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Abstract. Downscaling global climate models (GCMs) provides crucial, high-resolution data needed for informed 11 

decision-making at regional scales. However, there is no uniform approach to select the most suitable GCMs. 12 

Over Southeast Asia (SEA), observations are sparse and have large uncertainties, complicating GCM selection 13 

especially for rainfall. To guide this selection, we apply a standardised benchmarking framework to select CMIP6 14 

GCMs for dynamical downscaling over SEA, addressing current observational limitations. This framework 15 

identifies fit-for-purpose models through a two-step process: (a) selecting models that meet minimum 16 

performance requirements in simulating the fundamental characteristics of rainfall (e.g., bias, spatial pattern, 17 

annual cycle, and trend) and (b) selecting models from (a) to further assess whether key precipitation drivers 18 

(monsoon) and teleconnections from modes of variability are captured [El Niño-Southern-Oscillation (ENSO) 19 

and Indian Ocean Dipole (IOD)]. GCMs generally exhibit wet biases, particularly over the complex terrain of the 20 

Maritime Continent. Evaluations from the first step identify 19 out of 32 GCMs that meet our minimum 21 

performance expectations in simulating rainfall. These models also consistently capture atmospheric circulations 22 

and teleconnections with modes of variability over the region but overestimate their strength. Ultimately, we 23 

identify eight GCMs meeting our performance expectations. There are obvious, high-performing GCMs from 24 

allied modelling groups, highlighting the dependency of the subset of models identified from the framework. 25 

Therefore, further tests on model independence, data availability, and future climate change spread are conducted, 26 

resulting in a final sub-set of two independent models that align with our a priori expectations for downscaling 27 

over CORDEX-SEA. 28 

Keywords: CORDEX, regional climate models, CMIP6, standardised benchmarking framework, GCM selection. 29 
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1 Introduction  30 

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) underscores, with 31 

high confidence, the escalating water-related risks, losses and damages associated with each increment of global 32 

warming (Ipcc, 2023). The report specifically notes a projected increase in the frequency and intensity of heavy 33 

rainfall, leading to an increased risk of rain-generated localised flooding, particularly over coastal and low-lying 34 

cities and regions [Section 3 (Ipcc, 2023)]. Therefore, climate projections at regional scales are required to inform 35 

climate change adaptation strategies and enhance resilience efforts.  36 

Different types of models have been developed and have become fundamental tools for assessing future regional 37 

climate changes, including state-of-the-art Global Climate Models (GCMs) and Regional Climate Models 38 

(RCMs). GCMs are generally used to explore climate interactions and underpin climate projections through the 39 

Coupled Model Intercomparison Project [CMIP ; (Meehl et al., 2000)], an initiative of the World Climate Research 40 

Programme (WCRP). However, with a typical horizontal resolution of 50-250 km, GCMs have limited ability to 41 

simulate sub-grid weather (e.g., local variance, persistence, topography, etc.) and therefore cannot accurately 42 

define local-scale processes and feedbacks (e.g., deep convection, land-atmosphere interactions, etc.). This limits 43 

GCMs ability to simulate aspects of the present-day water cycle and to determine robust future changes for local 44 

and regional applications (Maraun and Widmann, 2018; Douville et al., 2021). RCMs dynamically downscale 45 

GCM outputs to create higher spatial resolutions of ~2 -50 km, providing richer regional spatial information (e.g., 46 

small-scale processes and extreme events) for climate assessments and for impact and adaptation studies 47 

(Diaconescu and Laprise, 2013; Giorgi and Gao, 2018). However, such experiments are computationally 48 

expensive, so it is not practical to choose all GCMs for dynamical downscaling. Thus, a sub-set of GCMs has to 49 

be selected.  50 

The WRCP’s Coordinated Regional Climate Downscaling Experiment (Cordex) initiative delivers dynamically 51 

downscaled simulations of various GCMs (Giorgi and Gao, 2018) over 14 regions worldwide. This includes Phase 52 

I using CMIP5 (Giorgi et al., 2008) and Phase II Coordinated Output for Regional Evaluations (CORDEX-CORE) 53 

(Giorgi et al., 2021) as well as on-going experiments (CMIP6). However, there is no agreed approach to selecting 54 

which GCMs would be most suitable for dynamical downscaling, either in the recent WRCP’s guideline for 55 

CMIP6 CORDEX experiments (Cordex, 2021) or across different CORDEX domains (Di Virgilio et al., 2022; 56 

Grose et al., 2023; Sobolowski et al., 2023). In the earliest initiatives, GCMs were eliminated based on their skill 57 

in reproducing the current climate for the region of interest given the fact that the bias in the GCMs can propagate 58 

into the RCM through the underlying and lateral boundary conditions (i.e., driven by initial and time-dependent 59 

meteorological variables from GCMs) (Mote et al., 2011; Overland et al., 2011; Mcsweeney et al., 2012; 60 

Mcsweeney et al., 2015). In addition, the selection of GCMs considers the need to generate a reasonable 61 

uncertainty range for future climate projections (Mote et al., 2011; Overland et al., 2011). Given the shared 62 

physical components of the design of CMIP6 GCMs, there are inherent biases in statistical properties like the 63 

multi-model mean or standard deviation of the full ensemble (Boé, 2018; Brands, 2022; Sobolowski et al., 2023). 64 

To address this problem, model dependency is also considered. These considerations and methodologies have 65 

been integrated into the most recent CMIP6 CORDEX experimental design for specific regions, such as Europe 66 

(Sobolowski et al., 2023) or Australia (Di Virgilio et al., 2022) and are recommended for widespread application 67 

across other CORDEX-domains. 68 
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Model evaluation is an essential part of CMIP6 model selection since simulating past performance well is a 69 

necessary (but insufficient) condition to have more confidence in future performance. Different metrics are 70 

employed to quantify model skill in simulating various climate variables at either global (Kim et al., 2020; Ridder 71 

et al., 2021; Wang et al., 2021b; Donat et al., 2023) or regional scales [e.g., Australia (Deng et al., 2021; Di 72 

Virgilio et al., 2022) Europe (Ossó et al., 2023; Palmer et al., 2023); South America (Díaz et al., 2021); Asia 73 

(Dong and Dong, 2021); Southeast Asia (Desmet and Ngo-Duc, 2022; Pimonsree et al., 2023)]. However, the lack 74 

of consistency in the list of metrics used makes it difficult to perform one-to-one comparisons between studies or 75 

to track model performance across various regions.  76 

Recently, Isphording et al. (2024) introduced a standardised benchmarking framework (BMF) underpinned by the 77 

work of the U.S DOE (2020), which included a set of baseline performance metrics for assessing model 78 

performance in simulating different characteristics of rainfall. The BMF is different from traditional model 79 

evaluation in that it defines performance expectations a priori (Abramowitz, 2005; Abramowitz, 2012; Best, 2015; 80 

Nearing et al., 2018). Under the BMF, a model will not be considered fit-for-purpose if it fails any performance 81 

metric. The BMF consists of two tiers of metrics: the first tier includes minimum standard performance metrics 82 

related to fundamental characteristics of rainfall, and the second tier allows users to define metrics that help to 83 

answer specific scientific research questions. The BMF was initially designed for rainfall but can be widely 84 

applied to other climate variables (e.g., surface temperature), depending on the user's purpose (Isphording et al., 85 

2024).  86 

IPCC highlights Southeast Asia (SEA) as a region facing considerable climate change risks from extreme events 87 

(e.g., floods, extreme heat, and changing precipitation and extremes) (Ipcc, 2022). However, available regional 88 

climate simulations for SEA, particularly from CMIP5 CORDEX-SEA experiments are limited to 13 simulations 89 

(Tangang et al., 2020) compared to EURO-CORDEX with 68 simulations (Jacob et al., 2020) or CORDEX-90 

Australasia with 20 simulations (Evans et al., 2021). Consequently, future projections come with a higher degree 91 

of uncertainty, especially for rainfall (Tangang et al., 2020; Nguyen et al., 2023). This motivated the CORDEX-92 

SEA community to update their regional climate model simulations with the latest CMIP6 models. Note that over 93 

SEA, observations are sparse with large uncertainties, particularly for rainfall (Nguyen et al., 2020), making GCM 94 

evaluations more complicated (Nguyen et al., 2022; Nguyen et al., 2023). To date, the performance of various 95 

CMIP6 GCMs has been evaluated and ranked over the whole region of SEA (Desmet and Ngo-Duc, 2022; 96 

Pimonsree et al., 2023) and its sub-regions [e.g., Philippines (Ignacio-Reardon and Luo, 2023); Thailand 97 

(Kamworapan et al., 2021); Vietnam (Nguyen-Duy et al., 2023)]. Although there are groups of GCMs that 98 

consistently perform well (e.g., EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-HR, E3SM1-0, 99 

CESM2) and poorly (e.g., FGOALS-g3, CanESM, NESM3, IPSL-CM6A-LR) across available literature, their 100 

ranking varies differently given inconsistencies in evaluation metrics and observational reference datasets. This 101 

creates challenges in conducting direct intercomparisons across the above-mentioned studies. In addition, it is 102 

crucial to consider other important aspects discussed above (e.g., observational uncertainty, model dependency, 103 

and future climate change spread) in identifying the list of reliable models over SEA.  104 

In this research, we aim to apply the lessons learnt from CMIP6 selection over different CORDEX-domains for 105 

SEA by assessing different aspects of models: model performance, model independence, data availability and 106 

future climate change spread. We apply the BMF to provide a consistent set of metrics for holistically evaluating 107 
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model performance and to deal with large observational uncertainties over the region. Focusing on precipitation, 108 

where future projections are much more uncertain, the objectives of this research are twofold:  109 

1. To evaluate the performance of CMIP6 GCMs in simulating the fundamental characteristics of 110 

precipitation, its drivers and teleconnection with modes of variability over SEA using a standardised 111 

benchmark framework and to identify a subset of models that meet our performance expectations. 112 

2. To retain models that are relatively independent and are representative of the full range of possible 113 

projected change for finalizing a subset of CMIP6 GCMs for dynamical downscaling over SEA using 114 

model independence tests and assessment of climate change response patterns. 115 

2 Methods  116 

2.1 Data 117 

2.1.1 CMIP6 GCM data 118 

We use the historical daily data of precipitation, near surface temperature, 850 hPa wind speed and both monthly 119 

and daily sea-surface temperature data from the 32 CMIP6 models listed in Table 1. We consider models which 120 

have a horizontal grid spacing greater than 2°× 2° to avoid the impact of the coarser GCMs on dynamical 121 

downscaling. One simulation (typically the first member r1i1f1p1) is utilized in the benchmarking process to 122 

enable a fair comparison. At the time of this analysis, the first member of some models (e.g., CNRM-family 123 

models, UKESM1-0-LL). 124 

Table 1. Information on model components from the CMIP6 GCMs used in this study. 125 

No Model  Run Atmosphere 
lon/lat  Reference Atmospheric 

component 
Land 

component 
Sea ice 

component 
Ocean 

component  

1 ACCESS-CM2 r1i1p1f1 1.2° × 1.8° Bi et al. 
(2020) and 
Ziehn et al. 

(2020) 

UKMO UM 
v10.6 CABLE 2.5 LANL 

CICE5.1 MOM5 

2 ACCESS-ESM1-5 r1i1p1f1 1.2° × 1.8° UKMO UM 
V7.3 CABLE2.4 LANL 

CICE4.1 
GFDL 
MOM5 

3 BCC-CSM2-MR r1i1p1f1 1.1° × 1.1° Wu et al. 
(2019) 

BCC-
AGCM3  

BCC-
AVIM2  SIS4  MOM4-L40  

4 CESM2 r1i1p1f1 0.95° × 1.25° Danabasoglu 
et al. (2020)  

CAM6/WAC
CM6  CLM5.0  CICE5  POP2  

5 CMCC-CM2-HR4 r1i1p1f1 0.95° × 1.25° 
Cherchi et al. 

(2019) CAM v5  CLM4.5 CICE4  NEMO v3.6  6 CMCC-CM2-SR5 r1i1p1f1 0.9° × 0.9° 

7 CMCC-ESM2 r1i1p1f1 0.95° × 1.25° 

8 CNRM-CM6-1 r1i1p1f2 1.4° ×	1.4° 

Voldoire et 
al. (2019) 

ARPPE-
Climat v6.3 Flake OASIS-MCT NEMO 9 CNRM-CM6-1-

HR r1i1p1f2 0.5° × 0.5° 

10 CNRM-ESM2-1 r1i1p1f2 1.4° ×	1.4° 

11 E3SM-1-0 r1i1p1f1 1° × 1° Zheng et al. 
(2022) 

EAM (CAM 
5.3) 

MPAS-
Ocean  MPAS-Seaice  ELMv0 

(CLM4.5) 

12 EC-Earth3-
AerChem r1i1p1f1 0.7° ×	0.9° Döscher et al. 

(2022) ECMWF IFS  
LPJ-

GUESS et 
al., 2013) 

LIM3  NEMO v3.6  
13 EC-Earth3-CC r1i1p1f1 0.7° ×	0.9° 
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No Model  Run Atmosphere 
lon/lat  Reference Atmospheric 

component 
Land 

component 
Sea ice 

component 
Ocean 

component  

14 EC-Earth3 r1i1p1f1 0.7° ×	0.7° 

15 EC-Earth3-Veg r1i1p1f1 0.7° ×	0.7° 

16 EC-Earth3-Veg-
LR r1i1p1f1 1.125° × 1.125° 

17 GFDL-CM4 r1i1p1f1 1.0° ×	1.3° Held et al. 
(2019); 

Dunne et al. 
(2020) 

AM4 LM4 SIS 2  OM4 
MOM6  18 GFDL-ESM4 r1i1p1f1 1.0° ×	1.3° 

19 HadGEM3-GC31-
MM r1i1p1f3 0.9° × 0.9° Andrews et 

al. (2020) GA7/GL7 GSI8.1 
(CICE5.1) 

GO6 
(NEMO) 

20 INM-CM4-8 r1i1p1f1 1.5° ×	2.0° Volodin et al. 
(2017) 

INM-AM4-
8/5.0 INM-LND1 INM-ICE1 INM-OM5 

21 INM-CM5-0 r1i1p1f1 1.5° ×	2.0° 

22 IPSL-CM6A-LR r1i1p1f1 1.3° ×	2.5° Boucher et al. 
(2020) 

LMDZ 6A-
LR  

ORCHIDE
2.0  

NEMO-
LIM3.6  NEMO 3.6 

23 IPSL-CM6A-LR-
INCA r1i1p1f1 1.27° × 2.5° 

24 MIROC6 r1i1p1f1 1.4° × 1.4° Tatebe et al. 
(2019) MIROC 3.2 MATSIRO  MIROC 3.2 COCO 4.5  

25 MPI-ESM1-2-HR r1i1p1f1 0.94° × 0.94° Mauritsen et 
al. (2019) ECHAM6.3  JSBACH) MPIOM 

26 MPI-ESM1-2-LR r1i1p1f1 1.875°	 × 1.875° 

27 MRI-ESM2-0 r1i1p1f1 1.1° ×	1.1° Yukimoto et 
al. (2019)  MRI-AGCM3.5 MRI.COMv4  

28 NESM3 r1i1p1f1 1.9° × 1.9° Cao et al. 
(2018) ECHAM6.3  JSBACH  CICE4  NEMO v3.4 

29 NorESM2-MM r1i1p1f1 0.9 × 0.9° Seland et al. 
(2020) CAM4-Oslo  CLM4  CICE4  MICOM  

30 SAM0-UNICON r1i1p1f1 0.9°  ×	1.3° Park et al. 
(2019) 

CAM5.3 with 
UNICON CLM4  CICE4.0 POP2  

31 TaiESM1 r1i1p1f1 0.9° ×	0.9° Wang et al. 
(2021a) Tai AM1 CLM4.0 CICE4  POP2  

32 UKESM1-0-LL r1i1p1f2 1.3° × 1.9° Sellar et al. 
(2019) 

MetUM-
HadGEM3-

GA7.1  

JULES-ES-
1.0  

CICE-
HadGEM3-

GSI8  

NEMO-
HadGEM3-

GO6.0 

2.1.2 Observations and reanalyses 126 

Given the large observational uncertainty in precipitation over the region (Nguyen et al. 2022), we use multiple 127 

daily observed datasets from different in situ and satellite sources to quantify model skill (Table 2). These datasets 128 

have been chosen given their high consistency in representing daily precipitation (Nguyen et al., 2022) and 129 

extremes (Alexander et al., 2020; Nguyen et al., 2020) over SEA.  130 

ERA5 reanalysis (Hersbach et al., 2020) was used to benchmark model performance in representing the 131 

climatology of atmospheric circulation (e.g., metrics related to horizontal wind at 850 hPa level are described in 132 

section 2.2).   133 

We acknowledge that different observational sea surface temperatures (SST) have different abilities to capture 134 

signals of the modes of variability. Therefore, we utilize multiple SST products (Table 2) to take account of the 135 

https://doi.org/10.5194/gmd-2024-84
Preprint. Discussion started: 14 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 6 

observational uncertainties in simulating the teleconnection between rainfall and main modes of variability, 136 

including El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as described in section 2.2.  137 

Table 2. The main characteristic of observational datasets used in this study.  138 

Type of dataset Product short 
name 

Dataset name Temporal 
coverage 

Spatial 
resolution 

Data source Reference 

Precipitation 
dataset 

APHRODITE APHRODITE V1101 
and V1101XR 

1950-2015 0.5° ×	0.5° In situ Yatagai et al. 
(2012) 

CHIRPv2 CHIRPSv2 1981-2016 0.25° ×	0.25° In situ + 
Satellite 

Funk et al. 
(2015) 

REGEN_ALL REGEN Allstns V1 
2019 

1950-2019 1° × 1° In situ Contractor et 
al. (2020) 

GPCC_v2018 GPCC FDD v2018 1982-2019 1° × 1° In situ Schamm et al. 
(2014)  

Sea Surface 
Temperature 

dataset 

HadISST HadISST1 v1 1870-2021 1° × 1° In situ + 
Satellite 

Rayner et al. 
(2003) 

OISST OISST v2.0 1981-2020 0.25° ×	0.25° In situ + 
Satellite 

Huang et al. 
(2021) 

ERSST ERSST v5 1854-2024 2° × 2° In situ Huang et al. 
(2017) 

2.2 Benchmarking CMIP6 GCMs over Southeast Asia 139 

Given the large uncertainties and model inconsistency in rainfall projections, our main aim is to identify a subset 140 

of CMIP6 GCMs that meet our a priori expectations. That is, as a minimum requirement a model should simulate 141 

past rainfall statistics over SEA reasonably well using consistent criteria. Figure 1 illustrates the GCM selection 142 

process applied in this research based on a standardised benchmarking framework (Isphording et al., 2024). A 143 

subset of CMIP6 GCMs that meet our model performance expectations are identified through a two-step process: 144 

(a) selecting models that meet minimum performance requirements in simulating the fundamental characteristics 145 

of rainfall (Fig. 1) and (b) selecting models from (a) to further assess performance in simulating precipitation 146 

drivers (e.g., monsoon) and teleconnections with modes of variability (Fig. 1). 147 
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 148 
Figure 1. A schematic of the CMIP6 GCM selection process, including (1) model evaluation using a standardized 149 
benchmarking framework (BMF) and (2) assessment of model independence and future climate change spread. The BMF 150 
includes two steps: minimum standard metrics (MSMs) which assess very basic characteristics of rainfall and second-tier 151 
metrics (e.g., versatility metrics) which quantify model skill of the models that pass the MSMs in simulating precipitation 152 
drivers (monsoon) and teleconnections with modes of variability [the El Niño-Southern Oscillation (ENSO) and Indian Ocean 153 
Dipole (IOD)]. 154 

2.2.2 Versatility metrics 155 

The MSMs provide statistical measurements that are not always correlated with future projections (Knutti et al., 156 

2010), given that some models may simulate historical precipitation well for the wrong reasons. A further 157 

recommendation is therefore to also assess model performance based on key physical processes (Doe, 2020; 158 

Nguyen et al., 2023). This approach offers additional insights into the relative roles of model biases in simulating 159 

large-scale environments versus the limitations of model parameterizations in generating precipitation biases. 160 

Therefore, we define second tier versatility metrics to assess those GCMs selected from section 2.2.1 in simulating 161 

the complex precipitation-related processes, including drivers and teleconnections with modes of variability.   162 

Monsoon circulation 163 

SEA is situated within the Asian monsoon regime, where atmospheric circulation is modulated by two primary 164 

monsoon systems: the Indian monsoon characterized by westerlies from the Bay of Bengal into northern parts of 165 
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SEA including the mainland and northern Philippines (along 10°N) during the boreal summer (JJAS) and reversed 166 

in direction during the boreal winter (DJF); and the Australian monsoon [e.g., easterlies from Australia to the 167 

Maritime Continent (MC) and Papua] (Chang et al., 2005). These monsoon systems drive regional rainfall 168 

seasonality. Therefore, we focus on assessing model skill in simulating the intensity and direction of monsoon 169 

wind (e.g., 850-hPa wind) for JJAS and DJF. While wind speed is evaluated using the MAPE and Scor metrics 170 

similar to the MSMs for precipitation and temperature, wind direction is quantified using an equation from Desmet 171 

and Ngo-Duc (2022):  172 

MD=
∑𝑖𝑢𝑖	×!𝜃𝑖	−𝜃𝑖,𝑟𝑒𝑓![0,180]

∑𝑖𝑢𝑖	
 173 

where 𝑢" , 𝜃"	𝜃$%&  refer to the simulated wind speed at the grid i,  &𝜃"	 − 𝜃",$%&&[),*+)]  is the absolute value of 174 

difference at the ith grid between directions of simulated and reference wind speed (e.g., ERA5). The MD metric 175 

allows us to quantify the agreement in wind direction between two datasets in which the impact of high wind 176 

speed is taken into account.  177 

ENSO, IOD and Teleconnections  178 

Various parts of SEA are also affected by two prominent modes of variability: the El Niño - Southern Oscillation 179 

(ENSO) (Haylock and McBride, 2001;Chang et al., 2005;Juneng and Tangang, 2005;Qian et al., 2013) and Indian 180 

Ocean Dipole (IOD) (Xu et al., 2021) via atmospheric teleconnections. In this research, the teleconnection is 181 

defined by the temporal correlation between precipitation anomalies at each grid point and the respective 182 

Niño3.4/IOD region.  183 

Since ENSO typically matures toward the end of the calendar year (Rasmusson and Carpenter, 1982), we consider 184 

ENSO developing years as year (0) and use the DJF means to identify ENSO events. Over SEA, ENSO interacts 185 

with the monsoon cycle and due to the varying monsoon onset between the northern and southern parts of the 186 

region, its seasonal evolution differs across regions. In particular, there is a lagged negative correlation between 187 

rainfall and ENSO over the Maritime Continent (MC) and the Philippines, which develops from May-June, 188 

strengthens during July-August, and reaches its highest correlation during September-October of the developing 189 

year (year 0). On the other hand, this negative correlation becomes prominent over the northern parts during the 190 

subsequent boreal spring (from March-May of the year +1) (Wang et al., 2020; Chen et al., 2023). The negative 191 

correlation indicates dry anomalies during El Niňo and/or wet anomalies during La Nina. Therefore, in the context 192 

of this research, we examine the lead/lag Pearson correlation of the DJF Niño3.4 index in the developing year 193 

(year 0) with two different seasonal rainfalls: May-Oct (MJJASO) of the developing year (year 0) and March-194 

May (MAM) of the following year (year +1).  195 

Furthermore, considering the stronger influence of the IOD and its associated teleconnection during SON 196 

compared to other seasons (Mckenna et al., 2020), we calculated the in-phase Pearson correlation coefficient 197 

between the detrended precipitation anomaly and DMI for the SON season. The statistical significance of the 198 

correlation coefficient is tested using the Student t-test (alpha = 0.05). Note that IOD could exist as part of ENSO 199 

(Allan et al., 2001; Baquero-Bernal et al., 2002) and their coexistence could have strong impacts on rainfall 200 

variability over many parts of SEA (D'arrigo and Wilson, 2008; Amirudin et al., 2020), which is not investigated 201 

in this study.  202 
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To track ENSO variability, the Niño3.4 index (5°S-5°N and 160°E-120°W) (Trenberth and Hoar, 1997; Shukla et 203 

al., 2011) derived for the 1951-2014 period as area-mean monthly SST anomalies with respect to a 1961-1990 204 

climatology is used. For IOD, we use the Dipole Mode Index [DMI; (Saji et al., 1999; Meyers et al., 2007)] DMI 205 

measures differences of monthly SST anomalies between the west equatorial Indian Ocean (50-70° E, 10°S-10°N) 206 

and those in the east (90-110°S, 10°S -0°N). We use a 5-monthly average Niño3.4 and IOD index to remove 207 

seasonal cycles. The resulting month time series are detrended using a fourth-order polynomial fit to remove the 208 

possible influence of a long-term trend and to better preserve high amplitude (<10 years) variability (Braganza et 209 

al., 2003). 210 

Previous literature has often focused on assessing the robustness of rainfall teleconnections (e.g., spatial patterns 211 

and amplitudes) across CMIP model ensembles. These assessments typically involve examining agreement in the 212 

sign of teleconnections such as through rainfall anomaly composites (Langenbrunner and Neelin, 2013) and 213 

regional average teleconnection strength over land (Perry et al., 2020) or a combination of both (Power and 214 

Delage, 2018) rather than evaluating the skill of an individual model. However, since rainfall teleconnections 215 

across SEA exhibit spatial and seasonal variability, the above metrics may be substantially influenced by internal 216 

variability. For high level qualification, we employ spatial correlation and simplified metrics for assessing 217 

agreement in the significant sign of the teleconnections, as recommended by Liu et al. (2024). We assess the 218 

similarity in the number of grid points detecting significant signals between observed and modelled 219 

teleconnections using a set of three metrics: Hit rate (HR), Miss Rate (MR) and False Alarm rate (FAR) as follows:  220 

HR = -$%.	/"01	23$$%20	4"56	3&	4"56"&"2.60	23$$%7.0"36
-$%.	/"01	4"56"&"2.60	23$$%7.0"36	"6	89:

	𝑥	100	(%) 221 

MR = -$%.	/"01	4"56"&"2.60	23$$%7.0"36	"6	89:	;<0	/"01	63	4"56"&"2.60	23$$%7.0"36	"6	=3>%7
-$%.	/"01	4"56"&"2.60	23$$%7.0"36	"6	89:

 x100 (%) 222 

FAR = -$%.	/"01	63	4"56"&"2.60	23$$%7.0"36	"6	89:	;<0	/"01	4"56"&"2.60	23$$%7.0"36	"6	=3>%7
-$%.	/"01	63	4"56"&"2.60	23$$%7.0"36	"6	89:

 x100 (%) 223 

These metrics allow us to make sure that the model adequately simulates significant signals across the entire 224 

region. While HR ranges from 0-100 %, MR and FAR vary. A desirable model outcome includes a high HR value 225 

coupled with a low MR and FAR value, indicating the model's ability to adequately capture the significance of 226 

the correct signal in the right region (on grid scales) of teleconnections between ENSO and IOD and rainfall 227 

pattern.  228 

2.3. GCM independence assessment and future climate change spread 229 

Model independence could be assessed based on model components (e.g., shared atmospheric, land, and/or ocean 230 

models) and/or model output patterns. In this study, we employ both methods for testing GCM independence. 231 

Table 1 provides information on the principal components of the models used in this study. Note that model 232 

independence based on this criterion could depend on the model version (e.g., the same model with different levels 233 

of complexity). In addition, we acknowledge that the spatial pattern of error maps and future changes maps seem 234 

to correlate well with model dependency (Knutti et al., 2010; Knutti and Sedláček, 2013; Brunner et al., 2020; 235 

Brands, 2022). Therefore, we determine the independence of GCMs simply by calculating the correlation 236 

coefficient of historical biases and future projections between models and then apply a hierarchical clustering 237 

approach (Rousseeuw, 1987) to this correlation matrix to group models. This cluster analysis has been employed 238 

in previous literature for multiple purposes, e.g., to assess model dependency (Brunner et al., 2020; Masson and 239 
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Knutti, 2011), spatial patterns of climatology and trends in climate extremes (Gibson et al., 2017) or spatial pattern 240 

of precipitation change signals (Gibson et al., 2024).  241 

Note that historical biases are calculated by comparing the climatology of total rainfall over the land area of SEA 242 

for the 1951-2014 period with corresponding data from an observed reference. Meanwhile, for future signals, we 243 

focus on the relative change (in percentage) between the far future (2070-2099) and the baseline (1961-1990) as 244 

suggested by the World Meteorological Organization (WMO). All analyses are conducted for two seasonal 245 

periods: wet MJJASO and dry NDJFMA seasons.   246 

We use the coarsest resolution (i.e., NESM ~216 km or 1.9°×1.9° resolution) among 32 GCMs as the target 247 

resolution for comparison. All data are interpolated into a spatial resolution of 1.9°×1.9° using a first-order 248 

conservative regridding method (Jones, 1999) to better capture the spatial discontinuity of precipitation 249 

((Contractor et al., 2018). 250 

Benchmarking CMIP6 GCMs against observations is conducted over land for precipitation and the 251 

teleconnections between precipitation and modes of variability while 850-hPa winds from ERA5 allow the 252 

comparison to also be extended over the ocean.  253 

Hereafter, we select APHRODITE as the primary baseline for all the main figures, as it utilises the greatest number 254 

of rain gauges of any dataset. We include the results related to all other observational datasets in the 255 

Supplementary section (Fig. s1-5) and provide a detailed explanation of related results in the main text for 256 

intercomparison purposes.  257 

3 Results  258 

3.1 Minimum Standard Metrics (MSMs) 259 

3.1.1 MAPE and Spatial correlation (Scor) 260 

We initially assess the performance of CMIP6 GCMs in reproducing the spatial distribution of precipitation, using 261 

the first two MSMs: MAPE and Scor. Previous studies have emphasized strong seasonal and regional contrasts in 262 

rainfall distribution over Southeast Asia (Nguyen et al., 2023). Therefore, we focus on comparing the seasonal 263 

climatology (1951-2014) of total rainfall during wet days (e.g., precipitation >= 1mm) between models and 264 

APHRODITE for both wet MJJASO and dry NDJFMA seasons (Fig. 2 and Fig. 3 respectively). For MSMs, our 265 

strategy is to retain as many models as possible. We establish benchmarking thresholds based on the requirements 266 

of downscaling CMIP6 from CORDEX communities and our understanding of reasonable model performance 267 

based on current scientific understanding. In particular, GCMs should adequately produce the spatial distribution 268 

of rainfall and without a strong wet or dry bias. In addition, we also identify observational uncertainties through 269 

inter-comparison of multiple precipitation datasets. Considering variations in model performance across seasons, 270 

we also set different thresholds for benchmarking models for different seasons. In particular, due to a better 271 

model’s ability to capture spatial variability of precipitation during the dry season compared to the wet season 272 

(Desmet and Ngo-Duc, 2022), we adopt a more lenient approach by relaxing our expectation for a spatial 273 

distribution metric, setting the Scor threshold ≥ 0.4 for the wet season and ≥ 0.75 for the dry season. However, 274 

for the MAPE score, we apply a stricter criterion, as we require models to closely simulate observed rainfall 275 
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intensity over SEA. For both wet and dry seasons, we set the benchmarking threshold for MAPE at ≤ 0.75. With 276 

this threshold, our objective is to identify models capable of capturing the spatial variability of rainfall across at 277 

least 40% (Scor	≥ 0.4) or 75% (Scor	≥ 0.75) of the domain during wet and dry seasons respectively, with a 278 

wet/dry bias of no more than 75% compared to observations (MAPE ≤ 0.75) for both seasons.  279 

We first discuss key features of the wet season (MJJASO; Fig. 2). Models are ranked from wettest to driest based 280 

on their regionally-averaged climatologies. Models that meet our benchmarking thresholds for MAPE and Scor 281 

(i.e., calculated against APHRODITE) are highlighted by purple-coloured boxes. In general, CMIP6 GCMs 282 

demonstrate a wet bias in terms of regional averages, ranging from 6.32 mm/year to 131.78 mm/year except for 283 

MPI-ESM1-2-LR (-1.29 mm/year). However, there is spatial variability in the distribution of wet and dry biases. 284 

While most of these models consistently show wet biases over MC, dry biases are observed in different locations 285 

on the mainland across models [e.g., along the west coast (e.g., EC-Earth, IPSL and CMCC families) or east coast 286 

(e.g., CNRM family) as well as in some northern regions (e.g., MPI family)]. Among the wettest GCMs, including 287 

INM, IPSL, NorESM2-MM and CESM2 family, the largest biases are predominantly over MC. Interestingly, 288 

most CMIP6 GCMs can capture the spatial variability of rainfall (Scor is around or greater than 0.5), except for 289 

the IPSL-family simulations (Scors of 0.11 and 0.13). Using the threshold definitions mentioned above, six models 290 

fail to meet these benchmarks, exhibiting obvious grouping by GCM group. For example, IPSL-CM6A-LR and 291 

IPSL-CM6A-LR-INCA fail due to their low Scor (0.13 and 0.11 respectively) and high MAPE (1.20 and 1.26 292 

respectively). While INM-CM5-0 and INM-CM4-8 models meet our set expectation in relation to spatial 293 

variability, they fail to meet the MAPE threshold due to their overestimation of rainfall across the entire region 294 

(e.g., MAPE ranging from 1.29 to 1.38 respectively). All mentioned failed models exhibit high MAPE values, 295 

ranging from 0.81 to 1.28.    296 
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 297 

Figure 2. The seasonal climatological (1951-2014) bias (in mm/year) for each model against the APHRODITE observational 298 
product during the wet season (May-October; MJJASO), ranked wettest to driest based on regionally-averaged bias. The mean 299 
absolute percentage error (MAPE) and spatial correlation (Scor) calculated against APHRODITE are shown in the upper right 300 
corner. Values highlighted in purple-coloured boxes indicate values that meet our defined benchmarking thresholds. All 301 
analyses are considered at the resolution of the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 302 
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303 
Figure 3. Same as figure 2 but for the dry season (Nov-April; NDJFMA).  304 

The corresponding results for the dry season reveal some interesting features (Fig. 3). First, there are substantial 305 

similarities in the spatial distribution of climatological rainfall biases across models during this season. CMIP6 306 

GCMs consistently show small biases over Indochina and large wet biases over MC. Consequently, a better spatial 307 

correlation with observations (i.e., Scor > 0.8) is obtained during the dry season, consistent with previous findings 308 

[e.g., CORDEX-CMIP5 RCMs (Nguyen et al., 2022) or CMIP6 GCMs (Desmet and Ngo-Duc, 2022)] in 309 

highlighting the dependence of model performance on the season. With improved performance in capturing the 310 

spatial variation of total precipitation intensity compared to the wet season, all models meet our expected 311 

performance in spatial variability. However, INM- and IPSL-family models still fail the MAPE criterion since 312 

they exhibit much higher precipitation intensity than APHRODITE, particularly over MC. Note that over SEA, 313 

APHRODITE is drier than other precipitation products particularly over MC (Nguyen et al., 2020). 314 
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It is important to note that whether a model passes or fails the benchmarking is strongly dependent on the choice 315 

of threshold as emphasised in Isphording et al. (2024). For instance, more simulations would fail this test if we 316 

set a higher threshold of Scor, notably for the MJJASO season case. 317 

3.1.2. Seasonal cycle 318 

In this section, we follow the simplified method developed by Isphording et al. (2024) in quantifying the phase 319 

and structure of the seasonal cycle. In particular, we rank total monthly precipitation from wettest to driest and 320 

define the benchmarking threshold as the four wettest and driest observed months must be among the six wettest 321 

and driest modelled months (Fig. 4).  322 

 323 

Figure 4. The climatological (1951-2014), average total monthly rainfall over the mainland Southeast Asia are ranked from 324 
driest to wettest for each CMIP6 simulation. Brown shades (1-6) indicate the six driest months while teal colours (7-12) 325 
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indicate the six wettest months. The models failed in benchmarking are highlighted in orange colour. All analyses are 326 
considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 327 

Overall, most CMIP6 GCMs reproduce the phase well but tend to overestimate precipitation intensity, notably for 328 

the observed precipitation peaks during boreal summer (Fig. s1). The INM- and IPSL-family simulations stand 329 

out, consistent with the wettest biases observed in spatial patterns (section 3.1.1).  330 

According to the benchmarking threshold definitions, all models pass the benchmarking regarding the four wettest 331 

observed months. However, six models fail the benchmark in terms of the four driest observed months 332 

(highlighted in orange in Fig.4). These models have their sixth wettest month (ranked as 7 in Fig. 4) falling within 333 

the APHRODITE’s driest four months (Dec-Mar). 334 

3.1.3. Significant trend 335 

The final MSM aims to explore how rainfall changes over time (Isphording et al., 2024). In this part, we compare 336 

the direction of significant simulated and observed trends using the seasonal [wet season (Fig. 5)] and dry season 337 

(Fig. 6)] total precipitation. A Theil-Sen trend is calculated over a 65-year period (1951-2014) and tested at a 5% 338 

significance level using a Mann-Kendall significant test (Kendall, 1975).  339 

There is no significant trend in observed total precipitation during the wet season while the dry season sees a 340 

significant increase trend. A model fails this benchmark if it exhibits an opposite significant trend to that of the 341 

observations. Using this definition, all models pass this benchmark during the wet season, but MRI-ESM2-0 and 342 

MPI-ESM-1-2-HR fail during the dry season.  343 

Note that AR6 [Chapter 8 (Douville et al., 2021)] stated much more confidence in precipitation trends over MC 344 

after 1980. Therefore, we conducted an additional trend calculation (figures not shown) over the 33-year (1982-345 

2014) period for all considered observational products. Although there are differences in the slope of changes 346 

among observational products, their direction (not shown) remains the same as the 1951-2014 period.  347 
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 348 
Figure 5. The observed (top row) and modelled seasonal average total precipitation across Southeast Asia land areas during 349 
the wet season (May-October, MJJASO) for the period 1951-2014. The direction of the observed Thiel-Sen trend is the 350 
benchmark (top row). The Theil-Sen trend line for each of the simulations is plotted in grey if the models fail the benchmark 351 
and in purple if they pass. The magnitude of the trend is noted in the top middle corner and the results of the Mann-Kendall 352 
significance test is noted in the bottom right corner. Models are sorted based on the magnitude of the spatial average to match 353 
the order of Figure 2. All analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). All models pass the 354 
benchmark. 355 

 356 
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 357 
Figure 6.  Same as Figure 5 but for the boreal dry season (November – April, NDJFMA).  358 

Table 3 summarizes the MSM benchmarking results for the 32 CMIP6 GCMs tested. There are 19 simulations 359 

that pass all MSMs and therefore meet the minimum requirements for the purpose of this study. 360 
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Table 3.  Summary of model performance against the MSMs for precipitation. Models fail where the benchmarks are 361 
highlighted in red. 362 

Simulations 
Wet season Dry season 

Seasonal 
cycle  

Trend 
Pass/7 

MAPE Scor MAPE Scor Wet Dry 

ACCESS-CM2 + + + + + + + 7 

ACCESS-ESM1-5 + + + + - + + 6 

BCC-CSM2-MR + + + + + + + 7 

CESM2 + + + + + + + 7 

CMCC-CM2-HR4 + + + + + + + 7 

CMCC-CM2-SR5 + + + + + + + 7 

CMCC-ESM2 + + + + + + + 7 

CNRM-CM6-1 + + + + - + + 6 

CNRM-CM6-1-HR + + + + - + + 6 

CNRM-ESM2-1 + + + + + + + 7 

E3SM-1-0 + + + + + + + 7 

EC-Earth3-AerChem + + + + - + + 6 

EC-Earth3-CC + + + + - + + 6 

EC-Earth3 + + + + + + + 7 

EC-Earth3-Veg + + + + + + + 7 

EC-Earth3-Veg-LR + + + + + + + 7 

GFDL-CM4 + + + + + + + 7 

GFDL-ESM4 + + + + + + + 7 

HadGEM3-GC31-MM + + + + + + + 7 

INM-CM4-8 - + - + + + + 5 

INM-CM5-0 - + - + + + + 5 

IPSL-CM6A-LR - - - + + + + 4 

IPSL-CM6A-LR-INCA - - - + + + + 4 

MIROC6 + + + + + + + 7 

MPI-ESM1-2-HR + + + + - + - 5 

MPI-ESM1-2-LR + + + + + + + 7 

MRI-ESM2-0 + - + + + + + 6 

NESM3 + + - + + + + 5 

NorESM2-MM - + + + + + + 6 

SAM0-UNICON + + + + + + + 7 

TaiESM1 + + + + + + + 7 

UKESM1-0-LL + + + + + + + 7 
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While the BMF was designed for precipitation, we can also apply the MSMs to other climate variables such as 363 

annual mean near-surface temperature (see Supplementary Fig. s2-4 and Tables s1-2). For temperature, we use 364 

the APHRODITE daily temperature datasets [version V1204R1 and V1204XR (Yatagai et al., 2012)] that span 365 

1961–2015. In general, CMIP6 GCMs show biases of variable sign for average temperature, with a greater number 366 

of GCMs exhibiting cold biases rather than warm biases (Fig. s2). Almost all models succeed in simulating the 367 

observed spatial distribution (e.g., Scor greater than 0.75), phases (e.g., no model fails the benchmarking for 368 

temperature cycle, Table s1) and historical trends (e.g., increase trend, Fig. s5) of temperature. Overall, models 369 

are better at simulating temperature characteristics (e.g., spatial pattern, annual cycle, and trend) than precipitation 370 

over SEA. Out of four models that fail the MSMs for near-surface temperature, two INM-family simulations do 371 

not meet the expected spatial distribution benchmark (Scor ≥0.85) while CNRM-CM6-1-HR and NESM3 show 372 

the largest relative errors compared to APHRODITE (MAPE = 0.08). These four models also fail in MSMs for 373 

precipitation, as discussed above. 374 

3.2 Versatility metrics – Process-oriented metrics 375 

In addition to the MSMs, our aim is to select a subset of GCMs for dynamical downscaling that simulate 376 

precipitation mechanisms. Therefore, in the next steps we focus on process-oriented metrics which capture the 377 

relationship between precipitation and other variables well.  378 

3.2.1. Monsoon wind  379 

We seek to identify models that adequately depict the low-level circulation over SEA during two prominent 380 

seasons: boreal summer (June-September; JJAS) and winter (December-February, DJF), by comparing them to 381 

ERA5 (Fig. 7 and 8 respectively). To measure the agreement between simulated and observed wind patterns in 382 

terms of intensity and direction, we employ three metrics: Scor; MAPE and MD (see section 2.2.3) and we set the 383 

benchmarking threshold for each metric in dealing with limited simulations at this versatility stage. In particular, 384 

we define the threshold for wind intensity as MAPE ≤ 0.65 to seek models that do not overestimate the amplitude 385 

of monsoon wind. In terms of wind structure, we set a stricter benchmarking threshold for Scor as ≥	0.70, aiming 386 

to retain models that adequately represent the distribution of wind intensity across the whole region. Recognizing 387 

that wind magnitude might be the same at a location, but different directions could substantially impact rainfall 388 

patterns, we consider a threshold for direction MD as ≤	20 degrees. This criterion helps to eliminate models where 389 

high-speed wind direction deviates significantly from observed patterns.  390 
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 391 
Figure 7. The spatial distribution of the climatology (1979-2014) of low-level wind circulation during the summer (JJAS) 392 
(vectors) in ERA5 reanalysis (highlighted by red title) and for individual simulations selected using MSM. All analyses are 393 
considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). Shading indicates the magnitude of wind (in m s-1). The 394 
mean absolute percentage error (MAPE) and spatial correlation (Scor) calculated against ERA5 are plotted in the upper right 395 
corners respectively. The mean of difference in wind direction (MD) referenced to ERA5 is shown in the lower left corner.  396 
Values highlighted in purple-coloured boxes indicate that they meet our defined benchmarking thresholds. Models are ranked 397 
from highest to lowest values of MD.  398 
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 399 
Figure 8. Same as Figure 7 but for the boreal winter wind (December-February, DJF) 400 

During summer, ERA5 shows westerly winds flowing from the Bay of Bengal into Indochina, then deviating 401 

northward to the northern Philippines (along 10N). Concurrently, easterly winds from Australia traverse MC and 402 

Papua (see Fig. 7). Conversely, in winter, the wind patterns are largely reversed (Fig. 8). The easterly winds from 403 

the north pass through the Philippines, reaching the southern coast of Vietnam and the Malaysian peninsula, while 404 

westerly winds circulate between the Indonesian islands towards Papua.  405 

Overall, the subset of CMIP6 GCMs capture the circulation structure relatively well (Scor ranging from 0.72 to 406 

0.92 for DJF and from 0.81 to 0.95 for JJAS) but tend to overestimate the wind intensity relative to ERA5, 407 
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particularly over high-speed wind areas. For example, the westerly component from the Bay of Bengal during 408 

JJAS or the easterly component over MC during DJF is too strong compared to ERA5. These might link with the 409 

wet biases discussed in section 5.1. Interestingly, all MSM-selected models capture the direction of the main 410 

components of JJAS monsoon flow well.  411 

Using the definition of benchmark thresholds mentioned above, all models meet our expectations for wind 412 

intensity (MAPE) during the summer season but two fail for the winter season (i.e., MAPE of 0.79 for CMCC-413 

CM2-HR4 and 0.69 for MIROC6). Interestingly, only one model fails in benchmarking for wind spatial 414 

distribution and direction:  CNRM-ESM2-1 (MD is 21.67 during DJF, Fig. 8). 415 

3.2.3 Rainfall teleconnections with modes of variability  416 

The rainfall teleconnection for DJF ENSO is examined for two different seasons: the boreal summer season of the 417 

developing year (MJJASO of year 0) the boreal spring of the following year (MAM of year +1) while the 418 

precipitation-IOD teleconnection is analysed for boreal autumn (SON).  To benchmark CMIP6 GCMs, three 419 

considered metrics (HR, MR and FAR, see section 2.2.3) are calculated for each GCM. To benchmark models, 420 

we set benchmarking thresholds ≥50% for HR and ≤65% for MR and FAR, given the limited number of 421 

simulations considered at this stage. 422 

The results for observations and CMIP6 GCMs selected from MSMs are shown in Fig. 9-11 respectively. The 423 

observed teleconnections vary widely by region and season. In general, ENSO-induced summer rainfall variability 424 

is dominant over MC (e.g., Sumatra and Java, Fig. 9), while spring variability is dominant over Indochina, 425 

northern Borneo and Philippines (Fig. 10), which agrees with the evolution and seasonal circulation migration 426 

mentioned in previous literature (Juneng and Tangang, 2005; Supari et al., 2018; Wang et al., 2020). On the other 427 

hand, IOD-induced rainfall variability is more pronounced during the SON season over MC (Fig. 11).  428 

CMIP6 GCMs demonstrate reasonable accuracy in simulating the spatial distribution of the ENSO teleconnection, 429 

but tend to overestimate its strength, particularly over regions where observed temporal correlation coefficients 430 

are non-significant. During MJJASO of the developing year, most models successfully reproduce significant 431 

negative signals over MC (e.g., high HR values ranging from 66.04% to 69.81% and low MR values less than 432 

40%). During boreal spring of the following year (MAM of year 1), the ENSO-signals in CMIP6 GCMs match 433 

the observed pattern better than those during MJJASO of the developing year (Fig. 9), particularly over Indochina. 434 

Higher values of HR and lower MRs are found in most CMIP6 GCMs. This is consistent with previous literature 435 

that highlight that GCMs tend to overestimate ENSO variability across much of the equatorial Pacific (Mckenna 436 

et al., 2020) produce a poor representation of the ENSO life cycle (Taschetto et al., 2014; Mckenna et al., 2020) 437 

and interaction between ENSO and IOD (Mckenna et al., 2020; Planton et al., 2021). Note that certain models 438 

consistently perform well across seasons, such as EC-Earth3-Veg, EC-Earth3-CC, GFDL-ESM4 or HadGEM3-439 

GM31-MM while others, like BCC-CSM2-MR and CESM-2, exhibit less favourable performance in capturing 440 

ENSO teleconnections over the region (Fig. 9 and 10). Eight out of 19 models, including the EC-Earth3 family, 441 

ACCESS-CM2, E3SM1-0, GFDL-ESM4, HadGEM3-GCM31-MM, MPI-ESM1-2-LR, SAM0-UNICON, UK-442 

ESM1-0-LL meet the ENSO teleconnection benchmark. Among models that did not pass the benchmark, many 443 

indicate an overestimation of observed non-significant ENSO signals (FAR) over the mainland during the 444 

MJJASO of year 0 (e.g., FAR of CMCM-CM2-HR,  TaiESM1 andGFDL-CM4 is 76%, 74,67% and 72% 445 
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respectively) or over MC during MAM of the following year (e.g., FAR of CMCC-CMS-SR5, EC-Earth3-Veg-446 

LR and  CMCC-ESM2 are 84.21%, 77.19% and 73.69% respectively). 447 

 448 
Figure 9. Lead correlation coefficients of the boreal summer (May-October, MJJASO year 0) rainfall with the mature phase 449 
of ENSO (December-January-February, DJF year 0 of Niño3.4 indices) for observations from APHRODITE with HadISST; 450 
individual CMIP6 GCM models during the period 1951-2014. The stippling indicates the grid points where the correlation 451 
coefficient is statistically significant at 95% confidence level according to the Student t-test. The Hite Rate (HR), Miss Rate 452 
(MR) and False Alarm Rate (FAR) calculated against APHRODITE are shown in the bottom left and upper right corners 453 
respectively. All analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). Values highlighted in purple-454 
coloured boxes indicate values that meet our defined benchmarking thresholds. Models are ranked from highest to lowest 455 
values of HR. 456 
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 457 
Figure 10. Similar with Figure 9 but for the lag correlation coefficients the mature phase of ENSO (December-January-458 
February, DJF year 0 of Niño3.4 indices) with the boreal spring (March-April-May, MAM year +1) rainfall for (a) observations 459 
from APHRODITE with HadISST; (b)-(k) individual CMIP6 GCM models during the period 1951-2014. Models are ranked 460 
from highest to lowest values of HR. All analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 461 

Interestingly, the precipitation-IOD teleconnection shows some notable similarities among the 18 CMIP6 GCMs 462 

considered at the versatility metrics stage. Most models capture the significant negative correlation over Java and 463 

southern Borneo, resulting in high HR values (ranging from 58.21% to 74.63%). An exception is CESM2, which 464 

produces non-significant signals over the entire region (Fig. 11). Interestingly, models that demonstrate weak 465 

performance in simulating ENSO teleconnections (e.g., BCC-CSM2-MR, CESM2 and CNCC-CM2-HR) also 466 
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struggle to accurately simulate the IOD teleconnection. Using the same threshold definitions as established for 467 

assessing the ENSO teleconnection, we identify 14 out of 18 models that pass the benchmarking for IOD-468 

teleconnection.  469 

 470 
Figure 11. Correlation coefficient of the boreal autumn (September-October-November, SON) rainfall with IOD (DMI) 471 
indices for observations from APHRODITE with HadISST and for individual CMIP6 GCMs during the period 1951-2014. 472 
The stippling indicates the grid points where the correlation coefficient is statistically significant at 95% confidence level 473 
according to the Student t-test. The Hite Rate (HR), Miss Rate (MR) and False Alarm Rate (FAR) calculated against 474 
APHRODITE are plotted in the bottom left and upper right corners respectively. Values highlighted in purple-coloured boxes 475 
indicate values that meet our defined benchmarking thresholds. Models are ranked from highest to lowest values of HR. All 476 
analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 477 
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Given the large observational uncertainty, particularly in rainfall estimation over the region (Nguyen et al., 2020; 482 

Nguyen et al., 2022), we apply the BMF using different reference datasets while maintaining a consistent 483 

benchmarking threshold definition. This evaluation identifies a similar list of models meeting the minimum 484 

standards of performance (Table s2). However, exceptions are noted, for instance, MPI-ESM1-2-LR fails to meet 485 

the MSMs when compared with GPDD_FDD but passes with other references. Similarly, NorESM2-MM exhibits 486 

varying performance across different observational products. However, even if these two models are included in 487 

the subsequent selection steps, they fail to meet one or more versatility metrics. For instance, MPI-ESM1-2-LR 488 

fails the IOD-teleconnection benchmark (Fig. 11 and Table 4) while NorESM2-MM fails on the ENSO-489 

teleconnection benchmark; Fig. s5). 490 

It is acknowledged that different SST products vary in capturing the teleconnection. Figure s6 indicates the notable 491 

similarities among SST products in capturing the response of precipitation with modes of variability over SEA 492 

except for the teleconnection between DJF (year 0) ENSO and MJJASO (year 0) precipitation. However, despite 493 

the diversity in SST products, the final selection of models passing the BMF remains the same.  494 

Table 4 summarises the results of benchmarking 19 CMIP6 GCMs selected from the MSM for the versatility 495 

metrics. At this point of applying the BMF, we find 8 models (ACCESS-CM2, E3SM1-0, EC-Earth3, EC-Earth3-496 

Veg, GFDL-CM4, HadGEM3-GC31-MM, SAM0-UNICON, UKESM1-0-LL) meet our expectations in 497 

simulating precipitation drivers and teleconnections with modes of variability. This could be due to the fact that 498 

IOD is an ENSO artefact (Dommenget, 2011). 499 

3.3 Future climate change signals and model dependence  500 

 501 
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Figure 12.  CMIP6 GCM climate change signal (2070-2099 relative to 1961-1990) over mainland Southeast Asia during (a) 502 
the wet (MJJASO) and (b) the dry (NDJFMA) seasons. The analyses are conducted for the GCMs that simulated at least 503 
monthly near-surface air temperature (tas) and precipitation (pr) for the SSP-3.70 scenario. Note that some models that did not 504 
simulate tas or pr for SSP-3.70 (e.g., E3SM1-0, HadGEM3-GCM31-MM, SAM0-UNICON) are not plotted. 505 

Climate change signals for CMIP6 GCMs that provide mean temperature and precipitation for the SSP3-7.0 506 

scenario during two distinct seasons are shown for SEA in Fig. 12. Interestingly, while temperature projections 507 

show general agreement of an increasing trend (ranging from 2.1°C to 5.1°C), precipitation projections exhibit 508 

large variation in both direction and magnitude (ranging from -4.3% to 12.9%). Therefore, we cannot see the 509 

linear relationship between the change in regional total precipitation and temperature. Among the eight models 510 

that pass our BMF a priori expectations, there are only five models that provide at least data for monthly near-511 

surface temperature (tas) and precipitation (pre), and they are distributed across the wide range of temperature 512 

and precipitation signals over SEA. They include: the wettest models in both seasons with mid-range projected 513 

temperatures [e.g. for the MJJASO season: EC-Earth3 (10 % and 3.6 °C) and EC-Earth3_Veg (8.9% and 3.4 °C), 514 

Fig. 12a]; a model with the largest increase in temperature: UKESM1-0-LL (e.g., 5.1 °C during the MJJASO 515 

season); a model with larger response in precipitation and lower warming: GFDL-ESM4 (e.g., -11.2 % and 2.5 516 

°C during the MJJASO season) and a model with a high-range temperature and mid-range precipitation response: 517 

ACCESS-CM2 (e.g., 4.9% and 4.2 °C during the MJJASO season).  518 

 519 
Figure 13. Dendrogram with hierarchical clustering applied for a matrix of spatial correlation coefficient between CMIP6 520 
climate models for the long-term changes (2070-2099 SSP3-7.0 relative to 1961-1990) in total precipitation during the wet 521 
season (MJJASO). The matrix is plotted for GCMs that simulated at least monthly near-surface air temperature (tas) and 522 
precipitation (pr) for the SSP-3.70 scenario only. Models are clustered with the Ward’s linkage criterion. 523 
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The dendrogram and matrix of spatial correlation between CMIP6 GCMs are shown for Southeast Asia for 524 

climatological bias (Fig. s7-8) and long-term changes (Fig. 13-14) in total precipitation. As before we focus on 525 

the wet (MJJASO) and dry (NDJFMA) seasons. Historical correlations highlight notable similarities between 526 

models in historical bias maps (mostly significant and greater than 0.5) except UK-ESM1-0-LL which shows 527 

poorer relationships with other models (e.g., correlation coefficients with other models are less than 0.5) (Fig s7-528 

8). However, there is higher independence in projection maps compared with that in historical maps. This can be 529 

explained by the fact that historical simulations were constrained by observational data (e.g., observed SSTs). 530 

Future simulations on the other hand, are free running and dependent on the model setup, leading to different 531 

ranges of regional climate response across GCMs.  532 

Clustering analysis indicates three main spatial change clusters for the MJJASO season, as shown in the MJJASO 533 

dendrogram (Fig. 13). This indicates similarities in the spatial pattern of the climate change response maps (e.g., 534 

correlations greater than 0.5) not only among models from the same families [e.g., among the MetOffice GCM-535 

based family (i.e., UKESM1-0-LL, ACCESS’s family] and in model families that share the same model 536 

components (e.g., UK-ESM1-0-LL and EC-Earth3 families share the same ocean model of NEMO3.6; Table 1) 537 

but also in less obvious families like CNRM and INM families or EC-Earth-based and GFDL-based simulations. 538 

An exception is EC-Earth-Veg-LR which appears in different main clusters compared with other EC-Earth-based 539 

simulations. As indicated in the MJJASO dendrogram, the BMF-passing models that have data available for 540 

dynamical downscaling are in two main clusters including: EC-Earth3/ EC-Earth-veg/ GFDL-ESM4 and 541 

UKESM1-0-LL/ ACCESS-CM2. 542 

Figure 14 indicates two main spatial change clusters in the dry season. Interestingly, some models from the same 543 

family (e.g., EC-Earth3 and EC-Earth-Veg) still belong to the same main cluster but span different branches of 544 

the dendrogram. This might be related to the different role of internal variability in determining the level of 545 

uncertainty for precipitation during different seasons and needs further investigation. Interestingly, among models 546 

that pass the BMF, EC-Earth3 and EC-Earth-veg appear on a main cluster while UKESM1-0-LL, ACCESS-CM2 547 

and GFDL-ESM4 are in the other main cluster for the NDJFMA dendrogram. This highlights the dependence of 548 

clustering analysis on the season.  549 

 550 
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 551 
Figure 14. Similar to figure 13 but for the dry season (November – April, NDJFMA) 552 

In general, based on our evaluation of model performance, model dependence and future climate change spread, 553 

we identify two independent groups of models to use for dynamical downscaling over SEA, that is, EC-Earth3/ 554 

EC-Earth-Veg, ACCESS-CM2/UKESM1-0-LL. Given the inconsistency of classification of GFDL-ESM4 during 555 

different seasons and metrics, it is suggested to consider GFDL-ESM4 with caution.  556 

4 Discussion  557 

Our results somewhat differ from traditional model evaluation studies like Desmet and Ngo-Duc (2022), which 558 

ranks models by evaluation metrics and identifies a list of the best models including EC-Earth3, EC-Earth3-Veg, 559 

CNRM-CM6-1-HR, FGOALS-f3-L, HadGEM3-GC31-MM, GISS-E2-1-G, GFDL-ESM4, CIESM-WACCM 560 

and FIO-ESM-2-0. First, rather than ranking models, our aim is to retain models that meet our predefined 561 

expectations (e.g., benchmarking thresholds). Second, the list of examined models is different since we especially 562 

focus on models with a resolution greater than 2 degrees to avoid the impacts of coarser resolutions in GCMs on 563 

dynamical downscaling. Furthermore, while Desmet and Ngo-Duc (2022) combine model performance in 564 

simulating surface climates (e.g., precipitation, near-surface temperature) and climate processes (e.g., low-level 565 

atmospheric circulation), our focus is solely on precipitation, its drivers and teleconnections with modes of 566 

variability.  567 
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We acknowledge that the list of models passing the BMF might change, depending on how the benchmarking 568 

thresholds are defined. Isphording et al. (2024) notes that the definition of the benchmarking thresholds for the 569 

MSMs and versatility metrics can be subjective, and they should be chosen to fit the purpose of the study while 570 

incorporating strong scientific reasoning. The strategy employed here involves defining the benchmarking 571 

thresholds based on our knowledge of observational uncertainty over the region. In addition, we aim to give each 572 

model the ‘benefit of doubt’, thus retaining a broad range of plausible future climate change responses. In 573 

particular, in the initial step of the BMF framework, we are generous in defining the benchmark threshold for the 574 

wet season given the lower model performance compared with the dry season. This approach results in 19 out of 575 

32 models passing the MSMs. Subsequently we employ versatility metrics to cover a more process-based 576 

assessment. Given previous studies have highlighted the overestimation of GCMs in simulating precipitation 577 

drivers and its teleconnections and limited possible simulations at this stage, we also set relaxed thresholds for 578 

various metrics to maximize the number of models passing the BMF. We feel this is a pragmatic approach to 579 

retain a reasonable sample size and explore plausible futures. However, we acknowledge that dynamical 580 

downscaling experiments often require significant computing resources and only a small subset of GCMs should 581 

be pre-selected. Therefore, we narrow down our selection of 8 GCMs for further assessment using metrics related 582 

to model dependency and future climate change spread.  583 

Previous studies suggest the potential impact of smoothing the extreme values when interpolating to coarser 584 

resolutions, which might affect the skill score metrics used to measure percentage errors in a simulation relative 585 

to a reference (i.e., MAPE). Although we observe a higher number of failed models for the same skill when 586 

conducting the BMF at the GCM original resolutions (Table s4), we identify a similar subset of models meeting 587 

all minimum performance requirements (Table s4). This suggests that the coarser resolution of ~210 km used for 588 

benchmarking is not the main reason behind the results of quantifying model skill used in this study. This is in 589 

line with Nguyen et al. (2022), where they demonstrate that model components (e.g., configurations in different 590 

schemes) are the main reason behind the model biases rather than model resolution.  591 

The relationship between model structures and model biases is investigated in the model dependency section using 592 

cluster analysis. We acknowledge that grouping of models might changes for not only for considered periods and 593 

seasons (as discussed in section 3.3) but also for considered metrics. Interestingly, using mean percentage changes 594 

as distance measure between models, we identify similar main clusters of EC-Earth3/ EC-Earth-Veg and 595 

ACCESS-CM2/ UKESM1-0-LL among models that passing the BMF (Fig. s9-s10). This subset of models is 596 

suitable for dynamical downscaling over Southeast Asia.  597 

The customized BMF implemented in this study offers a consistent framework for model evaluation across the 598 

whole CORDEX-SEA domain. The framework can be further developed and applied extensively to sub-regions 599 

of interest, in particular within the upcoming Climatic hazard Assessment to enhance Resilience against climate 600 

Extremes for Southeast Asian megacities (CARE for SEA megacities) Project of CORDEX-SEA. In this project, 601 

each mega city can identify their climate priority and the associated metrics for selecting a fit-for-purpose subset 602 

of models. This framework could also be implemented in impact-related projections over SEA, for particular 603 

sectors: agriculture, forestry, water etc. for credible future projections.  604 
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5 Conclusion 605 

In this paper, we apply the insight gained from the CMIP6 selection process for dynamical downscaling across 606 

various CORDEX-domains to Southeast Asia by encompassing several critical factors: model performance, model 607 

independence, data availability and the spread of future climate change projections.  608 

Rather than exhaustively evaluating all performance aspects of the models in simulating the Southeast Asian 609 

climate, our focus is on selecting models that simulate precipitation well, including its drivers and teleconnections 610 

given the high uncertainty in rainfall projections over the region. In addition, we apply a novel standardised 611 

benchmarking framework – a new approach in identifying a subset of fit-for-purpose models that align with a 612 

user’s a priori performance expectations. This framework has two stages of assessment: statistical-based metrics 613 

and process/regime-based metrics, conducted for both wet (MJJASO) and dry (NDJFMA) seasons.  614 

From the first step we identify 19 GCMs that meet our minimum criteria for simulating the fundamental 615 

characteristics (e.g., bias, spatial distribution, seasonality, and trends) of seasonal rainfall. GCMs generally exhibit 616 

wet biases, particularly over the complex terrain of the Maritime Continent. These models then undergo a second 617 

evaluation, focusing on their ability to simulate climate processes and teleconnections with modes of variability. 618 

While these models consistently capture atmospheric circulation and teleconnections with modes of variability 619 

over the region, they exhibit a tendency to overestimate their strength. Ultimately, our framework narrows down 620 

the selection to eight GCMs that meet our model performance expectations in simulating fundamental 621 

characteristics of precipitation, key drivers, and teleconnections over Southeast Asia. There are obvious high-622 

performing GCMs from allied modelling groups, highlighting the dependency of the subset of models identified 623 

from the framework. Consequently, additional tests on model independence, data availability for the SSP 3-7.0, 624 

and the spread of future climate change are conducted. These tests lead to the identification of two independent 625 

groups of models (e.g., EC-Earth3-Veg/EC-Earth3 and ACCESS-CM2/UKESM1-0-LL) that align with our a 626 

priori expectations for dynamical downscaling over CORDEX-SEA. It is recommended that only one model from 627 

each group be chosen to avoid models that are too closely related.  628 

Code availability  629 

Codes for benchmarking the CMIP6 GCMs performance (Isphording, 2024) are available from 630 

https://doi.org/10.5281/zenodo.8365065 631 

Data availability  632 

Data used in this study is available through:  633 

CMIP6 GCMS at the Earth System Grid Federation (ESGF): 634 

 https://esgf.nci.org.au/projects/esgf-nci/.  635 

ERA5 (Hersbach et al. 2020): https://doi.org/10.24381/cds.bd0915c6.  636 

OISST version 2.1 (Huang et al. 2021): 637 

https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html.   638 

ERSST version 5 (Huang et al. 2017):  639 

https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf/. 640 
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