a horizontal band of the continent during annual and summer timescales 764 

(Figure 12a-b). This contrasts with NARCliM1.5NARCliM 1.5 which shows a north-south warming 765 

gradient at annual and seasonal timescales, with its fastest warming rate over northern regions, and 766 

NARCliM1.0NARCliM 1.0 which projects fastest warming over the west (Figure 12). For NAR-767 

CliM2.0NARCliM 2.0, the tropical north warms faster during the winter dry season than during the 768 

summer wet season under SSP3-7.0, but this is not the case for SSP1-2.6 (Figure 12b-c; e-f). NAR-769 

CliM2.0NARCliM 2.0 simulations under SSP3-7.0 show less warming than NARCliM1.5NARCliM 770 
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1.5-RCP8.5, but warmer futures than for NARCliM1.0NARCliM 1.0-SRES A2, with differences in 771 

the underlying driving GCMs and GHG scenarios likely contributing to these variations in warming. 772 

As per NARCliM1.x, all NARCliM2.0NARCliM 2.0 maximum temperature projections are signifi-773 

cant-agreeing with all RCMs projecting statistically significant temperature increases. 774 
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 776 

Figure 12. Ensemble mean climate change projections (far future minus present-day) for annual, DJF and JJA 777 
mean maximum temperatures with significance stippling as per Figure 9. 778 

Projected increases in annual mean minimum temperature for NARCliM2.0NARCliM 2.0 ex-779 

ceed 3 °CK over some regions for SSP3-7.0, and 1.6 °CK for SSP1-2.6 (Figure 13). Under both GHG 780 

scenarios, at annual and winter timescales warming is fastest over north-east Australia. Conversely, 781 

NARCliM1.x minimum temperature future increases are generally largest over northwest or northern 782 

Australia, though the summertime projection for NARCliM1.0NARCliM 1.0 is an exception (Figure 783 

13k). As for maximum temperature projections, all RCMs for all NARCliM generations project statis-784 

tically significant increases. 785 
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 787 

Figure 13. Ensemble mean climate change projections (far future minus present-day) for annual, DJF and JJA 788 

mean minimum temperatures with significance stippling as per Figure 9. 789 

NARCliM2.0NARCliM 2.0 SSP3-7.0 projects a dry future over most of Australia, except for 790 

wetter futures over northern and western regions, which are largest in magnitude in summer (Figure 791 

14a-b). In contrast, overall, NARCliM2.0NARCliM 2.0 SSP1-2.6 projects dry changes across most of 792 

Australia, with the strongest drying over northern Australia during summer (Figure 14e). Similarities 793 

between NARCliM2.0NARCliM 2.0 projections for the low and high GHG SSPs include faster dry-794 

ing over the eastern coastline at all timescales, especially during summer. The wetter futures projected 795 

by RCMs downscaling SSP3-7.0-GCMs relative to SSP1-2.6 may be partially inherited from the driv-796 

ing CMIP6 GCMs, because overall, SSP3-7.0 GCMs show wetter futures than corresponding SSP1-797 

2.6 GCMs (Fig. S16). 798 
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 800 

Figure 14. Ensemble mean climate change projections (far future minus present-day) for annual, DJF and JJA 801 

mean precipitation with significance stippling as per Figure 9. 802 

Considering mean precipitation projections for individual NARCliM2.0NARCliM 2.0 RCMs, in 803 

some cases, R3 and R5 RCMs produce similar results when downscaling the same GCM. For in-804 

stance, ACCESS-ESM-1-5 forced R3 and R5 both show strong projected decreases in annual mean 805 

precipitation across Australia (Figure 15b-c). In contrast, while UK-ESM1-0-LL R3-R5 both show 806 

projected decreases in annual mean precipitation over eastern Australia, R3 shows precipitation in-807 

creases that are substantially more widespread over western and northern regions relative to R5 (Fig-808 

ure 15j-k). Overall, the NARCliM2.0NARCliM 2.0 ensemble members show a variety of climate 809 

change signals for precipitation (Figure 15) and temperature (not shown), reflecting the range within 810 

the larger CMIP6 ensemble (Di Virgilio et al. 2022). 811 
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There are some key differences between the mean precipitation projections of NAR-812 

CliM2.0NARCliM 2.0 relative to those of previous NARCliM generations. For instance, NAR-813 

CliM1.5NARCliM 1.5 shows stronger reductions in future precipitation over northern and eastern 814 

regions at annual and winter timescales (Figure 14), and these changes are statistically significant over 815 

a few regions, whereas projected changes for NARCliM2.0NARCliM 2.0 are largely non-significant. 816 

Additionally, NARCliM2.0NARCliM 2.0 projects marked precipitation decreases along the south-817 

east coast during summer, while NARCliM1.5NARCliM 1.5 shows the opposite result (Figure 14). 818 

NARCliM1.0NARCliM 1.0 generally projects wet futures across larger portions of Australia, espe-819 

cially at annual and summer timescales. 820 
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 822 

Figure 15. Climate change projections (1990-2009 versus 2060-2079) for annual mean precipitation for NAR-823 

CliM ensemble mean climate change signals (a,l,s) and for individual ensemble members for each generation of 824 

NARCliM simulation (NARCliM 2.0 under SSP3-7.0, NARCliM 1.5 under RCP8.5 and NARCliM 1.0 under 825 

SRES A2). Significance stippling as per Figure 9. 826 

9.8. Discussion and Summary 827 

NARCliM regional climate models produce robust climate projections at spatial scales suitable for 828 

local-scale climate change analysis and impact decision-making. The third and latest generation of 829 

these regional climate models, NARCliM2.0NARCliM 2.0, encompasses several model design ad-830 

vancements over its predecessors. A key aim of this paper is to describe how NARCliM 2.0 differs 831 

from its predecessors and explain the rationale for these design decisions. We alsoHere, our aims were 832 

to describe the new CORDEX-CMIP6 NARCliM2.0 RCM ensemble and its design process, including 833 

the model test and evaluation approaches used, and characterise the improvements in model skill in 834 

simulating the Australian climate relative to previous NARCliM generations, as well as differences 835 
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incompare climate projections across NARCliM generations. The next section discusses aspects of 836 

NARCliM2.0 RCM design and parameterisation in relation to previous studies before reviewing dif-837 

ferences in the model biases and the climate projections of the NARCliM 2.0 versus NARCliM 1.x 838 

RCMs. 839 

8.1 NARCliM2.0NARCliM 2.0 RCM physics testing 840 

A key aim of this paper is to describe how NARCliM2.0 differs from its predecessors and explain the 841 

rationale for these design decisions. In addition to RCM design choices including increased resolu-842 

tion, and incorporation of convection-permitting modelling and urban physics, a major change for 843 

NARCliM2.0NARCliM 2.0 relative to its predecessors is to use new WRF RCM configurations 844 

which are selected via a large suite of physics tests. RCM performance evaluations for the NAR-845 

CliM2.0NARCliM 2.0 RCM physics testing focused on the 4 km resolution convection-permitting 846 

domain which does not use a cumulus physics parameterisation. Notably, the 7 candidate shortlisted 847 

RCMs from the N=78 physics test ensemble used three different cumulus parameterisations for their 848 

outer domains, with 4 RCMs using BMJ, 2 RCMs using Tiedtke, and 1 using Kain-Fritsch. This indi-849 

cates that differences in the outer domain boundary conditions have key influences on the RCM per-850 

formances in the convection-permitting domain.Notably, the 7 ‘candidate’ shortlisted RCMs from the 851 

N=78 physics test ensemble used three different cumulus parameterisations for their outer domains, 852 

with 4 RCMs using BMJ, 2 RCMs using Tiedtke, and 1 using Kain-Fritsch. This indicates that differ-853 

ences in the outer domain boundary conditions have key influences on the RCM performances in the 854 

convection-permitting domain. 855 

The uUsinge of the Noah-MP LSM in the NARCliM2.0NARCliM 2.0 RCM physics tests 856 

conferred overall RCM skill improvements relative to the test Phase I RCMs using the Noah-Unified 857 

LSM, especially in terms of the simulation of temperature. Although using Noah-MP also improved 858 

the simulation of precipitation in some respects, these improvements were smaller relative to the gains 859 

for temperature, and improvements were mainly located over coastal regions. The developers of No-860 

ah-MP suggest that some limitations in the Noah-Unified LSM have been modified to better represent 861 

several parameters. These include surface layer radiation balances, snow depth, soil moisture and heat 862 

fluxes, leaf area-rainfall interaction, vegetation and canopy temperature distinction, drainage of soil, 863 

and runoff.  864 

 The developers of Noah-MP suggest that some limitations in the Noah-Unified LSM have 865 

been modified to better represent several parameters. These include surface layer radiation balances, 866 

snow depth, soil moisture and heat fluxes, leaf area-rainfall interaction, vegetation and canopy tem-867 

perature distinction, drainage of soil, and runoff.  868 

In the NARCliM2.0 physics testing, improvements in RCM skill were evident for Noah-MP 869 

with default settings. Activating specific parameterisations for this LSM (i.e. dynamic vegetation cov-870 
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er and surface runoff-simple groundwater) delivered comparatively smaller gains in RCM perfor-871 

mances. Some previous studies have found no overall benefit of using Noah-MP with default settings. 872 

For instance, In the NARCliM2.0 physics testing, improvements in RCM skill were evident for Noah-873 

MP with default settings. Activating specific parameterisations for this LSM (i.e. dynamic vegetation 874 

cover and surface runoff-simple groundwater) delivered comparatively smaller gains in RCM perfor-875 

mances. Some previous studies have found no overall benefit of using Noah-MP with default settings. 876 

For instance, Imran et al. (2018) conducted an evaluation of WRF coupled with a variety of LSMs 877 

including Noah-MP using its default settings. Their focus was ony simulateding short-duration (~3-878 

day) heatwaves in Melbourne, Australia. They and observed larger temperature biases using Noah-879 

MP relative to RCMs using Noah-Unified and CLM4.0. However, their focus on specific short dura-880 

tion heatwave events of short duration over one urban area was not intended as a comprehensive eval-881 

uation of Noah-MP’s performance over longer timescales. It is also important to consider thatAddi-882 

tionally, several physics schemes used by these authors differed to those used in the NAR-883 

CliM2.0NARCliM 2.0 physics testing, i.e.i.e., they used: PBL=MYJ; microphysics=Thompson; cu-884 

mulus=Grell3D; radiation=RRTMG/RRTMG. The oOnly similarities between these settings and 885 

those of the NARCliM2.0 physics testing are the use of Thompson microphysics and RRTMG radia-886 

tion are used in the NARCliM 2.0 physics testing. WRF and Noah-MP versions also differed, i.e.i.e., 887 

Imran et al. used WRF3.6.1 and a Noah-MP version prior to 3.7, whereas NARCliM2.0NARCliM 2.0 888 

uses WRF4.1.2 and Noah-MP version 4.1. Additionally, there are also several studies that have re-889 

ported benefits of using Noah-MP with default parameters relative to other LSMs for other regions 890 

globally e.g. Chen et al. (2014b), Chen et al. (2014a) and Salamanca et al. (2018). 891 

In an assessment of the performances of several WRF-LSMs for Sub-Saharan Africa, 892 

Glotfelty et al. (2021) noted deficiencies in the simulation of land use and land cover change 893 

(LULCC) parameters such as surface albedo by Noah-MP. Despite these deficiencies, the spatial pat-894 

terns and magnitudes of temperature and precipitation were well-represented by Noah-MP. However, 895 

the land surface parameter errors impacted the magnitude and sign of LULCC-induced changes in 896 

temperature and precipitation. These deficiencies were linked to substantial underestimations of sur-897 

face albedo in arid areas due to inaccurate soil albedo treatments by Noah-MP. Moreover, errors in 898 

Noah-MP’s LAI profiles may occur because it was developed principally for application in Northern 899 

Hemisphere mid-latitudes. It is possible that modifying/tuning Noah-MP to specific aspects of the 900 

Australian context would yield performance benefits for follow-up dynamical downscaling. Overall, 901 

these authors concluded that “Noah-MP is least flawed of the [WRF] default LSMs”. Additionally, 902 

there are also several studies that have reported benefits of using Noah-MP with default parameters 903 

relative to other LSMs e.g. Chen et al. (2014b), Chen et al. (2014a) and Salamanca et al. (2018).  904 

The NARCliM2.0NARCliM 2.0 physics testing found that the optimal LSM configuration for 905 

simulation of minimum temperature used Noah-MP with dynamic vegetation cover activated, even 906 

though the performance gain relative to Noah-MP with default settings was small. Constantinidou et 907 
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al. (2020) ran WRF coupled with four LSMs (Noah-Unified, Noah-MP, CLM and, Rapid Update Cy-908 

cle) over the Middle East North Africa CORDEX domain. Theyir study compared the performance of 909 

Noah-MP with dynamic vegetation cover turned on and off. They and showed found that air and land 910 

temperatures were best simulated using Noah-MP with dynamic vegetation cover activated.  911 

Overall, Noah-MP performed well in the NARCliM2.0 physics tests, conferring some clear 912 

advantages over RCMs using Noah-Unified. However, given the nature of its development and per-913 

formance characteristics, it may be more suited to application over the temperate regions of Australia 914 

rather than the semi-arid interior. 915 

In terms of PBL other NARCliM2.0 RCM parameterisations, focusing on PBL, by the com-916 

pletion of Phase I physics testing, only 3 of 12 RCMs shortlisted for further testing use the YSU 917 

scheme. By the completion of Phase II testing, all remaining RCMs using YSU are discarded, with 918 

only RCMs using PBL schemes other than YSU remaining (i.e.i.e., ACM2 and MYNN2). YSU PBL 919 

is a first-order closure scheme that expresses turbulent mixing via mean variables rather than prognos-920 

tic variables (Hong et al., 2006). It is classed as a 'non-local' scheme because it estimates turbulent 921 

mixing by small-scale eddies as well as representing transport caused by convective large eddies. Two 922 

previous studies evaluating convection permitting WRF simulations using different parameterisations 923 

that included YSU for the PBL scheme found that, relative to other PBL schemes, YSU produced the 924 

highest bias for simulated precipitation (Huang et al., 2023; Nuryanto et al., 2019). However, these 925 

studies focused on different regions globally and used various experimental setups that are not direct-926 

ly comparable to those used here. Hence, a separate study investigating sensitivities of the NAR-927 

CliM2.0NARCliM 2.0 RCMs to the different PBL schemes is currently underway. 928 

8.2 CORDEX-CMIP6 NARCliM2.0NARCliM 2.0: historical evaluation 929 

and climate change projections 930 

We characterised the improvements conferred by NARCliM2.0NARCliM 2.0 over its predecessors in 931 

simulating the present-day Australian climate. NARCliM2.0NARCliM 2.0 simulates mean maximum 932 

temperature and precipitation more accurately than NARCliM1.x. Specifically, NARCliM1.x has 933 

strong maximum temperature cold biases which are in keeping with other downscaling projects of the 934 

CMIP3-CMIP5 eras, e.g., (Andrys et al., 2016; Evans et al., 2020b), but these are substantially re-935 

duced in NARCliM2.0NARCliM 2.0. A contributing cause of CMIP5-forced RCM cold biases of 936 

maximum temperature is their overestimation of precipitation (Evans et al., 2020). This relationship 937 

was also noted in ERA-Interim forced RCMs of this same modelling era (Di Virgilio et al. 2019). In 938 

NARCliM2.0NARCliM 2.0, the widespread wet biases that characterise the NARCliM1.x RCMs are 939 

greatly reduced in magnitude. NARCliM2.0NARCliM 2.0 produces smaller wet biases over eastern 940 

Australia, and smaller dry biases elsewhere, except for Australia’s tropical north. This marked reduc-941 

tion in wet bias magnitudes is aone plausible contributing factor for the reduction in maximum tem-942 
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perature cold bias for the NARCliM2.0NARCliM 2.0 RCMs. The CMIP6 and CMIP5 GCMs used to 943 

drive NARCliM2.0NARCliM 2.0 and 1.5 RCMs generally show similar magnitudes of maximum 944 

temperature cold bias. This suggests that the underlying nature of the CMIP6 driving data is not a 945 

principal factor underlying the observed improvements for NARCliM2.0NARCliM 2.0’s simulation 946 

of maximum temperature. In fact, the RCMs appear to have a substantial influence on the reduced 947 

maximum temperature biases. 948 

That NARCliM2.0NARCliM 2.0 underestimates precipitation over tropical northern Australia 949 

during the wet season (summer) to a similar degree of magnitude to the NARCliM1.5NARCliM 1.5 950 

RCMs indicates that the newer models still struggle to accurately capture the strength of the Australi-951 

an monsoon. That NARCliM1.x strongly overestimates precipitation over south-eastern Australia, 952 

whereas wet biases over this region are reduced for NARCliM2.0NARCliM 2.0 indicates that the 953 

newer models may confer an improved simulation of broad-scale processes associated with synoptic-954 

scale systems interacting with the extratropical storm track over Australia (Grose et al., 2019). 955 

In terms of whetherThe extent to which NARCliM2.0’s improved simulation of precipitation 956 

is might be attributable to theits driving data warrants consideration., Ooverall, the CMIP6 GCMs 957 

used to drive NARCliM 2.0 show marginally reduced wet biases versus the CMIP5 GCMs used for 958 

NARCliM1.5 (e.g. area-averaged ensemble mean absolute biases are 7.13 mm and 8.89 mm, respec-959 

tively; Supporting Information Figure S15). This suggests that the underlying nature of the CMIP6 960 

driving data is might not be the principal factor underlying the observed improvements for NARCliM 961 

2.0’s simulation of mean precipitation. Conversely, in terms of RCM design features, the use of the 962 

Noah-MP LSM in the NARCliM 2.0 RCM physics tests conferred overall RCM skill improvements 963 

relative to RCMs using the Noah-Unified LSM for both mean precipitation and mean maximum tem-964 

perature. As noted above, Tthe developers of Noah-MP suggest that some features of the Noah-965 

Unified LSM have been modified to better represent several parameters such as soil moisture and heat 966 

fluxes, leaf area-rainfall interaction, vegetation and canopy temperature distinction, drainage of soil, 967 

and runoff. The production NARCliM2.0 RCMs forced with CMIP6 GCMs used Noah-MP, whereas 968 

NARCliM1.x RCMs used Noah-Unified. Given these performance improvements observed for RCMs 969 

using Noah-MP versus RCMs using Noah-Unified, it is plausible that the different newer land surface 970 

schemeLSMs (i.e. Noah-MP for NARCliM 2.0 versus Noah-Unified for NARCliM 1.x) play a role 971 

incontributes to the improved NARCliM2.0 RCM skill in simulating mean precipitation and maxi-972 

mum temperature, for instance, via changing the land surface feedback (via soil moisture) to the simu-973 

lation of precipitation. However, tThis possibility requires more extensive investigation via future 974 

studies. 975 

More generally, in thise scope of the present study, the scope was to focus on an initial "first-976 

order" evaluation of mean precipitation rather than extremes of precipitation. However, clearly valua-977 

ble research can now be undertaken into evaluating the skill of NARCliM 2.0 in simulating extreme 978 

precipitation, subdaily precipitation, etc, using NARCliM 2.0 20 km and 4 km data, noting these data 979 
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are now publicly available. A good avenue for further research is to assess the potential added value 980 

in simulating extreme and subdaily precipitation at convection permitting scale versus the convection-981 

parameterised 20 km data. Several previous studies have confirmed that convection-permitting resolu-982 

tion models can improve the simulation ofng daily and sub-daily rainfall extremes (Xie et al., 2024; 983 

Cannon and Innocenti, 2019; Kendon et al., 2017). 984 

  NARCliM2.0NARCliM 2.0 RCMs overestimate minimum temperatures across Aus-985 

tralia, and these biases are larger relative to NARCliM1.5NARCliM 1.5 but comparable to those of 986 

NARCliM1.0NARCliM 1.0. The CMIP6 GCMs used to force NARCliM2.0NARCliM 2.0 show sub-987 

stantially stronger warm biases for minimum temperature than the CMIP5 GCMs used for NAR-988 

CliM1.5NARCliM 1.5. This suggests that the increased warm bias for minimum temperature in 989 

NARCliM2.0NARCliM 2.0-RCMs iscould be partially inherited from the driving GCMs. However, 990 

as noted above, the Noah-MP’s LSM simulation of factors such as LAI and other aspects of vegeta-991 

tion as well as surface albedo in semi-arid and arid areas has been shown to have deficiencies 992 

(Glotfelty et al., 2021). These issues may contribute to some of the biases shown by the NAR-993 

CliM2.0NARCliM 2.0 RCMs. Moreover, the NARCliM2.0NARCliM 2.0 ensemble mean reduces the 994 

overall minimum temperature bias of the CMIP6 GCM ensemble by almost half, attesting to the add-995 

ed value conferred by the NARCliM2.0NARCliM 2.0 RCMs with respect to near-surface temperature 996 

variables. 997 

Consideration of observational uncertainty is warranted. We have evaluated NARCliM RCM 998 

skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational 999 

data set, like any set of observations, they contain errors and uncertainties. Consequently, the out-1000 

comes of our evaluations depend on both the models being evaluated and the AGCD observational 1001 

dataset. This is clearly a broader issue that applies to any model evaluation versus observations. Un-1002 

certainties in AGCD for temperature and precipitation arise from sparse station coverage in some lo-1003 

cations, especially in remote areas, and interpolation errors in generating gridded data. More specifi-1004 

cally, temperature uncertainties include urban heat island effects, inhomogeneities in observation rec-1005 

ords, and elevation differences. Precipitation uncertainties involve underestimation of extremes, rain 1006 

gauge measurement errors, and challenges in representing complex terrain. For our purposes, the 1007 

question of how much of a model bias of ~0.5 K is due to the model errors versus the observational 1008 

uncertainty cannot be currently quantified, because the models are evaluated against this single obser-1009 

vational dataset. This leaves the observational uncertainty as implicitly included in our results. In the 1010 

future observational uncertainty could be explicitly considered using a method like the Observation 1011 

Range Adjusted (ORA) statistics (Evans and Imran, 2024). 1012 
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8.3 CORDEX-CMIP6 NARCliM 2.0 climate change projections 1013 

In terms of NARCliM2.0NARCliM 2.0 future climate projections, major changes between NARCliM 1014 

generations such as differences in GHG scenarios mean that NARCliM2.0NARCliM 2.0 projected 1015 

temperature changes differ in some respects to those of its predecessors. Overall, as is expected, pro-1016 

jected warming is less intense in NARCliM2.0NARCliM 2.0 under SSP3-7.0 than for NAR-1017 

CliM1.5NARCliM 1.5 under RCP8.5. Other differences in the projections between NARCliM genera-1018 

tions require further investigation in order to explain, such as NARCliM1.5NARCliM 1.5’s latitudinal 1019 

warming gradient for maximum temperature that contrasts with NARCliM2.0NARCliM 2.0’s band of 1020 

faster warming over central Australia relative to northern and southern regions. Irrespective of these 1021 

differences, all three NARCliM ensembles show widespread statistically significant-agreeing results 1022 

for warming projections. 1023 

Precipitation projections for the different NARCliM generations show some key similarities, 1024 

such as reductions in mean annual precipitation over eastern Australia for NARCliM2.0NARCliM 2.0 1025 

and NARCliM1.5NARCliM 1.5, though a difference is that these are statistically significant over 1026 

some areas only for NARCliM1.5NARCliM 1.5. The NARCliM2.0NARCliM 2.0-SSP3-7.0 and 1027 

SSP1-2.6 ensembles differ in that the former generally projects wet changes over northern and west-1028 

ern Australia, whereas the latter is generally dry, results that appear partially traceable to the underly-1029 

ing driving CMIP6-SSP data (Supporting Information Figure S16). Other notable differences are that 1030 

some NARCliM2.0 RCMs produce very similar precipitation projections for certain GCM-RCM 1031 

combinations, such as for 1032 

Some NARCliM2.0NARCliM 2.0 RCMs produce very similar precipitation projections for 1033 

certain GCM-RCM combinations. Notably,  ACCESS-ESM-1-5 forced -R3 versus and R5 under 1034 

SSP3-7.0 both produce  (i.e. widespread dry projections that are substantially drier than other NAR-1035 

CliM 2.0 models for both RCMs). This GCM projects very dry futures across Australia (Di Virgilio et 1036 

al., 2022), so this result in the R3 and R5 RCMs could be largely inherited from the driving data. 1037 

There are 40 realisations for ACCESS-ESM1-5, but only realisation 6 provides sub-daily outputs that 1038 

can be used in dynamical downscaling using WRF. This realisation simulates a particularly dry pro-1039 

jection over Australia, especially for eastern Australia, making it a useful "stress test" case. In terms 1040 

of GCM skill versus observations, globally, this GCM is dry biased over a few regions owing to a lo-1041 

cation bias with the Inter-tropical Convergence Zone (Rashid et al., 2022; Ziehn et al., 2020). 1042 

Conversely, iIn other instances, there are marked divergences between the NARCliM 2.0 R3 1043 

versus R5 precipitation projections when forced with the same GCM,. An example is for instance, 1044 

UK-ESM-1-0-LL under SSP3-7.0 where R3 projects stronger precipitation increases that are more 1045 

geographically widespread relative to R5. This raises the question of varying sources of uncertainty in 1046 

the climate projections, i.e.i.e., to what extent these are attributable to GCMs versus RCMs, as well as 1047 

other factors. 1048 
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8.4 Summary 1049 

In summary, the CORDEX-CMIP6 NARCliM2.0NARCliM 2.0 regional climate projections are a 10-1050 

member ensemble comprising two configurations of the WRF RCM dynamically downscaling five 1051 

GCMs under three SSPs at 20 km resolution over CORDEX-Australasia and at 4 km convection-1052 

permitting resolution over south-east Australia. In addition to several high-level model design chang-1053 

es, e.g., increased spatial resolution, a large (N=78) RCM-physics test suite is evaluated to select two 1054 

new WRF RCM configurations for CMIP6-forced NARCliM2.0NARCliM 2.0 climate projections. 1055 

Due to resource constraints and the aim to test a large number of RCM physics parameterisations, the 1056 

NARCliM2.0 physics tests are performed for a single year. This is one reason why the final selection 1057 

of two production-grade RCMs for the CMIP6-NARCliM2.0 runs is based on the CORDEX ERA5-1058 

forced 42-year evaluation simulations. The NARCliM2.0NARCliM 2.0 physics tests identified RCM 1059 

configurations that generally performed well in simulating the recent Australian climate over south-1060 

east Australia. A key finding was that WRF RCMs using the Noah-MP LSM generally out-performed 1061 

RCMs using other WRF LSMs in representing regional climate. Despite the overall performance 1062 

gains evident for RCMs using Noah-MP, RCM these improvementsskill  wasere superior over the 1063 

temperate/coastal regions of southeast Australia, relative to the semi-arid interior. These performance 1064 

characteristics might be linked to Noah-MP's development being focused on Northern Hemisphere 1065 

mid-latitudes, including assumptions such as accounting for differences in seasonality in the Northern 1066 

versus Southern Hemispheres by shifting the Northern Hemisphere LAI profiles by 6 months. For the 1067 

southeast Australian context, noting its distinctive coastal dry-sclerophyll and expansive inland grass-1068 

land biomes, such assumptions might lead to discontinuities in quantities such as LAI. Hence, future 1069 

investigation into processes such as land-surface coupling in NARCliM2.0 RCMs is warranted.Given 1070 

the geographic focus of Noah-MP’s development, as well as its performance characteristics, it may be 1071 

more suited to application over the temperate regions of Australia rather than the semi-arid interior. It 1072 

is also possible that modifying/tuning Noah-MP to specific aspects of the Australian context would 1073 

yield performance benefits for follow-up dynamical downscaling. 1074 

Overall, the CMIP6-NARCliM2.0NARCliM 2.0 ensemble produces a good representation of 1075 

recent mean climate that in several key respects improves upon the model skill of earlier NARCliM 1076 

generations. This study provides a foundation for more detailed investigations of the model biases and 1077 

future climate changes described here, including process-focused studies exploring their mechanisms. 1078 

CORDEX-CMIP6 NARCliM2.0NARCliM 2.0 RCM data provide valuable resources to investigate 1079 

projected climate changes, their impacts on societies and natural systems, and potential climate 1080 

change mitigation and adaptation actions for the CORDEX-Australasia region. 1081 
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9. Code Availability 1082 

A frozen version of the source code for the Weather Research and Forecasting (WRF) version 4.1.2 1083 

used in this study, as well as the configuration files for the simulations, is available on Zenodo at: 1084 

https://doi.org/10.5281/zenodo.11184830The Weather Research and Forecasting (WRF) version 4.1.2 1085 

used in this study is freely available from: https://github.com/coecms/WRF/tree/V4.1.2. A static copy 1086 

of all scripts used for this study can be found at: https://bitbucket.org/oehcas/narclim2-1087 

0_design_and_evaluation_2024_support_materials/src/main/ 1088 

10. Data Availability 1089 

Data for the NARCliM2.0NARCliM 2.0 CMIP6-forced R3 and R5 RCMs are being made available 1090 

via National Computing Infrastructure (NCI). WRF namelist settings for the NARCliM2.0NARCliM 1091 

2.0 CMIP6-forced R3 and R5 RCMs are shown in Supplementary Material Figure S1 and are also 1092 

available at: https://doi.org/10.5281/zenodo.11184830. Data NARCliM1.5NARCliM 1.5 RCMs are 1093 

available via the New South Wales Climate Data Portal and CORDEX-DKRZ. Data for 1094 

NARCliM1.0NARCliM 1.0 RCMs are available via the New South Wales Climate Data Portal. 1095 

CMIP6 GCM data are available via the Earth System Grid Federation. 1096 
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