Paper #GMD-2024-87 | Model experiment description paper: 'Design, evaluation and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble'

Author Comments (ACs) – Referee 2

#	Issue Description	Discussion	Revision (in re-submitted manuscript)
	Referee #2: General Comments		
1	The authors perform extensive testing of WRF	We thank the reviewer for reviewing our	Please see our point-by-point responses in this
	physics schemes for future regional climate	manuscript and for their constructive	table.
	projections over SE Australia. Impressively, the	comments on our work, including their view	
	model is run at 4km convective permitting	that this will form a very important	
	resolution. After choosing operational	foundational paper. Please see our responses	
	configurations, the authors document the	to the reviewer's comments in this table.	
	historical biases and future projections. While the		
	analysis is rather simple, it is very helpful that		
	comparisons are made against previous		
	generations of NARCLIM. I think this will form a		
	very important foundational paper. I suggest		
	major revisions based on my comments below,		
	which mostly relate to clarifying important points		
	and improving the presentation and		
	interpretation of results.		
	Referee #2: Specific comments		
2	The authors highlight that NarCLIM2 has large	The reviewer is asking whether the ensemble	We had stated that NARCliM2.0 shows significant
	improvements in tasmax biases, with small	mean is made from some models with positive	improvement in tasmax biases, primarily based
	absolute biases of ~0.5K over many regions. Are	bias and some models with negative bias so in	on the ensemble mean. However, this
	these biases also evident when downscaling all	the ensemble mean these biases somewhat	improvement is also evident in several of the
	individual GCMs, or simply in the ensemble	cancel out. The answer is yes this is what	individual simulations, though there are
	mean? This relates to the order of operations of	happens with a reasonably good ensemble	exceptions. In NARCliM1.0 and 1.5, most

Table 2. Anonymous Referee 2 (RC2) Comments

 where the bias is computed (i.e. before or after	and indicates that the observations fall within	simulations exhibited strong systematic cold
the multi-model mean is computed). My concern	the spread of the ensemble.	biases. In contrast, for several ensemble
is that there may be cancelling of biases (e.g. if		members, NARCliM2.0 reduces these cold biases
one downscaled model has a warm bias and the	Results for individual models are provided in	or replaces them with small warm biases. Overall,
other a cold bias). Can the authors confirm that	the actual revised manuscript. The overall	individual simulations in NARCliM2.0 generally
this is not simply cancelling of biases? Related to	magnitude of the individual biases within the	show a reduction in bias compared to those in
this, showing biases for each downscaled model	ensemble were smaller in N2.0 compared to	NARCliM1.0 and 1.5.
(perhaps in Supplementary material) would help	N1.x though there were some exceptions to	
to confirm this.	that for some N2.0 individual models please	This is shown for the individual simulations in the
	see revised text in column right now included	Supporting Information Figures S4-S6 for tasmax.
	in the revised manuscript.	Equivalent plots for tasmin (for which NARCliM
		2.0 does not show improved performance versus
		NARCliM 1.x) are shown in Figures S8-S10, and
		for precipitation in Figures S12-14. To make this
		clearer in the revised manuscript, we state the
		range of per-RCM biases for each variable in the
		revised main text, and we also highlight RCMs
		that are in some way exceptions e.g.:
		"Overall, NARCliM 2.0 RCMs simulate maximum
		temperature more accurately than NARCliM1.x,
		with widespread, statistically significant
		reductions in cold biases in the ensemble mean
		(Figure 9), as well as for many individual RCMs
		(Supporting Information Figure S4-S6). These
		reductions in bias apply for all timescales but are
		largest for the annual mean, i.e. the area-
		averaged mean absolute bias is 0.75K (range:
		0.61 to 2.03 K) for the NARCliM 2.0 ensemble,
		1.73 K (range: 1.1 to 2.37 K) for NARCliM 1.5, and
		1.89 K (range: 0.55 to 4.12 K) for NARCliM 1.0
		(Figure 9d,g,j). Notably, the ensemble mean
		annual mean maximum temperature bias
		magnitudes are very small, i.e. around <0.5 K,

			over south-west WA, southern coastal regions, and several eastern regions. This may be important from a climate change adaptation and mitigation perspective as these regions are heavily populated and economically significant. NARCliM 2.0 retains warm biases of similar magnitude to NARCliM 1.5 along the north-west coast of Australia (Figure 9d,g). Moreover, these warm biases cover additional areas for NARCliM 2.0, especially during DJF (Figure 9e,h). Notably, a wide range of bias signs are evident for the individual NARCliM 2.0 ensemble members (Figures S4-S6) and a minority of NARCliM 2.0 RCMs retain strong cold biases, i.e at an annual timescale NARCliM 2.0-NorESM2-MM R3 (mean absolute bias = 2.03 K) and UKESM-1-0-LL (1.77 K)."
3	Some discussion of observational uncertainty	We agree, it is a good point to raise. The	Revised manuscript now states the text shown
	seems warranted, especially if model blases are	discussion in the panel right is now included	below (added to the end of Sect. 4.1).
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added	below (added to the end of Sect. 4.1).
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set. like any set of observations. they
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently,
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD observational dataset. This is clearly a broader
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD observational dataset. This is clearly a broader issue that applies to any model evaluation versus
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD observational dataset. This is clearly a broader issue that applies to any model evaluation versus observations. Uncertainties in AGCD for
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD observational dataset. This is clearly a broader issue that applies to any model evaluation versus observations. Uncertainties in AGCD for temperature and precipitation arise from sparse station evaluation comparison.
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD observational dataset. This is clearly a broader issue that applies to any model evaluation versus observations. Uncertainties in AGCD for temperature and precipitation arise from sparse station coverage in some locations, especially in
	truly approaching 0.5K.	discussion in the panel right is now included on observational uncertainty, which is added at the end of section 4.1 in the revised manuscript.	below (added to the end of Sect. 4.1). "We have evaluated NARCliM RCM skill via comparison with AGCD observations. Whilst AGCD are a high quality gridded observational data set, like any set of observations, they contain errors and uncertainties. Consequently, the outcomes of our evaluations depend on both the models being evaluated and the AGCD observational dataset. This is clearly a broader issue that applies to any model evaluation versus observations. Uncertainties in AGCD for temperature and precipitation arise from sparse station coverage in some locations, especially in remote areas, and interpolation errors in

			temperature uncertainties include urban heat island effects, inhomogeneities in observation records, and elevation differences. Precipitation uncertainties involve underestimation of extremes, rain gauge measurement errors, and challenges in representing complex terrain. For our purposes, the question of how much of a bias of ~0.5 K is due to the model errors versus the observational uncertainty cannot be currently quantified, because the models are evaluated against this single observational dataset. This leaves the observational uncertainty as implicitly included in our results. In the future observational uncertainty could be explicitly considered using a method like the Observation Range Adjusted (ORA) statistics (Evans and Imran, 2024)."
4	The text and figures swap between K and Celsius units, best to choose one.	Thanks for pointing this out. We have made changes in the text and to the figures to keep the unit consistent as K throughout.	Temperature units are now K throughout the revised manuscript.
5	Obviously a large effort has gone into producing the convection-permitting resolution model output. However, the improvements are mostly seen in temperature and not in precipitation. Perhaps this is because the focus here is on evaluating mean precipitation and not extremes? Can the authors comment further on this? Referring and discussing other international literature here would be useful also.	In this study, the scope was to focus on an initial 'first-order' evaluation of mean precipitation rather than extremes of precipitation. However, clearly much valuable research can now be undertaken into evaluating the skill of NARCliM2.0 in simulating extreme precipitation, subdaily precipitation, etc, using NARCliM 2.0 20 km and 4 km data, especially since these data are now publicly available. A great avenue for further research is to assess the potential value-add in simulating extreme and subdaily precipitation at convection permitting scale versus the convection-parameterised 20 km	Text added to the revised manuscript as per column left / shown below: "In this study, the scope was to focus on an initial "first-order" evaluation of mean precipitation rather than extremes of precipitation. However, clearly much valuable research can now be undertaken into evaluating the skill of NARCliM2.0 in simulating extreme precipitation, subdaily precipitation, etc, using NARCliM 2.0 20 km and 4 km data, noting these data are now publicly available. A good avenue for further research is to assess the potential added value in simulating extreme and subdaily precipitation at

manuscript. In term of previous works: multiple studies have confirmed that convection-permitting resolution model can improve simulating daily and sub-daily rainfall extremes (Xie et al., 2024; Cannon and Innocenti, 2019; Kendon et al., 2017). In future work, we will also assess added value of convection-permitting resolution model in simulating precipitation related extremes.	convection-parameterised 20 km data. Several previous studies have confirmed that convection- permitting resolution model can improve simulating daily and sub-daily rainfall extremes (Xie et al., 2024; Cannon and Innocenti, 2019; Kendon et al., 2017)."
Xie, K., Li, L., Chen, H., Mayer, S., Dobler, A., Xu, CY., and Gokturk, O. M.: Enhanced Evaluation of Sub-daily and Daily Extreme Precipitation in Norway from Convection- Permitting Models at Regional and Local Scales, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2024- 68, in review, 2024.	
Cannon, A. J. and Innocenti, S.: Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: implications for future intensity–duration– frequency curves, Nat. Hazards Earth Syst. Sci., 19, 421–440, https://doi.org/10.5194/nhess- 19-421-2019, 2019.	
Kendon, E. J., and Coauthors, 2017: Do Convection-Permitting Regional Climate Models Improve Projections of Future	

		Precipitation Change?. Bull. Amer. Meteor.	
		Soc., 98, 79–93,	
		https://doi.org/10.1175/BAMS-D-15-	
		<u>0004.1</u> .	
6	On statistical significance. My personal view is	Thank you for your suggestion and the	Reviewer's suggestion implemented and Figures
	that statistical significance is generally	reference you have posted is interesting and	9-15 revised in the revised manuscript as
	misunderstood and misinterpreted in climate	something we have applied in the revised	described in column left, and section 4.
	science. However, I do think using significance in	version of this manuscript and will continue to	Evaluation methods in the revised main text now
	terms of model agreement is much more	apply going forwards.	states the additional text below; results/figures in
	defensible (as you have done on top of this). If		question revised throughout as indicated in
	statistical significance is used, the authors also	The ensemble mean based plots (Figures 9-14	column left (please also see example figures
	need to account for multiple testing (e.g. via the	and panels a, I and s in Figure 15) are the only	below):
	false discovery rate), which does not appear to	plots where we combine multiple collections	
	be done:	of null hypotheses. For these Figures 9-14	"Significance thresholds were adjusted to
		(and panels a, I, and s in figure 15) we have	account for multiple testing using Walker's test
	https://journals.ametsoc.org/view/journals/bam	included revised plots with a corrected	(Eq.2 in Wilks, 2016)."
	<u>s/97/12/bams-d-15-</u>	criterion using Walker's test using Eq.2 from	
	00267.1.xml?tab_body=abstract-display	the reference you provided. We applied	
		Walker's test as this is stricter than FDR and	
		easier to implement at this stage. Using this	
		revised method, dependent on the NARCliM	
		ensemble in question, alpha values change	
		from 0.05 to alpha = 0.0051162 (for example).	
		We found no major visible changes to the	
		significance results / significance stippling of	
		our plots for temperature biases and future	
		projections, as can be observed in the	
		comparison of original versus revised figure	
		versions shown below this table. Here, the	
		results are similar between the original	
		version and the revised version implementing	
		your suggestion, e.g. temperature climate	
		change signals show widespread significant	
		future changes.	

		Before implementing the reviewer's suggestion, the original results for precipitation climate change signals tended to be non-significant over most regions for most models. Having implemented the reviewer's suggestion, there are fewer locations showing statistically significant future changes for mean precipitation (see comparison figures below).	
7	In Figure 15, is there an understanding of why the projections for ACCESS-ESM1-5 projections are so dry? Presumably this is in the GCM also? Do we know why that is from the physical perspective?	ACCESS-ESM1-5 driven RCM simulations project very dry futures for Australia, which is mostly inherited from the GCM. There are 40 realisations for ACCESS-ESM1-5, but only realisation 6 provides sub-daily outputs that can be used in dynamical downscaling using WRF. This realisation simulates a particularly dry projection over Australia, especially for eastern Australia, making it a useful "stress test" case. It also shows that internal variability within the GCM is a factor in producing this dry projection. Please see more details in: <u>https://research.csiro.au/access/model- ensembles-to-understand-climate-variability- and-change/</u> In terms of GCM skill versus observations, globally, this GCM is dry biased over a few regions owing to a location bias with the Inter- tropical Convergence Zone (ITCZ), e.g. see Ziehn et al. (2020): <u>CSIRO PUBLISHING </u> Journal of Southern Hemisphere Earth Systems Science	Text shown in column left added to the revised manuscript.

		and: Rashid et al. (2022): <u>https://www.publish.csiro.au/es/fulltext/es21</u> 028	
8	Table 1 is very helpful. Can an extra row on computational resources (core hours) be added? This would help emphasise how much more of an effort going to 4km resolution is.	For NARCliM 2.0, during production phase of running both the 20 km and convection- permitting 4 km simulations, we used approximately 1060M core hours . Note that these domains were run simultaneously, we do not have separate usage for the 4km resolution domain only. For NARCliM1.5, figures used are from when we were performing cost estimates for NARCliM 2.0 estimates (i.e. not actual logs): we consumed in total 30M core hours . Unfortunately, NCI (the HPC facility we used) discarded historical SU usage when they replace their main HPC, so we can not confirm the original billing logs. Records for core hour usage for the original NARCliM 1.0 are unfortunately no longer available, but core hour usage per ensemble member year should be broadly similar to NARCliM 1.5.	Table 1 is updated accordingly in the revised manuscript.
9	Figure 4, for precip, are the units mm/day?	Thanks for asking this question, yes, the units are mm/day – figure caption revised accordingly.	Figure caption revised for units.
10	Figure 9 (and others), I found it difficult to see the stippling/hatching. The resolution of the file	We agree that Figure 15 is difficult to read, e.g. the original version was 300 DPI; we have	Figure 15 revised (please see below this table).

	was low (not sure if this was an issue with the pdf preprint?) but please ensure that high resolution figures are used and that the journal isn't compressing these in the final version. The resolution is particularly low for Figure 15 and very difficult to read.	now increased the DPI to 600, among other modifications. We have revised this plot, please see the example new Figure 15 below this table.	
11	I think in some figures there is a lot more repetitive text than there needs to be. Rethinking the layout headers of certain figures would help. For example, Figure 9 and 12, (Annual, DJF, JJA) could simply be headers at the top of each page, and the different versions of Narclim could be along the LHS of page. The text is often also too small to read. E.g. the colorbar caption in Figure 15 is excessively long and this information could simply be in the caption.	Thanks for these suggestions. We have revised these figures as you have suggested – please see examples below this table.	Figures revised as suggested (please see below this table).

Reviewer 2, Comments #6 and #11. Left: original **Figure 9** from initial submission; Right: revised **Figure 9** using revised statistical significance method (please see #6) and revised plot layout/headers and labelling and increased DPI (please see #11)

N2.0 SSP3-7.0 2060-79-1990-09 Δ (JJA)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Climate change signals: mean max temperature (°C) N2.0 SSP-3.70, SSP-1.26; N1.5 RCP8.5; N1.0 SRES A2 Δ

N2.0 SSP3-7.0 2060-79-1990-09 Δ (Annual) N2.0 SSP3-7.0 2060-79-1990-09 Δ (DJF)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Climate change signal: mean max temperature (K) 2060-79 minus 1990-09

Reviewer 2, Comments #6 and #11. Left: original Figure 12 from initial submission; Right: revised Figure 12 using revised statistical significance method (please see #6) and revised plot layout/headers and labelling and increased DPI (please see #11)

Reviewer 2, Comments #6 and #11. Left: original **Figure 14** from initial submission; Right: revised **Figure 14** using revised statistical significance method (please see #6) and revised plot layout/headers and labelling and increased DPI (please see #11)

Figure 15: revised version (Reviewer 2, comment #10)