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Abstract. Downscaling global climate models (GCMs) pro-
vides crucial high-resolution data needed for informed
decision-making at regional scales. However, there is no
uniform approach to select the most suitable GCMs. Over
Southeast Asia (SEA), observations are sparse and have5

large uncertainties, complicating GCM selection especially
for rainfall. To guide this selection, we apply a standardised
benchmarking framework to select CMIP6 GCMs for dy-
namical downscaling over SEA, addressing current observa-
tional limitations. This framework identifies fit-for-purpose10

models through a two-step process: (a) selecting models
that meet minimum performance requirements in simulat-
ing the fundamental characteristics of rainfall (e.g. bias, spa-
tial pattern, annual cycle and trend) and (b) selecting models
from (a) to further assess whether key precipitation drivers15

(monsoon) and teleconnections from modes of variability
are captured, i.e. the El Niño–Southern Oscillation (ENSO)
and Indian Ocean Dipole (IOD). GCMs generally exhibit
wet biases, particularly over the complex terrain of the Mar-
itime Continent. Evaluations from the first step identify 1920

out of 32 GCMs that meet our minimum performance ex-
pectations in simulating rainfall. These models also consis-
tently capture atmospheric circulations and teleconnections
with modes of variability over the region but overestimate
their strength. Ultimately, we identify eight GCMs meet-25

ing our performance expectations. There are obvious, high-

performing GCMs from allied modelling groups, highlight-
ing the dependency of the subset of models identified from
the framework. Therefore, further tests of model indepen-
dence, data availability and future climate change spread are 30

conducted, resulting in a final subset of two independent
models that align with our a priori expectations for down-
scaling over the Coordinated Regional Climate Downscaling
Experiment –Southeast Asia (CORDEX-SEA).

1 Introduction 35

The Sixth Assessment Report (AR6) of the Intergovern-
mental Panel on Climate Change (IPCC) underscores with
high confidence the escalating water-related risks, losses and
damage associated with each increment of global warming
(IPCC, 2023). The report specifically notes a projected in- 40

crease in the frequency and intensity of heavy rainfall, lead-
ing to an increased risk of rain-generated localised flood-
ing, particularly in coastal and low-lying cities and regions
(Sect. 3, IPCC, 2023). Therefore, climate projections at re-
gional scales are required to inform climate change adapta- 45

tion strategies and enhance resilience efforts.
Different types of models have been developed and have

become fundamental tools for assessing future regional cli-
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mate changes, including state-of-the-art global climate mod-
els (GCMs) and regional climate models (RCMs). GCMs
are generally used to explore climate interactions and un-
derpin climate projections through the Coupled Model In-
tercomparison Project (CMIP; Meehl et al., 2000), an ini-5

tiative of the World Climate Research Programme (WCRP).
However, with a typical horizontal resolution of 50–250 km,
GCMs have limited ability to simulate sub-grid weather (e.g.
local variance, persistence, topography, etc.) and therefore
cannot accurately define local-scale processes and feedbacks10

(e.g. deep convection, land–atmosphere interactions, etc.).
This limits GCMs’ ability to simulate aspects of the present-
day water cycle and to determine robust future changes
for local and regional applications (Maraun and Widmann,
2018; Douville et al., 2021). RCMs dynamically downscale15

GCM outputs to create higher spatial resolutions of ∼ 2–
50 km, providing richer regional spatial information (e.g.
small-scale processes and extreme events) for climate assess-
ments and for impact and adaptation studies (Diaconescu and
Laprise, 2013; Giorgi and Gao, 2018). However, such exper-20

iments are computationally expensive, so it is not practical to
choose all GCMs for dynamical downscaling. Thus, a subset
of GCMs has to be selected.

The WCRP’s Coordinated Regional Climate Downscal-
ing Experiment (CORDEX) initiative delivers dynamically25

downscaled simulations of various GCMs (Giorgi and Gao,
2018) over 14 regions worldwide. This includes Phase I
using CMIP5 (Giorgi et al., 2008) and Phase II, Coordi-
nated Output for Regional Evaluations (CORDEX-CORE;
Giorgi et al., 2021), as well as on-going experiments30

(CMIP6). However, there is no agreed upon approach to se-
lecting which GCMs would be most suitable for dynami-
cal downscaling, either in the recent WCRP guidelines for
CMIP6 CORDEX experiments (CORDEX, 2021) or across
different CORDEX domains (Di Virgilio et al., 2022; Grose35

et al., 2023; Sobolowski et al., 2023). In the earliest initia-
tives, GCMs were eliminated based on their skill at repro-
ducing the current climate for the region of interest, given
the fact that the bias in the GCMs can propagate into the
RCM through the underlying and lateral boundary condi-40

tions (i.e. driven by initial and time-dependent meteorolog-
ical variables from GCMs; Mote et al., 2011; Overland et al.,
2011; McSweeney et al., 2012, 2015). In addition, the selec-
tion of GCMs considers the need to generate a reasonable
uncertainty range for future climate projections (Mote et al.,45

2011; Overland et al., 2011). Given the shared physical com-
ponents of the design of CMIP6 GCMs, there are inherent
biases in statistical properties like the multi-model mean or
standard deviation of the full ensemble (Boé, 2018; Brands,
2022; Sobolowski et al., 2023). To address this problem,50

model dependency is also considered. These considerations
and methodologies have been integrated into the most recent
CMIP6 CORDEX experimental design for specific regions,
such as Europe (Sobolowski et al., 2023) or Australia (Di Vir-

gilio et al., 2022) and are recommended for widespread ap- 55

plication across other CORDEX domains.
Model evaluation is an essential part of CMIP6 model se-

lection since simulating past performance well is a necessary
(but insufficient) condition to have more confidence in fu-
ture performance. Different metrics are employed to quan- 60

tify model skill in simulating various climate variables at
either global (Kim et al., 2020; Ridder et al., 2021; Wang
et al., 2021b; Donat et al., 2023) or regional scales, e.g. in
Australia (Deng et al., 2021; Di Virgilio et al., 2022), Eu-
rope (Ossó et al., 2023; Palmer et al., 2023), South America 65

(Díaz et al., 2021), Asia (Dong and Dong, 2021) and South-
east Asia (Desmet and Ngo-Duc, 2022; Pimonsree et al.,
2023). However, the lack of consistency in the list of met-
rics used makes it difficult to perform one-to-one compar-
isons between studies or to track model performance across 70

various regions.
Recently, Isphording et al. (2024) introduced a standard-

ised benchmarking framework (BMF) underpinned by the
work of the US DOE (2020), which included a set of base-
line performance metrics for assessing model performance in 75

simulating different characteristics of rainfall. The BMF is
different from traditional model evaluation in that it defines
performance expectations a priori (Abramowitz, 2005, 2012;
Best, 2015; Nearing et al., 2018). Under the BMF, a model
will not be considered fit-for-purpose if it fails any perfor- 80

mance metric. The BMF consists of two tiers of metrics: the
first tier includes minimum standard performance metrics re-
lated to fundamental characteristics of rainfall, and the sec-
ond tier allows users to define metrics that help to answer
specific scientific research questions. The BMF was initially 85

designed for rainfall but can be widely applied to other cli-
mate variables (e.g. surface temperature) depending on the
user’s purpose (Isphording et al., 2024).

IPCC highlights Southeast Asia (SEA) as a region facing
considerable climate change risks from extreme events (e.g. 90

floods, extreme heat, changing precipitation and extremes;
IPCC, 2022). However, available regional climate simula-
tions for SEA, particularly from CMIP5 CORDEX-SEA ex-
periments are limited to 13 simulations (Tangang et al., 2020)
compared to EURO-CORDEX with 68 simulations (Jacob 95

et al., 2020) or CORDEX-Australasia with 20 simulations
(Evans et al., 2021). Consequently, future projections come
with a higher degree of uncertainty, especially for rainfall
(Tangang et al., 2020; Nguyen et al., 2023). This motivated
the CORDEX-SEA community to update their regional cli- 100

mate model simulations with the latest CMIP6 models. Note
that over SEA, observations are sparse with large uncertain-
ties, particularly for rainfall (Nguyen et al., 2020), making
GCM evaluations more complicated (Nguyen et al., 2022;
Nguyen et al., 2023). To date, the performance of various 105

CMIP6 GCMs has been evaluated and ranked over the whole
region of SEA (Desmet and Ngo-Duc, 2022; Pimonsree
et al., 2023) and its sub-regions, e.g. the Philippines (Ignacio-
Reardon and Luo, 2023), Thailand (Kamworapan et al.,
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2021) and Vietnam (Nguyen-Duy et al., 2023). Although
there are groups of GCMs that consistently perform well (e.g.
EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-
HR, E3SM1-0 and CESM2) and poorly (e.g. FGOALS-g3,
CanESM, NESM3 and IPSL-CM6A-LR) across the available5

literature, their ranking varies given inconsistencies in evalu-
ation metrics and observational reference datasets. This cre-
ates challenges in conducting direct intercomparisons across
the abovementioned studies. In addition, it is crucial to con-
sider other important aspects discussed above (e.g. obser-10

vational uncertainty, model dependency and future climate
change spread) in identifying the list of reliable models over
SEA.

In this research, we aim to apply the lessons learnt from
CMIP6 selection over different CORDEX domains for SEA15

by assessing different aspects of models: model performance,
model independence, data availability and future climate
change spread. We apply the BMF to provide a consistent set
of metrics for holistically evaluating model performance and
to deal with large observational uncertainties over the region.20

Focusing on precipitation, where future projections are much
more uncertain, the objectives of this research are twofold.

– We aim to evaluate the performance of CMIP6 GCMs
in simulating the fundamental characteristics of precip-
itation, its drivers and teleconnection with modes of25

variability over SEA using a standardised benchmark
framework and to identify a subset of models that meet
our performance expectations.

– We aim to retain models that are relatively independent
and are representative of the full range of possible pro-30

jected change for finalising a subset of CMIP6 GCMs
for dynamical downscaling over SEA using model in-
dependence tests and assessment of climate change re-
sponse patterns.

The structure of the paper is as follows: Sect. 2 introduces35

the data and the benchmarking framework employed in this
study. The results are presented in three subsections. Sec-
tion 3.1 focuses on model assessment using the benchmark-
ing framework, Sect. 3.2 examines the spread of future cli-
mate change among models and Sect. 3.3 assesses model de-40

pendence through cluster analysis. Finally, we conclude with
a discussion of our results in Sect. 4 and a summary of the
main conclusions in Sect. 5.

2 Methods

2.1 Data45

2.1.1 CMIP6 GCM data

We use the historical daily data of precipitation, near-surface
temperature, 850 hPa wind speed and both monthly and daily

sea-surface temperature data from the 32 CMIP6 models
listed in Table 1. We consider only models that have a 50

horizontal grid spacing finer than 2°× 2°, which are likely
to be more suitable for dynamical downscaling. One sim-
ulation (typically the first member r1i1f1p1) is utilised in
the benchmarking process to enable a fair comparison. At
the time of this analysis, the first member of some mod- 55

els (e.g. the CNRM-family models, UKESM1-0-LL and
HadGEM3-GC31-MM) was not available, so another mem-
ber was utilised.

2.1.2 Observations and reanalyses

Given the large observational uncertainty in precipitation 60

over the region (Nguyen et al., 2022), we use multiple daily
observed datasets from different in situ and satellite sources
to quantify model skill (Table 2). These datasets have been
chosen given their high consistency in representing daily pre-
cipitation (Nguyen et al., 2022) and extremes (Alexander 65

et al., 2020; Nguyen et al., 2020) over SEA.
The ERA5 reanalysis (∼ 31 km grid resolution; Hersbach

et al., 2020) was used to benchmark model performance in
representing the climatology of atmospheric circulation (e.g.
metrics related to horizontal wind at 850 hPa level are de- 70

scribed in Sect. 2.2).
We acknowledge that different observational sea-surface

temperatures (SSTs) have different abilities to capture sig-
nals of the modes of variability. Therefore, we utilise mul-
tiple SST products (Table 2) to take account of the obser- 75

vational uncertainties in simulating the teleconnection be-
tween rainfall and the main modes of variability, including
the El Niño–Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD) as described in Sect. 2.2.

2.2 Benchmarking CMIP6 GCMs over Southeast Asia 80

Given the large uncertainties and model inconsistency in
rainfall projections, our main aim is to identify a subset of
CMIP6 GCMs that meet our a priori expectations. That is, as
a minimum requirement, a model should simulate past rain-
fall statistics over SEA reasonably well using consistent cri- 85

teria. Figure 1 illustrates the GCM selection process applied
in this research based on a standardised benchmarking frame-
work (Isphording et al., 2024). A subset of CMIP6 GCMs
that meet our model performance expectations are identified
through a two-step process: (a) selecting models that meet 90

minimum performance requirements in simulating the fun-
damental characteristics of rainfall (Fig. 1) and (b) selecting
models from (a) to further assess performance in simulating
precipitation drivers (e.g. monsoon) and teleconnections with
modes of variability (Fig. 1). 95

2.2.1 Minimum standard metrics

The BMF introduces a set of minimum-standard met-
rics (MSMs): (1) mean absolute percentage error (MAPE),
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Table 1. Information on model components from the CMIP6 GCMs used in this study.

No Model Run Atmosphere
long/lat

Reference Atmospheric
component

Land
component

Sea ice
component

Ocean
component

1 ACCESS-CM2∗ r1i1p1f1 1.2°× 1.8° Bi et al. (2020);
Ziehn et al. (2020)

UKMO UM v10.6 CABLE 2.5 LANL
CICE5.1

MOM5

2 ACCESS-ESM1-5∗ r1i1p1f1 1.2°× 1.8° UKMO UM V7.3 CABLE2.4 LANL
CICE4.1

GFDL MOM5

3 BCC-CSM2-MR∗ r1i1p1f1 1.1°× 1.1° Wu et al. (2019) BCC-AGCM3 BCC-AVIM2 SIS4 MOM4-L40

4 CESM2∗ r1i1p1f1 0.95°× 1.25° Danabasoglu et al. (2020) CAM6/WACCM6 CLM5.0 CICE5 POP2

5 CMCC-CM2-HR4 r1i1p1f1 0.95°× 1.25° Cherchi et al. (2019) CAM v5 CLM4.5 CICE4 NEMO v3.6

6 CMCC-CM2-SR5∗ r1i1p1f1 0.9°× 0.9°

7 CMCC-ESM2∗ r1i1p1f1 0.95°× 1.25°

8 CNRM-CM6-1∗ r1i1p1f2 1.4°× 1.4° Voldoire et al. (2019) ARPPE-Climat
v6.3

Flake OASIS-MCT NEMO

9 CNRM-CM6-1-HR r1i1p1f2 0.5°× 0.5°

10 CNRM-ESM2-1∗ r1i1p1f2 1.4°× 1.4°

11 E3SM-1-0∗ r1i1p1f1 1°× 1° Zheng et al. (2022) EAM (CAM 5.3) MPAS-Ocean MPAS-Seaice ELMv0
(CLM4.5)

12 EC-Earth3-AerChem r1i1p1f1 0.7°× 0.9° Döscher et al. (2022) ECMWF IFS LPJ-
GUESSTS1

LIM3 NEMO v3.6

13 EC-Earth3-CC r1i1p1f1 0.7°× 0.9°

14 EC-Earth3∗ r1i1p1f1 0.7°× 0.7°

15 EC-Earth3-Veg∗ r1i1p1f1 0.7°× 0.7°

16 EC-Earth3-Veg-LR r1i1p1f1 1.125°× 1.125°

17 GFDL-CM4 r1i1p1f1 1.0°× 1.3° Held et al. (2019);
Dunne et al. (2020)

AM4 LM4 SIS 2 OM4 MOM6

18 GFDL-ESM4∗ r1i1p1f1 1.0°× 1.3°

19 HadGEM3-GC31-MM r1i1p1f3 0.9°× 0.9° Andrews et al. (2020) GA7/GL7 GSI8.1
(CICE5.1)

GO6 (NEMO)

20 INM-CM4-8 r1i1p1f1 1.5°× 2.0° Volodin et al. (2017) INM-AM4-8/5.0 INM-LND1 INM-ICE1 INM-OM5

21 INM-CM5-0 r1i1p1f1 1.5°× 2.0°

22 IPSL-CM6A-LR∗ r1i1p1f1 1.3°× 2.5° Boucher et al. (2020) LMDZ 6A-LR ORCHIDE2.0 NEMO-
LIM3.6

NEMO 3.6

23 IPSL-CM6A-LR-INCA∗ r1i1p1f1 1.27°× 2.5°

24 MIROC6∗ r1i1p1f1 1.4°× 1.4° Tatebe et al. (2019) MIROC 3.2 MATSIRO MIROC 3.2 COCO 4.5

25 MPI-ESM1-2-HR∗ r1i1p1f1 0.94°× 0.94° Mauritsen et al. (2019) ECHAM6.3 JSBACH MPIOM

26 MPI-ESM1-2-LR∗ r1i1p1f1 1.875°× 1.875°

27 MRI-ESM2-0∗ r1i1p1f1 1.1°× 1.1° Yukimoto et al. (2019) MRI-AGCM3.5 MRI.COMv4

28 NESM3 r1i1p1f1 1.9°× 1.9° Cao et al. (2018) ECHAM6.3 JSBACH CICE4 NEMO v3.4

29 NorESM2-MM∗ r1i1p1f1 0.9°× 9° Seland et al. (2020) CAM4-Oslo CLM4 CICE4 MICOM

30 SAM0-UNICON∗ r1i1p1f1 0.9°× 1.3° Park et al. (2019) CAM5.3 with
UNICON

CLM4 CICE4.0 POP2

31 TaiESM1∗ r1i1p1f1 0.9°× 0.9° Wang et al. (2021a) Tai AM1 CLM4.0 CICE4 POP2

32 UKESM1-0-LL∗ r1i1p1f2 1.3°× 1.9° Sellar et al. (2019) MetUM-
HadGEM3-GA7.1

JULES-ES-1.0 CICE-
HadGEM3-
GSI8

NEMO-
HadGEM3-
GO6.0

∗ The model offers atmospheric variables available in three dimensions every 6 h for dynamical downscaling at the time of analyses.

(2) spatial correlation (Scor), (3) seasonal cycle (Scyc) and
(4) significant changes (SigT) (Isphording et al., 2024) to
assess the skill of climate models in simulating fundamen-
tal characteristics of precipitation (e.g. magnitude of biases,
spatial distributions, annual cycles and temporal variabil-5

ity). Before exploring complex processes, a model should
meet performance expectations for these MSMs. Therefore,

we initially calculate the MSMs for precipitation. In addi-
tion, we acknowledge that models should produce adequate
present-day simulations of other fundamental climate vari- 10

ables like near-surface temperature. Hence, we also apply
the MSMs for near-surface temperature in the Supplement.
Given the strong seasonality of precipitation in the region
(Juneng et al., 2016), the analyses related to precipitation
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Table 2. The main characteristics of observational datasets used in this study.

Type of dataset Product short name Dataset name Temporal
coverage

Spatial
resolution

Data source Reference

Precipitation
dataset

APHRODITE APHRODITE
V1101 and
V1101XR

1950–2015 0.5°× 0.5° In situ Yatagai et al. (2012)

CHIRPv2 CHIRPSv2 1981–2016 0.25°× 0.25° In situ and satellite Funk et al. (2015)

REGEN_ALL REGEN Allstns V1
2019

1950–2019 1°× 1° In situ Contractor et al. (2020)

GPCC_v2018 GPCC FDD v2018 1982–2019 1°× 1° In situ Schamm et al. (2014)

Sea-surface
temperature
dataset

HadISST HadISST1 v1 1870–2021 1°× 1° In situ and satellite Rayner et al. (2003)

OISST OISST v2.0 1981–2020 0.25°× 0.25° In situ and satellite Huang et al. (2021)

ERSST ERSST v5 1854–2024 2°× 2° In situ Huang et al. (2017)

Figure 1. A schematic of the CMIP6 GCM selection process, including (1) model evaluation using a standardised benchmarking framework
(BMF) and (2) assessment of model independence and future climate change spread. The BMF includes two steps: minimum standard
metrics (MSMs) that assess very basic characteristics of rainfall and second-tier metrics (e.g. versatility metrics) that quantify the model
skill of the models that pass the MSMs in simulating precipitation drivers (monsoon) and teleconnections with modes of variability, i.e. the
El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD).
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are conducted at a seasonal scale (e.g. the dry season from
November–April – NDJFMA – and the wet season from
May–October – MJJASO). Meanwhile, temperature analyses
are conducted at the annual scale.

Note that in this research, we focus only on precipita-5

tion over land given the lack of in situ references over the
ocean. Some satellite-derived products provide oceanic pre-
cipitation data, but most of their temporal coverage is not
sufficiently long to use as a reference. In addition, the ob-
servational uncertainties among satellite clusters in estimat-10

ing oceanic precipitation over SEA are quite substantial, with
discrepancies reaching up to 4 mmd−1 (Fig. S1 in the Sup-
plement).

2.2.2 Versatility metrics

The MSMs provide statistical measurements that are not al-15

ways correlated with future projections (Knutti et al., 2010),
given that some models may simulate historical precipita-
tion well for the wrong reasons. A further recommendation
is therefore to also assess model performance based on key
physical processes (Doe, 2020; Nguyen et al., 2023). This20

approach offers additional insights into the relative roles of
model biases at simulating large-scale environments versus
the limitations of model parameterisations in generating pre-
cipitation biases. Therefore, we define second-tier versatility
metrics to assess the GCMs selected from Sect. 2.2.1 in simu-25

lating the complex precipitation-related processes, including
drivers and teleconnections with modes of variability.

Monsoon circulation

SEA is situated within the Asian monsoon regime, where
atmospheric circulation is modulated by two primary mon-30

soon systems: the Indian monsoon characterised by wester-
lies from the Bay of Bengal into northern parts of SEA, in-
cluding the mainland and northern Philippines (along 10° N)
during the boreal summer (JJAS) and reversed in direction
during the boreal winter (DJF), and the Australian monsoon,35

e.g. easterlies from Australia to the Maritime Continent (MC)
and Papua New Guinea (Chang et al., 2005). These monsoon
systems drive regional rainfall seasonality. Therefore, we fo-
cus on assessing model skill in simulating the intensity and
direction of monsoon wind (e.g. 850 hPa wind) for JJAS and40

DJF. While wind speed is evaluated using the MAPE and
Scor metrics similar to the MSMs for precipitation and tem-
perature, wind direction is quantified using an equation from
Desmet and Ngo-Duc (2022):

MD=
∑
iui × |θi − θi,ref|[0,180]∑

iui
,45

where ui refers to the simulated wind speed at the grid i and
θi and θi,ref are the wind direction at grid i in the simulated
and reference data, respectively. |θi−θi,ref|[0,180] is the abso-
lute value of the difference at the ith grid between directions

of simulated and reference wind speed (e.g. ERA5). The MD 50

metric allows us to quantify the agreement in wind direction
between two datasets in which the impact of high wind speed
is taken into account.

ENSO, IOD and teleconnections

Various parts of SEA are also affected by two promi- 55

nent modes of variability: the El Niño–Southern Oscillation
(ENSO; Haylock and McBride, 2001; Chang et al., 2005;
Juneng and Tangang, 2005; Qian et al., 2013) and the Indian
Ocean Dipole (IOD; Xu et al., 2021) via atmospheric tele-
connections. In this research, the teleconnection is defined 60

by the temporal correlation between precipitation anomalies
at each grid point and the ENSO–IOD indices.

To track ENSO variability, the Niño3.4 index (5° S–5° N
and 160° E–120° W) (Trenberth and Hoar, 1997; Shukla
et al., 2011) derived for the 1951–2014 period as area-mean 65

monthly SST anomalies with respect to a 1961–1990 clima-
tology is used. For IOD, we use the dipole mode index (DMI;
Saji et al., 1999; Meyers et al., 2007). DMI measures differ-
ences in monthly SST anomalies between those in the west
equatorial Indian Ocean (10° S–10° N, 50–70° E) and those 70

in the east (90–110° S, 10° S–0° N).
We use a 5-monthly average Niño3.4 and IOD index to

remove seasonal cycles. The resulting monthly time series
are detrended using a fourth-order polynomial fit to remove
the possible influence of a long-term trend and to better 75

preserve high-amplitude (< 10 years) variability (Braganza
et al., 2003).

Since ENSO typically matures toward the end of the cal-
endar year (Rasmusson and Wallace, 1983TS2 ), we consider
ENSO developing years as year (0) and use the DJF means 80

to identify ENSO events. Over SEA, ENSO interacts with
the monsoon cycle, and due to the varying monsoon onsets
between the northern and southern parts of the region, its sea-
sonal evolution differs across regions (Fig. S2). In particular,
there is a lagged negative correlation between rainfall and 85

ENSO over the Maritime Continent (MC) and the Philip-
pines, which develops from May to June, strengthens dur-
ing July–August and reaches its highest correlation during
September–October of the developing year (year 0). On the
other hand, this negative correlation becomes prominent over 90

the northern parts during the subsequent boreal spring (from
March to May of the year +1; Wang et al., 2020; Chen et al.,
2023). The negative correlation indicates dry anomalies dur-
ing El Niño and/or wet anomalies during La Niña. Therefore,
in the context of this research, we examine the lead–lag Pear- 95

son correlation of the DJF Niño3.4 index in the developing
year (year 0) with two different seasonal rainfall patterns:
May–October (MJJASO) of the developing year (year 0) and
March–May (MAM) of the following year (year +1).

Furthermore, considering the stronger influence of the 100

IOD and its associated teleconnection during SON compared
to other seasons (McKenna et al., 2020), we calculated the in-
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phase Pearson correlation coefficient between the detrended
precipitation anomaly and DMI for the SON season. The sta-
tistical significance of the correlation coefficient is tested us-
ing the Student t test (alpha= 0.05). Note that IOD could
exist as part of ENSO (Allan et al., 2001; Baquero-Bernal5

et al., 2002), and their coexistence could have strong impacts
on rainfall variability over many parts of SEA (D’Arrigo and
Wilson, 2008; Amirudin et al., 2020), which is not investi-
gated in this study.

The previous literature has often focused on assessing the10

robustness of rainfall teleconnections (e.g. spatial patterns
and amplitudes) across CMIP model ensembles. These as-
sessments typically involve examining agreement in the sign
of teleconnections such as through rainfall anomaly compos-
ites (Langenbrunner and Neelin, 2013) and regional average15

teleconnection strength over land (Perry et al., 2020) or a
combination of both (Power and Delage, 2018) rather than
evaluating the skill of an individual model. However, since
rainfall teleconnections across SEA exhibit spatial and sea-
sonal variability, the above metrics may be substantially in-20

fluenced by internal variability. For high-level qualification,
we employ spatial correlation and simplified metrics to as-
sess whether there are significant correlations between tele-
connections, as recommended by Liu et al. (2024). We assess
the similarity in the number of grid points detecting signifi-25

cant signals between observed and modelled teleconnections
using a set of three metrics: hit rate (HR), miss rate (MR) and
false-alarm rate (FAR) as follows:

HR=
Area with correct sign of significant correlation

Area with significant correlation in OBS
(1)

MR=

Area with significant correlation in OBS but
with no significant correlation in model
Area with significant correlation in OBS

(2)30

FAR=

Area with no significant correlation in OBS
but with significant correlation in model

Area with no significant correlation in OBS
. (3)

These metrics allow us to make sure that the model ade-
quately simulates significant signals across the entire region.
While HR ranges from 0 to 1, MR and FAR vary. A desir-
able model outcome includes a high HR value coupled with35

low MR and FAR values, indicating the model’s ability to
adequately capture the significance of the correct signal in
the right region (on grid scales) of teleconnections between
ENSO and IOD and rainfall pattern.

2.3 GCM independence assessment and future climate40

change spread

Model independence could be assessed based on model com-
ponents (e.g. shared atmospheric, land and/or ocean models)
and/or model output patterns. In this study, we employ both
methods for testing GCM independence. Table 1 provides in-45

formation on the principal components of the models used
in this study. Note that model independence based on this

criterion could depend on the model version (e.g. the same
model with different levels of complexity). In addition, we
acknowledge that the spatial pattern of error maps and fu- 50

ture change maps seems to correlate well with model de-
pendency (Knutti et al., 2010; Knutti and Sedláček, 2013;
Brunner et al., 2020; Brands, 2022). Therefore, we deter-
mine the independence of GCMs simply by calculating the
correlation coefficient of historical biases and future projec- 55

tions between models and then apply a hierarchical cluster-
ing approach (Rousseeuw, 1987) from this correlation matrix
to group models. This cluster analysis has been employed
in the previous literature for multiple purposes, e.g. to as-
sess model dependency (Brunner et al., 2020; Masson and 60

Knutti, 2011), spatial patterns of climatology and trends in
climate extremes (Gibson et al., 2017), or spatial patterns of
precipitation change signals (Gibson et al., 2024).

Note that historical biases are calculated by comparing the
climatology of total rainfall over the land area of SEA for 65

the 1951–2014 period to corresponding data from an ob-
served reference. Meanwhile, for future signals, we focus
on the relative change (in percentage) between the far future
(2070–2099) and the baseline (1961–1990), as suggested by
the World Meteorological Organization (WMO). All analy- 70

ses are conducted for two seasonal periods: the wet MJJASO
and dry NDJFMA seasons.

We use the coarsest resolution (i.e. NESM ∼ 216 km or
1.9°× 1.9° resolution) among the 32 GCMs as the target res-
olution for comparison. All data are interpolated into a spa- 75

tial resolution of 1.9°× 1.9° using a first-order conservative
regridding method (Jones, 1999) to better capture the spatial
discontinuity of precipitation (Contractor et al., 2018).

Benchmarking CMIP6 GCMs against observations is con-
ducted over land for precipitation and the teleconnections be- 80

tween precipitation and modes of variability, while 850 hPa
winds from ERA5 allow the comparison to also be extended
over the ocean.

Hereafter, we select APHRODITE as the primary baseline
for all the main figures, as it utilises the greatest number of 85

rain gauges of any dataset. We include the results related to
all other observational datasets in the Supplement (Figs. S3–
S8) and provide a detailed explanation of related results in
the main text for intercomparison purposes.

3 Results 90

3.1 Minimum standard metrics (MSMs)

3.1.1 Mean absolute percentage error (MAPE) and
spatial correlation (Scor)

We initially assess the performance of CMIP6 GCMs in re-
producing the spatial distribution of precipitation using the 95

first two MSMs: MAPE and Scor. Previous studies have
emphasised strong seasonal and regional contrasts in rain-
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Figure 2. The seasonal climatological (1951–2014) bias (in mmyr−1) for each model against the APHRODITE observational product during
the wet season (May–October; MJJASO), ranked from wettest to driest based on regionally averaged bias. The mean absolute percentage
errors (MAPEs) and spatial correlations (Scor’s CE1 ) calculated against APHRODITE are shown in the upper-right corner. Values highlighted
in purple-coloured boxes indicate values that meet our defined benchmarking thresholds. All analyses are considered at the resolution of the
coarsest CMIP6 GCM (i.e. NESM3, ∼ 216 km).



P. L. Nguyen et al.: Selecting CMIP6 GCMs for CORDEX dynamical downscaling 9

Figure 3. Same as Fig. 2 but for the dry season (November–April; NDJFMA).TS3

fall distribution over Southeast Asia (Nguyen et al., 2023).
Therefore, we focus on comparing the seasonal climatol-
ogy (1951–2014) of total rainfall during wet days (e.g. pre-
cipitation ≥ 1 mm) between models and APHRODITE for
both the wet MJJASO and dry NDJFMA seasons (Figs. 25

and 3, respectively). For MSMs, our strategy is to retain as
many models as possible. We establish benchmarking thresh-

olds based on the requirements of downscaling CMIP6 from
CORDEX communities and our understanding of reasonable
model performance based on current scientific understand- 10

ing. In particular, GCMs should adequately reproduce the
spatial distribution of rainfall without a strong wet or dry
bias. In addition, we also identify observational uncertainties
through intercomparison of multiple precipitation datasets.
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Considering variations in model performance across seasons,
we also set different thresholds for benchmarking models for
different seasons. In particular, due to the better ability of
the models to capture spatial variability in precipitation dur-
ing the dry season compared to the wet season (Desmet and5

Ngo-Duc, 2022), we adopt a more lenient approach by relax-
ing our expectation for a spatial distribution metric, setting
the Scor threshold≥ 0.4 for the wet season and≥ 0.75 for the
dry season. However, for the MAPE score, we apply a stricter
criterion, as we require models to closely simulate observed10

rainfall intensity over SEA. For both wet and dry seasons, we
set the benchmarking threshold for MAPE at ≤ 0.75. With
this threshold, our objective is to identify models capable of
capturing the spatial variability in rainfall across at least 40 %
(Scor ≥ 0.4) or 75 % (Scor ≥ 0.75) of the domain during wet15

and dry seasons, respectively, with a wet/dry bias of no more
than 75 % compared to observations (MAPE≤ 0.75) for both
seasons.

We first discuss key features of the wet season (MJJASO;
Fig. 2). Models are ranked from wettest to driest based on20

their regionally averaged climatologies (i.e. the average of
accumulated precipitation over all land grid points inside the
domain). Models that meet our benchmarking thresholds for
MAPE and Scor (i.e. calculated against APHRODITE) are
highlighted by purple-coloured boxes. In general, CMIP625

GCMs demonstrate a wet bias in terms of regional av-
erages ranging from 6.32 to 131.78 mmyr−1, except for
MPI-ESM1-2-LR (−1.29 mmyr−1). However, there is spa-
tial variability in the distribution of wet and dry biases. While
most of these models consistently show wet biases over the30

MC, dry biases are observed in different locations on the
mainland across models (e.g. along the west coast in the EC-
Earth, IPSL and CMCC families or on the east coast in the
CNRM family, as well as in some northern regions such as
the MPI family). Among the wettest GCMs, including INM,35

IPSL, NorESM2-MM and the CESM2 family, the largest
biases are predominantly over the MC. Interestingly, most
CMIP6 GCMs can capture the spatial variability in rainfall
(Scor around or greater than 0.5), except for the IPSL-family
simulations (Scor’s of 0.11 and 0.13). Using the threshold40

definitions mentioned above, six models fail to meet these
benchmarks, exhibiting obvious grouping by GCM group.
For example, IPSL-CM6A-LR and IPSL-CM6A-LR-INCA
fail due to their low Scor’s (0.13 and 0.11, respectively) and
high MAPEs (1.20 and 1.26, respectively). While the INM-45

CM5-0 and INM-CM4-8 models meet our set expectation in
relation to spatial variability, they fail to meet the MAPE
threshold due to their overestimation of rainfall across the
entire region (e.g. MAPEs ranging from 1.29 to 1.38, respec-
tively). All failed models mentioned exhibit high MAPE val-50

ues ranging from 0.81 to 1.28.
The corresponding results for the dry season reveal some

interesting features (Fig. 3). First, there are substantial sim-
ilarities in the spatial distribution of climatological rainfall
biases across models during this season. CMIP6 GCMs con-55

sistently show small biases over Indochina and large wet bi-
ases over the MC. A better spatial correlation with observa-
tions (i.e. Scor > 0.8) is obtained during the dry season, con-
sistent with previous findings, e.g. CORDEX-CMIP5 RCMs
(Nguyen et al., 2022) or CMIP6 GCMs (Desmet and Ngo- 60

Duc, 2022), in highlighting the dependence of model perfor-
mance on the season. With improved performance in captur-
ing the spatial variation in total precipitation intensity com-
pared to the wet season, all models meet our expected per-
formance in spatial variability. However, INM- and IPSL- 65

family models still fail the MAPE criterion since they exhibit
much-higher precipitation intensity than APHRODITE, par-
ticularly over the MC. Note that over SEA, APHRODITE is
drier than other precipitation products, particularly over the
MC (Nguyen et al., 2020). 70

It is important to note that whether a model passes or fails
the benchmarking is strongly dependent on the choice of
threshold, as emphasised in Isphording et al. (2024). For in-
stance, more simulations would fail this test if we set a higher
threshold for Scor, notably for the MJJASO season case. 75

3.1.2 Seasonal cycle

In this section, we follow the simplified method developed
by Isphording et al. (2024) in quantifying the phase and
structure of the seasonal cycle. In particular, we rank total
monthly precipitation from wettest to driest. We then define 80

the benchmarking threshold such that the 4 wettest and dri-
est observed months must fall within the 6 wettest and driest
months simulated by models (Fig. 4).

Overall, most CMIP6 GCMs reproduce the phase well but
tend to overestimate precipitation intensity, notably for the 85

observed precipitation peaks during boreal summer (Fig. S3).
The INM- and IPSL-family simulations stand out, consis-
tent with the wettest biases observed in spatial patterns
(Sect. 3.1.1).

According to the benchmarking threshold definitions, all 90

models meet the benchmark for simulating the 4 wettest ob-
served months. However, six models do not pass the bench-
mark for simulating the 4 driest observed months, as high-
lighted in orange in Fig. 4. Specifically, 1 of the 4 driest
months according to the APHRODITE dataset (December 95

through March) is ranked as the 6th wettest month (ranked
7th in Fig. 4) by these models.

3.1.3 Significant trend

The final MSM aims to explore how rainfall changes over
time (Isphording et al., 2024). In this part, we compare 100

the signal of statistically significant simulated and observed
trends using the wet (Fig. 5) and dry (Fig. 6) season accu-
mulated precipitation. A Theil–Sen trend is calculated over a
65-year period (1951–2014) and tested at a 5 % significance
level using a Mann–Kendall significant test (Kendall, 1975). 105
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Figure 4. The climatological (1951–2014) average total monthly rainfall over mainland Southeast Asia ranked from driest to wettest for each
CMIP6 simulation. Brown shades (1–6) indicate the 6 driest months while teal colours (7–12) indicate the 6 wettest months. The models
that failed the benchmarking are highlighted in orange. All analyses are considered at the coarsest CMIP6 GCM resolution (i.e. NESM3,
∼ 216 km).
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Figure 5. The observed (top row) and modelled seasonal average total precipitation across Southeast Asia land areas during the wet season
(May–October; MJJASO) for the period 1951–2014. The direction of the observed Theil–Sen trend is the benchmark (top row). The Theil–
Sen trend line for each of the simulations is plotted in grey if the models fail the benchmark and in purple if they pass. The magnitude of
the trend is noted in the top middle, and the results of the Mann–Kendall significance test are noted in the bottom-right corner. Models are
sorted based on the magnitude of the spatial average to match the order of Fig. 2. All analyses are considered at the coarsest CMIP6 GCM
resolution (i.e. NESM3, ∼ 216 km). All models pass the benchmark.
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Figure 6. Same as Fig. 5 but for the boreal dry season (November–April; NDJFMA).
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There is a significant decreasing trend in observed total
precipitation during the wet season (Fig. 5 – top panel), while
the dry season has a significant increasing trend (Fig. 6 – top
panel). A model fails this benchmark if it exhibits an opposite
significant trend to that of the observations. Using this defi-5

nition, all models pass this benchmark during the wet season,
but MRI-ESM2-0 and MPI-ESM1-2-HR fail during the dry
season.

Note that the AR6 (Chap. 8, Douville et al., 2021) stated
much more confidence in precipitation trends over the MC10

after 1980. Therefore, we conducted an additional trend cal-
culation (figures not shown) over the 33-year (1982–2014)
period for all considered observational products. Although
there are differences in the slope of changes among observa-
tional products, their direction (not shown) remains the same15

as the 1951–2014 period.
Table 3 summarises the MSM benchmarking results for

the 32 CMIP6 GCMs tested. There are 19 simulations that
pass all MSMs and therefore meet the minimum require-
ments for the purpose of this study.20

While the BMF was designed for precipitation, we can
also apply the MSMs to other climate variables such as an-
nual mean near-surface temperature (see Figs. S4–S7 and
Table S1 in the Supplement). For temperature, we use the
APHRODITE daily temperature datasets (version V1204R125

and V1204XR; Yatagai et al., 2012) that span 1961–2015.
In general, CMIP6 GCMs show biases in average tempera-
ture, with a greater number of GCMs exhibiting cold biases
rather than warm biases (Fig. S4). Almost all models succeed
in simulating the observed spatial distribution (e.g. Scor’s30

greater than 0.75), phases (e.g. no model fails the bench-
marking for the temperature annual cycle; Figs. S5 and S6)
and historical trends (e.g. an increasing trend; Fig. S7) in
temperature. Overall, models are better at simulating temper-
ature characteristics (e.g. spatial patterns, annual cycles and35

trends) than precipitation over SEA. Out of the four models
that fail the MSMs for near-surface temperature, two INM-
family simulations do not meet the expected spatial distri-
bution benchmark (Scor ≥ 0.85), while CNRM-CM6-1-HR
and NESM3 show the largest relative errors compared to40

APHRODITE (MAPE= 0.08). These four models also fail
the MSMs for precipitation, as discussed above.

3.2 Versatility metrics – process-oriented metrics

In addition to the MSMs, our aim is to select a subset of
GCMs for dynamical downscaling that simulate precipita-45

tion mechanisms. Therefore, in the next steps we focus on
process-oriented metrics that capture the relationships be-
tween precipitation and other variables well.

3.2.1 Monsoon wind

We seek to identify models that adequately depict the50

low-level circulation over SEA during two prominent sea-

sons: boreal summer (June–September; JJAS) and winter
(December–February; DJF) by comparing them to ERA5
(Figs. 7 and 8, respectively). To measure the agreement be-
tween simulated and observed wind patterns in terms of in- 55

tensity and direction, we employ three metrics, Scor, MAPE
and MD (see Sect. 2.2.2), and we set the benchmarking
threshold for each metric in dealing with limited simulations
at this versatility stage. In particular, we define the threshold
for wind intensity as MAPE ≤ 0.65 to seek models that do 60

not overestimate the amplitude of monsoon wind. In terms of
wind structure, we set a stricter benchmarking threshold for
Scor of ≥ 0.70, aiming to retain models that adequately rep-
resent the distribution of wind intensity across the whole re-
gion. Recognising that wind magnitude might be the same at 65

a location but different directions could substantially impact
rainfall patterns, we consider a threshold for direction MD of
≤ 20°. This criterion helps to eliminate models where high-
speed wind direction deviates significantly from observed
patterns. 70

During summer, ERA5 shows westerly winds flowing
from the Bay of Bengal into Indochina, then deviating north-
ward to the northern Philippines (along 10° N). Concurrently,
easterly winds from Australia traverse the MC and Papua
New Guinea (see Fig. 7). Conversely, in winter, the wind 75

patterns are largely reversed (Fig. 8). The easterly and north-
easterly winds from the north pass through the Philippines,
reaching the southern coast of Vietnam and the Malaysian
peninsula, while westerly winds predominate between the In-
donesian islands towards Papua New Guinea. 80

Overall, the subset of CMIP6 GCMs capture the circula-
tion structure relatively well (Scor’s ranging from 0.72 to
0.92 for DJF and from 0.81 to 0.95 for JJAS) but tend to
overestimate the wind intensity relative to ERA5, particularly
over high-speed wind areas. For example, the westerly com- 85

ponent from the Bay of Bengal during JJAS or the easterly
component over the MC during DJF is too strong compared
to ERA5. These might link with the wet biases discussed in
Sect. 4TS5 . Interestingly, all MSM-selected models for pre-
cipitation capture the direction of the main components of 90

JJAS monsoon flow well.
Using the definition of benchmark thresholds mentioned

above, all models meet our expectations for wind intensity
(MAPE) during the summer season but two fail for the winter
season (i.e. MAPEs of 0.79 for CMCC-CM2-HR4 and 0.69 95

for MIROC6). Interestingly, only one model fails the bench-
marking for wind spatial distribution and direction: CNRM-
ESM2-1 (MD is 21.67 during DJF; Fig. 8).

3.2.2 Rainfall teleconnections with modes of variability

The rainfall teleconnection for DJF ENSO is examined for 100

two different seasons. We look at the extended summer sea-
son of the developing year (MJJASO of year 0) and the bo-
real spring of the following year (MAM of year +1), while
the precipitation–IOD teleconnection is analysed for boreal
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Table 3. Summary of model performance against the MSMs for precipitation. Models that pass the benchmarks are highlighted in bold. TS4

Simulations Wet season Dry season Seasonal cycle Trend Pass (7 is passing)

MAPE Scor MAPE Scor Wet Dry

ACCESS-CM2 + + + + + + + 7
ACCESS-ESM1-5 + + + + - + + 6
BCC-CSM2-MR + + + + + + + 7
CESM2 + + + + + + + 7
CMCC-CM2-HR4 + + + + + + + 7
CMCC-CM2-SR5 + + + + + + + 7
CMCC-ESM2 + + + + + + + 7
CNRM-CM6-1 + + + + - + + 6
CNRM-CM6-1-HR + + + + - + + 6
CNRM-ESM2-1 + + + + + + + 7
E3SM-1-0 + + + + + + + 7
EC-Earth3-AerChem + + + + - + + 6
EC-Earth3-CC + + + + - + + 6
EC-Earth3 + + + + + + + 7
EC-Earth3-Veg + + + + + + + 7
EC-Earth3-Veg-LR + + + + + + + 7
GFDL-CM4 + + + + + + + 7
GFDL-ESM4 + + + + + + + 7
HadGEM3-GC31-MM + + + + + + + 7
INM-CM4-8 - + - + + + + 5
INM-CM5-0 - + - + + + + 5
IPSL-CM6A-LR - - - + + + + 4
IPSL-CM6A-LR-INCA - - - + + + + 4
MIROC6 + + + + + + + 7
MPI-ESM1-2-HR + + + + - + - 5
MPI-ESM1-2-LR + + + + + + + 7
MRI-ESM2-0 + - + + + + + 6
NESM3 + + - + + + + 5
NorESM2-MM - + + + + + + 6
SAM0-UNICON + + + + + + + 7
TaiESM1 + + + + + + + 7

autumn (SON). To benchmark CMIP6 GCMs, three metrics
(HR, MR and FAR; see Sect. 2.2.2) are calculated for each
GCM considering the thresholds ≥ 0.5 for HR and ≤ 0.65
for MR and FAR, given the limited number of simulations
used at this stage.5

The results for observations and CMIP6 GCMs selected
from MSMs are shown in Figs. 9–11. The observed tele-
connections vary widely by region and season. In general,
ENSO-induced summer rainfall variability is dominant over
the MC (e.g. Sumatra and Java; Fig. 9), while spring variabil-10

ity is dominant over Indochina, northern Borneo and Philip-
pines (Fig. 10), which agrees with the evolution and sea-
sonal circulation migration mentioned in the previous liter-
ature (Juneng and Tangang, 2005; Supari et al., 2018; Wang
et al., 2020). On the other hand, IOD-induced rainfall vari-15

ability is more pronounced during the SON season over the
MC (Fig. 11).

CMIP6 GCMs (Fig. 10) demonstrate reasonable accu-
racy in simulating the spatial distribution of the ENSO tele-

connection but tend to overestimate its strength, particu- 20

larly over regions where observed temporal correlation co-
efficients are non-significant. During MJJASO of the de-
veloping year, most models successfully reproduce signif-
icant negative signals over the MC (e.g. high HR values
ranging from 0.66 to 0.7 and low MR values less than 25

0.4). During boreal spring of the following year (MAM of
year 1), the ENSO signals in CMIP6 GCMs match the ob-
served pattern better than those during MJJASO of the de-
veloping year (Fig. 9), particularly over Indochina. Higher
values of HR and lower MRs are found in most CMIP6 30

GCMs. This is consistent with the previous literature that
highlights that GCMs tend to overestimate ENSO variability
across much of the equatorial Pacific (McKenna et al., 2020)
and produce a poor representation of the ENSO life cycle
(Taschetto et al., 2014; McKenna et al., 2020) and interac- 35

tion between ENSO and IOD (McKenna et al., 2020; Planton
et al., 2021). Note that certain models consistently perform
well across seasons, such as EC-Earth3-Veg, EC-Earth3-CC,
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Figure 7. The spatial distribution of the climatology (1979–2014) of low-level wind circulation during the summer (JJAS; vectors) in ERA5
reanalysis (highlighted by red title) and for individual simulations selected using MSMs. All analyses are considered at the coarsest CMIP6
GCM resolution (i.e. NESM3, ∼ 216 km). Shading indicates the magnitude of the wind (in ms−1). The mean absolute percentage errors
(MAPEs) and spatial correlations (Scor’s) calculated against ERA5 are plotted in the upper-right corners. The mean of difference in wind
direction (MD) referenced to ERA5 is shown in the lower-left corner. Values highlighted in purple-coloured boxes indicate that they meet
our defined benchmarking thresholds. Models are ranked from highest to lowest values of MD.

GFDL-ESM4 or HadGEM3-GM31-MM, while others, like
BCC-CSM2-MR and CESM2, exhibit less-favourable per-
formance in capturing ENSO teleconnections over the re-
gion (Figs. 9 and 10). Eight out of the 19 models, includ-
ing the EC-Earth3 family, ACCESS-CM2, E3SM1-0, GFDL-5

ESM4, HadGEM3-GCM31-MM, MPI-ESM1-2-LR, SAM0-
UNICON and UK-ESM1-0-LL, meet the ENSO teleconnec-

tion benchmark. Among models that did not pass the bench-
mark, many indicate an overestimation of observed non-
significant ENSO signals (FAR) over the mainland during 10

the MJJASO of year 0 (e.g. the FARs of CMCC-CM2-HR,
TaiESM1 and GFDL-CM4 are 0.76, 0.75 and 0.72, respec-
tively) or over the MC during MAM of the following year
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Figure 8. Same as Fig. 7 but for the boreal winter wind (December–February; DJF).

(e.g. the FARs of CMCC-CM2-SR5CE2 , EC-Earth3-Veg-LR
and CMCC-ESM2 are 0.84, 0.77 and 0.74, respectively).

Interestingly, the precipitation–IOD teleconnection shows
some notable similarities among the 18 CMIP6 GCMs con-
sidered at the versatility metrics stage (Fig. 11). Most mod-5

els capture the significant negative correlation over Java and
southern Borneo, resulting in high HR values (ranging from
0.58 to 0.75). An exception is CESM2, which produces non-
significant signals over the entire region (Fig. 11). Interest-
ingly, models that demonstrate weak performance in simu-10

lating ENSO teleconnections (e.g. BCC-CSM2-MR, CESM2
and CMCC-CM2-HR) also struggle to accurately simulate

the IOD teleconnection. Using the same threshold definitions
as established for assessing the ENSO teleconnection, we
identify 14 out of 18 models that pass the benchmarking for 15

IOD teleconnection.
Given the large observational uncertainty, particularly in

rainfall estimation over the region (Nguyen et al., 2020,
2022), we apply the BMF using different reference datasets
while maintaining a consistent benchmarking threshold def- 20

inition. This evaluation identifies a similar list of mod-
els meeting the minimum standards of performance (Ta-
ble S1). However, exceptions are noted; for instance, MPI-
ESM1-2-LR fails to meet the MSMs when compared with
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Figure 9. Lead correlation coefficients of the boreal summer (May–October; MJJASO year 0) rainfall with the mature phase of ENSO
(December–January–February; DJF year 0 of Niño3.4 indices) for observations from APHRODITE with HadISST: individual CMIP6 GCM
models during the period 1951–2014. The stippling indicates the grid points where the correlation coefficient is statistically significant at a
95 % confidence level according to the Student t test. The hit rates (HRs), miss rates (MRs) and false-alarm rates (FARs) calculated against
APHRODITE are shown in the bottom-left and upper-right corners. All analyses are considered at the coarsest CMIP6 GCM resolution (i.e.
NESM3, ∼ 216 km). Values highlighted in purple-coloured boxes indicate values that meet our defined benchmarking thresholds. Models
are ranked from highest to lowest values of HR.

GPDD_FDDCE3 but passes with other references. Simi-
larly, NorESM2-MM exhibits varying performance across
different observational products. However, even if these two
models are included in the subsequent selection steps, they
fail to meet one or more versatility metrics. For instance,5

MPI-ESM1-2-LR fails the IOD–teleconnection benchmark

(Fig. 11 and Table 4), while NorESM2-MM fails the ENSO–
teleconnection benchmark (Fig. S9).

It is acknowledged that different SST products vary in cap-
turing the teleconnection. Figure S8 indicates the notable 10

similarities among SST products in capturing the response
of precipitation with modes of variability over SEA, except
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Figure 10. Similar to Fig. 9 but for the lag correlation coefficients of the mature phase of ENSO (December–January–February; DJF year 0 of
Niño3.4 indices) with the boreal spring (March–April–May; MAM year +1) rainfall for (top) observations from APHRODITE with HadISST
and individual CMIP6 GCM models during the period 1951–2014. Models are ranked from highest to lowest values of HR. All analyses are
considered at the coarsest CMIP6 GCM resolution (i.e. NESM3, ∼ 216 km).

for the teleconnection between DJF (year 0) ENSO and MJ-
JASO (year 0) precipitation. However, despite the diversity in
SST products, the final selection of models passing the BMF
remains the same.

Table 4 summarises the results of benchmarking 195

CMIP6 GCMs selected from the MSM for the versatility
metrics. At the point of applying the BMF, we find eight
models (ACCESS-CM2, E3SM1-0, EC-Earth3, EC-Earth3-
Veg, GFDL-CM4, HadGEM3-GC31-MM, SAM0-UNICON

and UKESM1-0-LL) that meet our expectations in simulat- 10

ing precipitation drivers and teleconnections with modes of
variability. This could be due to the fact that IOD is an ENSO
artefact (Dommenget, 2011).
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Figure 11. Correlation coefficients of the boreal autumn (September–October–November; SON) rainfall with IOD (DMI) for observations
from APHRODITE with HadISST and for individual CMIP6 GCMs during the period 1951–2014. The stippling indicates the grid points
where the correlation coefficient is statistically significant at a 95 % confidence level according to the Student t test. The hit rates (HRs),
miss rates (MRs) and false-alarm rates (FARs) calculated against APHRODITE are plotted in the bottom-left and upper-right corners. Values
highlighted in purple-coloured boxes indicate values that meet our defined benchmarking thresholds. Models are ranked from highest to
lowest values of HR. All analyses are considered at the coarsest CMIP6 GCM resolution (i.e. NESM3, ∼ 216 km).

3.3 Future climate change signals and model
dependence

In this section, we examine the climate change signals from
CMIP6 GCMs that provide at least mean temperature and
precipitation data for the Shared Socioeconomic Pathway5

(SSP3-7.0) scenario across two distinct seasons (see Fig. 12).
Note that some models, such as CNRM-CM6-1-HR and EC-

Earth3-Veg-LR (listed in Table 1), do not offer the sub-daily
data (e.g. atmospheric variables in three dimensions at 6 h
intervals) required for dynamical downscaling at the time of 10

writing. Nevertheless, we include these models in our analy-
sis to gain insights into the future climate change responses
of CMIP6 GCMs. Interestingly, while temperature projec-
tions show general agreement regarding an increasing trend
(ranging from 2.1 to 5.1 °C), precipitation projections ex- 15
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Table 4. Summary model performance against the versatility metrics that focused on precipitation drivers and modes of variability (ENSO
and IOD teleconnections). Models that meet or exceed the benchmarks are highlighted in bold. All analyses are considered at the coarsest
CMIP6 GCM resolution (i.e. NESM3, ∼ 216 km).

Simulations Monsoon circulation ENSO teleconnection IOD teleconnection Pass (15 is

JJAS DJF MJJASO MAM SON passing)

Scor MD MAPE Scor MD MAPE MR FAR HR MR FAR HR MR FAR HR

ACCESS-CM2 + + + + + + + + + + + + + + + 15
BCC-CSM2-MR + + + + + + - + - + + + + + + 13
CESM2 + + + + + + - + + - - + - - + 10
CMCC-CM2-HR4 + + + - + + + + - + + + - + - 11
CMCC-CM2-SR5 + + + + + + + + + + + - + + + 14
CMCC-ESM2 + + + + + + + + + + + - + + + 14
CNRM-ESM2-1 + + + - - - + + + + + + + + + 12
E3SM-1-0 + + + + + + + + + + + + + + + 15
EC-Earth3 + + + + + + + + + + + + + + + 15
EC-Earth3-Veg + + + + + + + + + + + + + + + 15
EC-Earth3-Veg-LR + + + + + + + + + + + - + + + 14
GFDL-CM4 + + + + + + + + - + + + + + + 14
GFDL-ESM4 + + + + + + + + + + + + + + + 15
HadGEM3-GC31-MM + + + + + + + + + + + + + + + 15
MIROC6 + + + - + + + + + + + - + + + 13
MPI-ESM1-2-LR + + + + + + + + + + + + - + + 14
SAM0-UNICON + + + + + + + + + + + + + + + 15
TaiESM1 + + + + + + + + - + + - + + + 13
UKESM1-0-LL + + + + + + + + + + + + + + + 15

Figure 12. CMIP6 GCM climate change signal (2070–2099 relative to 1961–1990) over mainland Southeast Asia during (a) the wet season
(MJJASO) and (b) the dry season (NDJFMA). The analyses are conducted for the GCMs that simulated at least monthly near-surface air
temperature (tas) and precipitation (pr) for the SSP3-7.0 scenario. Note that some models that did not simulate tas or pr for SSP3-7.0 (e.g.
E3SM1-0, HadGEM3-GCM31-MM and SAM0-UNICON) are not plotted.
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hibit large variation in both signal and magnitude (ranging
from −4.3 % to 12.9 %). Therefore, we cannot see the lin-
ear relationship between the change in regional total precip-
itation and temperature. Among the eight models that pass
our BMF a priori expectations, there are only five models5

that provide at least data for monthly near-surface temper-
ature (tas) and precipitation (pre), and they are distributed
across the wide range of temperature and precipitation sig-
nals over SEA. They include the wettest models in both sea-
sons with mid-range projected temperatures, e.g. EC-Earth310

(10 % and 3.6 °C) and EC-Earth3_Veg (8.9 % and 3.4 °C) for
the MJJASO season (Fig. 12a), UKESM1-0-LL as the model
with the largest increase in temperature (e.g. 5.1 °C during
the MJJASO season), GFDL-ESM4 as the model with larger
response in precipitation and lower warming (e.g. −11.2 %15

and 2.5 °C during the MJJASO season), and ACCESS-CM2
as the model with a high-range temperature and mid-range
precipitation response (e.g. 4.9 % and 4.2 °C during the MJ-
JASO season).

The dendrogram and matrix of spatial correlations be-20

tween CMIP6 GCMs are shown for Southeast Asia for cli-
matological bias (Figs. S10 and S11) and long-term changes
(Figs. 13 and 14) in total precipitation. As before, we focus
on the wet (MJJASO) and dry (NDJFMA) seasons. Histori-
cal correlations highlight notable similarities between mod-25

els in historical bias maps (mostly significant and greater
than 0.5), except UK-ESM1-0-LL, which shows poorer rela-
tionships with other models (e.g. correlation coefficients with
other models are less than 0.5; Figs. S10 and S11). However,
there is higher independence in projection maps compared30

with that in historical maps. This interesting feature needs
further investigation.

Clustering analysis indicates three main spatial change
clusters for the MJJASO season, as shown in the dendrogram
(Fig. 13). This indicates similarities in the spatial patterns of35

the climate change response maps (e.g. correlations greater
than 0.5) not only among models from the same families, e.g.
among the Met Office GCM-based family (i.e. UKESM1-
0-LL, ACCESS’s family) and in model families that share
the same model components (e.g. the UK-ESM1-0-LL and40

EC-Earth3 families share the same ocean model, NEMO3.6;
Table 1) but also in less obvious families like the CNRM
and INM families or the EC-Earth-based and GFDL-based
simulations. An exception is EC-Earth-Veg-LR, which ap-
pears in different main clusters compared with other EC-45

Earth-based simulations. As indicated in the MJJASO den-
drogram, the BMF-passing models that have data available
for dynamical downscaling are in two main clusters, includ-
ing the EC-Earth3–EC-Earth-Veg–GFDL-ESM4 cluster and
the UKESM1-0-LL–ACCESS-CM2 cluster.50

Figure 14 indicates two main spatial change clusters in the
dry season. Interestingly, some models from the same family
(e.g. EC-Earth3 and EC-Earth-Veg) still belong to the same
main cluster but span different branches of the dendrogram.
This might be related to the different role of internal variabil-55

ity in determining the level of uncertainty for precipitation
during different seasons and needs further investigation. In-
terestingly, among models that pass the BMF, EC-Earth3 and
EC-Earth-Veg appear on a main cluster, while UKESM1-0-
LL, ACCESS-CM2 and GFDL-ESM4 are in the other main 60

cluster for the NDJFMA dendrogram. This highlights the de-
pendence of the clustering analysis on the season.

We acknowledge that a model’s good performance in sim-
ulating historical climate conditions does not necessarily
guarantee similar accuracy in future climate projections, a 65

well-recognised issue in climate modelling (Herger et al.,
2019). However, there are no arguments in the literature sug-
gesting that models with weaker skill in simulating histori-
cal climatology perform better in future projections. On the
contrary, we believe that models demonstrating good per- 70

formance in both statistical and process-based metrics are
more likely to provide credible future projections, given their
proven ability to accurately simulate the physical mecha-
nisms responsible for generating rainfall in the region.

In general, based on our evaluation of model perfor- 75

mance, model dependence and future climate change spread,
we identify two independent groups of models to use
for dynamical downscaling over SEA, that is, EC-Earth3–
EC-Earth-Veg and ACCESS-CM2–UKESM1-0-LL. Models
from these two groups also offer the atmospheric variables 80

in three dimensions at 6 h intervals required for dynamical
downscaling (Table 1). Given the inconsistency of classifi-
cation of GFDL-ESM4 during different seasons and metrics,
we suggest considering GFDL-ESM4 with caution.

4 Discussion 85

Our results somewhat differ from traditional model evalua-
tion studies like Desmet and Ngo-Duc (2022), which ranks
models by evaluation metrics and identifies a list of the
best models including EC-Earth3, EC-Earth3-Veg, CNRM-
CM6-1-HR, FGOALS-f3-L, HadGEM3-GC31-MM, GISS- 90

E2-1-G, GFDL-ESM4, CIESM-WACCM and FIO-ESM-2-
0. First, rather than ranking models, our aim is to retain mod-
els that meet our predefined expectations (e.g. benchmarking
thresholds). Second, the list of examined models is different
since we especially focus on models with a resolution greater 95

than 2° to avoid the impacts of coarser resolutions in GCMs
on dynamical downscaling. Furthermore, while Desmet and
Ngo-Duc (2022) combine model performance in simulating
surface climates (e.g. precipitation and near-surface temper-
ature) and climate processes (e.g. low-level atmospheric cir- 100

culation), our focus is solely on precipitation, its drivers and
teleconnections with modes of variability.

We acknowledge that the list of models passing the BMF
might change depending on how the benchmarking thresh-
olds are defined. Isphording et al. (2024) note that the defini- 105

tion of the benchmarking thresholds for the MSMs and versa-
tility metrics can be subjective, and they should be chosen to
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Figure 13. Dendrogram with hierarchical clustering applied to a matrix of spatial correlation coefficients between CMIP6 climate models
for the long-term changes (2070–2099 SSP3-7.0 relative to 1961–1990) in total precipitation during the wet season (MJJASO). The matrix
is plotted for GCMs that simulated at least monthly near-surface air temperature (tas) and precipitation (pr) for the SSP3-7.0 scenario only.
Models are clustered using Ward’s linkage criterion.

fit the purpose of the study while incorporating strong scien-
tific reasoning. The strategy employed here involves defining
the benchmarking thresholds based on our knowledge of ob-
servational uncertainty over the region. In addition, we aim to
give each model the benefit of doubt, thus retaining a broad5

range of plausible future climate change responses. In partic-
ular, in the initial step of the BMF framework, we are gener-
ous in defining the benchmark threshold for the wet season
given the lower model performance compared to the dry sea-
son. This approach results in 19 out of 32 models passing the10

MSMs. Subsequently we employ versatility metrics to cover
a more process-based assessment. Given that previous stud-
ies have highlighted the overestimation of GCMs in simulat-
ing precipitation drivers and their teleconnections and limited
possible simulations at this stage, we also set relaxed thresh-15

olds for various metrics to maximise the number of models

passing the BMF. We feel this is a pragmatic approach to re-
tain a reasonable sample size and explore plausible futures.
However, we acknowledge that dynamical downscaling ex-
periments often require significant computing resources and 20

only a small subset of GCMs should be pre-selected. There-
fore, we narrow down our selection of 8 GCMs for further
assessment using metrics related to model dependency and
future climate change spread.

Previous studies suggest the potential impact of smooth- 25

ing the extreme values when interpolating to coarser resolu-
tions, which might affect the skill score metrics used to mea-
sure percentage errors in a simulation relative to a reference
(i.e. MAPE). Although we observe a higher number of failed
models for the same skill when conducting the BMF at the 30

GCM original resolutions (Table S4), we identify a similar
subset of models meeting all minimum performance require-
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Figure 14. The same as Fig. 13 but for the dry season (November–April; NDJFMA).

ments (Table S4). This suggests that the coarser resolution of
∼ 210 km used for benchmarking is not the main reason be-
hind the results of quantifying model skill used in this study.
This is in line with Nguyen et al. (2022), where they demon-
strate that model components (e.g. configurations in different5

schemes) are the main reason behind the model biases rather
than model resolution.

The relationship between model structures and model bi-
ases is investigated in the model dependency section us-
ing cluster analysis. We acknowledge that grouping of mod-10

els might changes for not only the periods and seasons
considered (as discussed in Sect. 3.3) but also the metrics
considered. Interestingly, using mean percentage changes
as distance measure between models, we identify similar
main clusters of EC-Earth3–EC-Earth-Veg and ACCESS-15

CM2–UKESM1-0-LL among models that passed the BMF
(Figs. S12 and S13). This subset of models is suitable for
dynamical downscaling over Southeast Asia.

The customised BMF implemented in this study offers a
consistent framework for model evaluation across the whole 20

CORDEX-SEA domain. The framework can be further de-
veloped and applied extensively to sub-regions of interest, in
particular within the upcoming Climatic hazard Assessment
to enhance Resilience against climate Extremes for South-
east Asian megacities (CARE for SEA megacities) project of 25

CORDEX-SEA. In this project, each megacity can identify
their climate priority and the associated metrics to select a
fit-for-purpose subset of models. This framework could also
be implemented in impact-related projections over SEA for
credible future projections for particular sectors: agriculture, 30

forestry, water, etc.

5 Conclusion

In this paper, we apply the insight gained from the CMIP6
selection process for dynamical downscaling across vari-
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ous CORDEX domains to Southeast Asia by encompass-
ing several critical factors: model performance, model inde-
pendence, data availability and the spread of future climate
change projections.

Rather than exhaustively evaluating all performance as-5

pects of the models in simulating the Southeast Asian cli-
mate, our focus is on selecting models that simulate precip-
itation well, including its drivers and teleconnections, given
the high uncertainty in rainfall projections over the region.
In addition, we apply a novel standardised benchmarking10

framework – a new approach to identify a subset of fit-for-
purpose models that align with a user’s a priori performance
expectations. This framework has two stages of assessment:
statistical-based metrics and process/regime-based metrics,
conducted for both the wet (MJJASO) and dry (NDJFMA)15

seasons.
From the first step we identify 19 GCMs that meet our

minimum criteria for simulating the fundamental character-
istics (e.g. bias, spatial distribution, seasonality and trends)
of seasonal rainfall. GCMs generally exhibit wet biases, par-20

ticularly over the complex terrain of the Maritime Continent.
These models then undergo a second evaluation, focusing
on their ability to simulate climate processes and telecon-
nections with modes of variability. While these models con-
sistently capture atmospheric circulation and teleconnections25

with modes of variability over the region, they exhibit a ten-
dency to overestimate their strength. Ultimately, our frame-
work narrows down the selection to eight GCMs that meet
our model performance expectations in simulating funda-
mental characteristics of precipitation, key drivers and tele-30

connections over Southeast Asia. There are obvious high-
performing GCMs from allied modelling groups, highlight-
ing the dependency of the subset of models identified from
the framework. Consequently, additional tests on model in-
dependence, data availability for SSP3-7.0 and the spread35

of future climate change are conducted. These tests lead to
the identification of two independent groups of models (e.g.
EC-Earth3-Veg/EC-Earth3 and ACCESS-CM2/UKESM1-0-
LL) that align with our a priori expectations for dynamical
downscaling over CORDEX-SEA. It is recommended that40

only one model from each group be chosen to avoid models
that are too closely related.

Code and data availability. Code for benchmarking the
CMIP6 GCM performance (Isphording, 2024) is avail-
able from https://doi.org/10.5281/zenodo.8365065 (Isphord-45
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