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Abstract. Downscaling global climate models (GCMs) provides crucial, high-resolution data needed for informed 11 

decision-making at regional scales. However, there is no uniform approach to select the most suitable GCMs. 12 

Over Southeast Asia (SEA), observations are sparse and have large uncertainties, complicating GCM selection 13 

especially for rainfall. To guide this selection, we apply a standardised benchmarking framework to select CMIP6 14 

GCMs for dynamical downscaling over SEA, addressing current observational limitations. This framework 15 

identifies fit-for-purpose models through a two-step process: (a) selecting models that meet minimum 16 

performance requirements in simulating the fundamental characteristics of rainfall (e.g., bias, spatial pattern, 17 

annual cycle, and trend) and (b) selecting models from (a) to further assess whether key precipitation drivers 18 

(monsoon) and teleconnections from modes of variability are captured [El Niño-Southern-Oscillation (ENSO) 19 

and Indian Ocean Dipole (IOD)]. GCMs generally exhibit wet biases, particularly over the complex terrain of the 20 

Maritime Continent. Evaluations from the first step identify 19 out of 32 GCMs that meet our minimum 21 

performance expectations in simulating rainfall. These models also consistently capture atmospheric circulations 22 

and teleconnections with modes of variability over the region but overestimate their strength. Ultimately, we 23 

identify eight GCMs meeting our performance expectations. There are obvious, high-performing GCMs from 24 

allied modelling groups, highlighting the dependency of the subset of models identified from the framework. 25 

Therefore, further tests on model independence, data availability, and future climate change spread are conducted, 26 

resulting in a final sub-set of two independent models that align with our a priori expectations for downscaling 27 

over CORDEX-SEA. 28 

Keywords: CORDEX, regional climate models, CMIP6, standardised benchmarking framework, GCM selection. 29 
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1 Introduction  30 

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) underscores, with 31 

high confidence, the escalating water-related risks, losses and damages associated with each increment of global 32 

warming (Ipcc, 2023). The report specifically notes a projected increase in the frequency and intensity of heavy 33 

rainfall, leading to an increased risk of rain-generated localised flooding, particularly over coastal and low-lying 34 

cities and regions [Section 3 (Ipcc, 2023)]. Therefore, climate projections at regional scales are required to inform 35 

climate change adaptation strategies and enhance resilience efforts.  36 

Different types of models have been developed and have become fundamental tools for assessing future regional 37 

climate changes, including state-of-the-art Global Climate Models (GCMs) and Regional Climate Models 38 

(RCMs). GCMs are generally used to explore climate interactions and underpin climate projections through the 39 

Coupled Model Intercomparison Project [CMIP ; (Meehl et al., 2000)], an initiative of the World Climate Research 40 

Programme (WCRP). However, with a typical horizontal resolution of 50-250 km, GCMs have limited ability to 41 

simulate sub-grid weather (e.g., local variance, persistence, topography, etc.) and therefore cannot accurately 42 

define local-scale processes and feedbacks (e.g., deep convection, land-atmosphere interactions, etc.). This limits 43 

GCMs’ ability to simulate aspects of the present-day water cycle and to determine robust future changes for local 44 

and regional applications (Maraun and Widmann, 2018; Douville et al., 2021). RCMs dynamically downscale 45 

GCM outputs to create higher spatial resolutions of ~2 -50 km, providing richer regional spatial information (e.g., 46 

small-scale processes and extreme events) for climate assessments and for impact and adaptation studies 47 

(Diaconescu and Laprise, 2013; Giorgi and Gao, 2018). However, such experiments are computationally 48 

expensive, so it is not practical to choose all GCMs for dynamical downscaling. Thus, a sub-set of GCMs has to 49 

be selected.  50 

The WCRP’s Coordinated Regional Climate Downscaling Experiment (Cordex) initiative delivers dynamically 51 

downscaled simulations of various GCMs (Giorgi and Gao, 2018) over 14 regions worldwide. This includes Phase 52 

I using CMIP5 (Giorgi et al., 2008) and Phase II Coordinated Output for Regional Evaluations (CORDEX-CORE) 53 

(Giorgi et al., 2021) as well as on-going experiments (CMIP6). However, there is no agreed approach to selecting 54 

which GCMs would be most suitable for dynamical downscaling, either in the recent WCRP’s guideline for 55 

CMIP6 CORDEX experiments (Cordex, 2021) or across different CORDEX domains (Di Virgilio et al., 2022; 56 

Grose et al., 2023; Sobolowski et al., 2023). In the earliest initiatives, GCMs were eliminated based on their skill 57 

in reproducing the current climate for the region of interest given the fact that the bias in the GCMs can propagate 58 

into the RCM through the underlying and lateral boundary conditions (i.e., driven by initial and time-dependent 59 

meteorological variables from GCMs) (Mote et al., 2011; Overland et al., 2011; Mcsweeney et al., 2012; 60 

Mcsweeney et al., 2015). In addition, the selection of GCMs considers the need to generate a reasonable 61 

uncertainty range for future climate projections (Mote et al., 2011; Overland et al., 2011). Given the shared 62 

physical components of the design of CMIP6 GCMs, there are inherent biases in statistical properties like the 63 

multi-model mean or standard deviation of the full ensemble (Boé, 2018; Brands, 2022; Sobolowski et al., 2023). 64 

To address this problem, model dependency is also considered. These considerations and methodologies have 65 

been integrated into the most recent CMIP6 CORDEX experimental design for specific regions, such as Europe 66 

(Sobolowski et al., 2023) or Australia (Di Virgilio et al., 2022) and are recommended for widespread application 67 

across other CORDEX-domains. 68 
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Model evaluation is an essential part of CMIP6 model selection since simulating past performance well is a 69 

necessary (but insufficient) condition to have more confidence in future performance. Different metrics are 70 

employed to quantify model skill in simulating various climate variables at either global (Kim et al., 2020; Ridder 71 

et al., 2021; Wang et al., 2021b; Donat et al., 2023) or regional scales [e.g., Australia (Deng et al., 2021; Di 72 

Virgilio et al., 2022) Europe (Ossó et al., 2023; Palmer et al., 2023); South America (Díaz et al., 2021); Asia 73 

(Dong and Dong, 2021); Southeast Asia (Desmet and Ngo-Duc, 2022; Pimonsree et al., 2023)]. However, the lack 74 

of consistency in the list of metrics used makes it difficult to perform one-to-one comparisons between studies or 75 

to track model performance across various regions.  76 

Recently, Isphording et al. (2024) introduced a standardised benchmarking framework (BMF) underpinned by the 77 

work of the U.S DOE (2020), which included a set of baseline performance metrics for assessing model 78 

performance in simulating different characteristics of rainfall. The BMF is different from traditional model 79 

evaluation in that it defines performance expectations a priori (Abramowitz, 2005; Abramowitz, 2012; Best, 2015; 80 

Nearing et al., 2018). Under the BMF, a model will not be considered fit-for-purpose if it fails any performance 81 

metric. The BMF consists of two tiers of metrics: the first tier includes minimum standard performance metrics 82 

related to fundamental characteristics of rainfall, and the second tier allows users to define metrics that help to 83 

answer specific scientific research questions. The BMF was initially designed for rainfall but can be widely 84 

applied to other climate variables (e.g., surface temperature), depending on the user's purpose (Isphording et al., 85 

2024).  86 

IPCC highlights Southeast Asia (SEA) as a region facing considerable climate change risks from extreme events 87 

(e.g., floods, extreme heat, and changing precipitation and extremes) (Ipcc, 2022). However, available regional 88 

climate simulations for SEA, particularly from CMIP5 CORDEX-SEA experiments are limited to 13 simulations 89 

(Tangang et al., 2020) compared to EURO-CORDEX with 68 simulations (Jacob et al., 2020) or CORDEX-90 

Australasia with 20 simulations (Evans et al., 2021). Consequently, future projections come with a higher degree 91 

of uncertainty, especially for rainfall (Tangang et al., 2020; Nguyen et al., 2023). This motivated the CORDEX-92 

SEA community to update their regional climate model simulations with the latest CMIP6 models. Note that over 93 

SEA, observations are sparse with large uncertainties, particularly for rainfall (Nguyen et al., 2020), making GCM 94 

evaluations more complicated (Nguyen et al., 2022; Nguyen et al., 2023). To date, the performance of various 95 

CMIP6 GCMs has been evaluated and ranked over the whole region of SEA (Desmet and Ngo-Duc, 2022; 96 

Pimonsree et al., 2023) and its sub-regions [e.g., Philippines (Ignacio-Reardon and Luo, 2023); Thailand 97 

(Kamworapan et al., 2021); Vietnam (Nguyen-Duy et al., 2023)]. Although there are groups of GCMs that 98 

consistently perform well (e.g., EC-Earth3, EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-HR, E3SM1-0, 99 

CESM2) and poorly (e.g., FGOALS-g3, CanESM, NESM3, IPSL-CM6A-LR) across available literature, their 100 

ranking varies differently given inconsistencies in evaluation metrics and observational reference datasets. This 101 

creates challenges in conducting direct intercomparisons across the above-mentioned studies. In addition, it is 102 

crucial to consider other important aspects discussed above (e.g., observational uncertainty, model dependency, 103 

and future climate change spread) in identifying the list of reliable models over SEA.  104 

In this research, we aim to apply the lessons learnt from CMIP6 selection over different CORDEX-domains for 105 

SEA by assessing different aspects of models: model performance, model independence, data availability and 106 

future climate change spread. We apply the BMF to provide a consistent set of metrics for holistically evaluating 107 
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model performance and to deal with large observational uncertainties over the region. Focusing on precipitation, 108 

where future projections are much more uncertain, the objectives of this research are twofold:  109 

1. To evaluate the performance of CMIP6 GCMs in simulating the fundamental characteristics of 110 

precipitation, its drivers and teleconnection with modes of variability over SEA using a standardised 111 

benchmark framework and to identify a subset of models that meet our performance expectations. 112 

2. To retain models that are relatively independent and are representative of the full range of possible 113 

projected change for finalizing a subset of CMIP6 GCMs for dynamical downscaling over SEA using 114 

model independence tests and assessment of climate change response patterns. 115 

The structure of the paper is as follows: Section 2 introduces the data and the benchmarking framework employed 116 

in this study. The results are presented in three subsections: Section 3.1 focuses on model assessment using the 117 

benchmarking framework; Section 3.2 examines the spread of future climate change among models; and Section 118 

3.3 assesses model dependence through cluster analysis. Finally, we conclude with a discussion of our results in 119 

Section 4 and a summary of the main conclusions in Section 5. 120 

2 Methods  121 

2.1 Data 122 

2.1.1 CMIP6 GCM data 123 

We use the historical daily data of precipitation, near surface temperature, 850 hPa wind speed and both monthly 124 

and daily sea-surface temperature data from the 32 CMIP6 models listed in Table 1. We consider only models 125 

which have a horizontal grid spacing finer than 2°× 2° which are likely to be more suitable for dynamical 126 

downscaling. One simulation (typically the first member r1i1f1p1) is utilized in the benchmarking process to 127 

enable a fair comparison. At the time of this analysis, the first member of some models (e.g., CNRM-family 128 

models, UKESM1-0-LL and HadGEM3-GC31-MM) was not available so another member was utilized.  129 

Table 1. Information on model components from the CMIP6 GCMs used in this study. 130 

No Model  Run Atmosphere 
lon/lat  Reference Atmospheric 

component 
Land 

component 
Sea ice 

component 
Ocean 

component  

1 ACCESS-CM2* r1i1p1f1 1.2° × 1.8° Bi et al. 
(2020) and 
Ziehn et al. 

(2020) 

UKMO UM 
v10.6 CABLE 2.5 LANL 

CICE5.1 MOM5 

2 ACCESS-ESM1-
5* r1i1p1f1 1.2° × 1.8° UKMO UM 

V7.3 CABLE2.4 LANL 
CICE4.1 

GFDL 
MOM5 

3 BCC-CSM2-MR* r1i1p1f1 1.1° × 1.1° Wu et al. 
(2019) 

BCC-
AGCM3  

BCC-
AVIM2  SIS4  MOM4-

L40  

4 CESM2* r1i1p1f1 0.95° × 1.25° 
Danabasogl

u et al. 
(2020)  

CAM6/WAC
CM6  CLM5.0  CICE5  POP2  

5 CMCC-CM2-HR4 r1i1p1f1 0.95° × 1.25° 

Cherchi et 
al. (2019) CAM v5  CLM4.5 CICE4  NEMO 

v3.6  6 CMCC-CM2-
SR5* r1i1p1f1 0.9° × 0.9° 

7 CMCC-ESM2* r1i1p1f1 0.95° × 1.25° 
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No Model  Run Atmosphere 
lon/lat  Reference Atmospheric 

component 
Land 

component 
Sea ice 

component 
Ocean 

component  

8 CNRM-CM6-1* r1i1p1f2 1.4° ×	1.4° 

Voldoire et 
al. (2019) 

ARPPE-
Climat v6.3 Flake OASIS-MCT NEMO 9 CNRM-CM6-1-

HR r1i1p1f2 0.5° × 0.5° 

10 CNRM-ESM2-1* r1i1p1f2 1.4° ×	1.4° 

11 E3SM-1-0* r1i1p1f1 1° × 1° Zheng et al. 
(2022) 

EAM (CAM 
5.3) 

MPAS-
Ocean  MPAS-Seaice  ELMv0 

(CLM4.5) 

12 EC-Earth3-
AerChem r1i1p1f1 0.7° ×	0.9° 

Döscher et 
al. (2022) ECMWF IFS  

LPJ-
GUESS et 
al., 2013) 

LIM3  NEMO 
v3.6  

13 EC-Earth3-CC r1i1p1f1 0.7° ×	0.9° 

14 EC-Earth3* r1i1p1f1 0.7° ×	0.7° 

15 EC-Earth3-Veg* r1i1p1f1 0.7° ×	0.7° 

16 EC-Earth3-Veg-
LR r1i1p1f1 1.125° × 

1.125° 

17 GFDL-CM4 r1i1p1f1 1.0° ×	1.3° Held et al. 
(2019); 

Dunne et 
al. (2020) 

AM4 LM4 SIS 2  OM4 
MOM6  18 GFDL-ESM4* r1i1p1f1 1.0° ×	1.3° 

19 HadGEM3-GC31-
MM r1i1p1f3 0.9° × 0.9° Andrews et 

al. (2020) GA7/GL7 GSI8.1 
(CICE5.1) 

GO6 
(NEMO) 

20 INM-CM4-8 r1i1p1f1 1.5° ×	2.0° Volodin et 
al. (2017) 

INM-AM4-
8/5.0 INM-LND1 INM-ICE1 INM-OM5 

21 INM-CM5-0 r1i1p1f1 1.5° ×	2.0° 

22 IPSL-CM6A-LR* r1i1p1f1 1.3° ×	2.5° Boucher et 
al. (2020) 

LMDZ 6A-
LR  

ORCHIDE
2.0  

NEMO-
LIM3.6  NEMO 3.6 

23 IPSL-CM6A-LR-
INCA* r1i1p1f1 1.27° × 2.5° 

24 MIROC6* r1i1p1f1 1.4° × 1.4° Tatebe et 
al. (2019) MIROC 3.2 MATSIRO  MIROC 3.2 COCO 4.5  

25 MPI-ESM1-2-
HR* r1i1p1f1 0.94° × 0.94° Mauritsen 

et al. 
(2019) 

ECHAM6.3  JSBACH) MPIOM 
26 MPI-ESM1-2-

LR* r1i1p1f1 1.875°	 × 
1.875° 

27 MRI-ESM2-0* r1i1p1f1 1.1° ×	1.1° 
Yukimoto 

et al. 
(2019)  

MRI-AGCM3.5 MRI.COMv4  

28 NESM3 r1i1p1f1 1.9° × 1.9° Cao et al. 
(2018) ECHAM6.3  JSBACH  CICE4  NEMO 

v3.4 

29 NorESM2-MM* r1i1p1f1 0.9 × 0.9° Seland et 
al. (2020) CAM4-Oslo  CLM4  CICE4  MICOM  

30 SAM0-UNICON* r1i1p1f1 0.9°  ×	1.3° Park et al. 
(2019) 

CAM5.3 with 
UNICON CLM4  CICE4.0 POP2  

31 TaiESM1* r1i1p1f1 0.9° ×	0.9° Wang et al. 
(2021a) Tai AM1 CLM4.0 CICE4  POP2  

32 UKESM1-0-LL* r1i1p1f2 1.3° × 1.9° Sellar et al. 
(2019) 

MetUM-
HadGEM3-

GA7.1  

JULES-ES-
1.0  

CICE-
HadGEM3-

GSI8  

NEMO-
HadGEM3-

GO6.0 

*Model offers atmospheric variables available in three dimensions at each 6 hours for dynamical downscaling at 131 
the time of analyses. 132 

 133 
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2.1.2 Observations and reanalyses 134 

Given the large observational uncertainty in precipitation over the region (Nguyen et al. 2022), we use multiple 135 

daily observed datasets from different in situ and satellite sources to quantify model skill (Table 2). These datasets 136 

have been chosen given their high consistency in representing daily precipitation (Nguyen et al., 2022) and 137 

extremes (Alexander et al., 2020; Nguyen et al., 2020) over SEA.  138 

ERA5 reanalysis (~31 km grid resolution) (Hersbach et al., 2020) was used to benchmark model performance in 139 

representing the climatology of atmospheric circulation (e.g., metrics related to horizontal wind at 850 hPa level 140 

are described in section 2.2).   141 

We acknowledge that different observational sea surface temperatures (SST) have different abilities to capture 142 

signals of the modes of variability. Therefore, we utilize multiple SST products (Table 2) to take account of the 143 

observational uncertainties in simulating the teleconnection between rainfall and main modes of variability, 144 

including El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as described in section 2.2.  145 

Table 2. The main characteristic of observational datasets used in this study.  146 

Type of dataset Product short 
name 

Dataset name Temporal 
coverage 

Spatial 
resolution 

Data source Reference 

Precipitation 
dataset 

APHRODITE APHRODITE V1101 
and V1101XR 

1950-2015 0.5° ×	0.5° In situ Yatagai et al. 
(2012) 

CHIRPv2 CHIRPSv2 1981-2016 0.25° ×	0.25° In situ + 
Satellite 

Funk et al. 
(2015) 

REGEN_ALL REGEN Allstns V1 
2019 

1950-2019 1° × 1° In situ Contractor et 
al. (2020) 

GPCC_v2018 GPCC FDD v2018 1982-2019 1° × 1° In situ Schamm et al. 
(2014)  

Sea Surface 
Temperature 

dataset 

HadISST HadISST1 v1 1870-2021 1° × 1° In situ + 
Satellite 

Rayner et al. 
(2003) 

OISST OISST v2.0 1981-2020 0.25° ×	0.25° In situ + 
Satellite 

Huang et al. 
(2021) 

ERSST ERSST v5 1854-2024 2° × 2° In situ Huang et al. 
(2017) 

2.2 Benchmarking CMIP6 GCMs over Southeast Asia 147 

Given the large uncertainties and model inconsistency in rainfall projections, our main aim is to identify a subset 148 

of CMIP6 GCMs that meet our a priori expectations. That is, as a minimum requirement a model should simulate 149 

past rainfall statistics over SEA reasonably well using consistent criteria. Figure 1 illustrates the GCM selection 150 

process applied in this research based on a standardised benchmarking framework (Isphording et al., 2024). A 151 

subset of CMIP6 GCMs that meet our model performance expectations are identified through a two-step process: 152 

(a) selecting models that meet minimum performance requirements in simulating the fundamental characteristics 153 

of rainfall (Fig. 1) and (b) selecting models from (a) to further assess performance in simulating precipitation 154 

drivers (e.g., monsoon) and teleconnections with modes of variability (Fig. 1). 155 
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2.2.1 Minimum standard metrics 156 

The BMF introduces a set of minimum-standard metrics (MSMs): 1. mean absolute percentage error (MAPE), 2. 157 

spatial correlation (Scor), 3. seasonal cycle (Scyc) and 4. significant changes (SigT) (Isphording et al., 2024) to 158 

assess the skill of climate models in simulating very fundamental characteristics of precipitation (e.g., magnitude 159 

of biases, spatial distributions, annual cycles and temporal variability). Before exploring complex processes, a 160 

model should meet performance expectations for these MSMs. Therefore, we initially calculate the MSMs for 161 

precipitation. In addition, we acknowledge that models should produce adequate present-day simulations of other 162 

fundamental climate variables like near-surface temperature. Hence, we also apply the MSMs for near-surface 163 

temperature in the supplementary information. Given the strong seasonality of precipitation in the region (Juneng 164 

et al., 2016), the analyses related to precipitation are conducted at a seasonal scale (e.g., the dry season November-165 

April – NDJFMA and the wet season May-October – MJJASO). Meanwhile, temperature analyses are conducted 166 

at the annual scale. 167 

 168 
Figure 1. A schematic of the CMIP6 GCM selection process, including (1) model evaluation using a standardized 169 
benchmarking framework (BMF) and (2) assessment of model independence and future climate change spread. The BMF 170 
includes two steps: minimum standard metrics (MSMs) which assess very basic characteristics of rainfall and second-tier 171 
metrics (e.g., versatility metrics) which quantify model skill of the models that pass the MSMs in simulating precipitation 172 
drivers (monsoon) and teleconnections with modes of variability [the El Niño-Southern Oscillation (ENSO) and Indian Ocean 173 
Dipole (IOD)]. 174 
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Note that in this research, we focus only precipitation over land given the lack of in situ reference over ocean. 175 

Some satellite-derived products provide oceanic precipitation data but most of their temporal coverage is not 176 

sufficiently long to use as a reference. In addition, the observational uncertainties among satellite clusters in 177 

estimating oceanic precipitations over SEA is quite substantial, with discrepancies reaching up to 4 mm/day 178 

(Figure s1). 179 

2.2.2 Versatility metrics 180 

The MSMs provide statistical measurements that are not always correlated with future projections (Knutti et al., 181 

2010), given that some models may simulate historical precipitation well for the wrong reasons. A further 182 

recommendation is therefore to also assess model performance based on key physical processes (Doe, 2020; 183 

Nguyen et al., 2023). This approach offers additional insights into the relative roles of model biases in simulating 184 

large-scale environments versus the limitations of model parameterizations in generating precipitation biases. 185 

Therefore, we define second tier versatility metrics to assess those GCMs selected from section 2.2.1 in simulating 186 

the complex precipitation-related processes, including drivers and teleconnections with modes of variability.   187 

Monsoon circulation 188 

SEA is situated within the Asian monsoon regime, where atmospheric circulation is modulated by two primary 189 

monsoon systems: the Indian monsoon characterized by westerlies from the Bay of Bengal into northern parts of 190 

SEA including the mainland and northern Philippines (along 10°N) during the boreal summer (JJAS) and reversed 191 

in direction during the boreal winter (DJF); and the Australian monsoon [e.g., easterlies from Australia to the 192 

Maritime Continent (MC) and Papua] (Chang et al., 2005). These monsoon systems drive regional rainfall 193 

seasonality. Therefore, we focus on assessing model skill in simulating the intensity and direction of monsoon 194 

wind (e.g., 850-hPa wind) for JJAS and DJF. While wind speed is evaluated using the MAPE and Scor metrics 195 

similar to the MSMs for precipitation and temperature, wind direction is quantified using an equation from Desmet 196 

and Ngo-Duc (2022):  197 

MD=
∑𝑖𝑢𝑖	×!𝜃𝑖	−𝜃𝑖,𝑟𝑒𝑓![0,180]

∑𝑖𝑢𝑖	
 198 

where 𝑢" refers to the simulated wind speed at the grid i, 𝜃"		𝑎𝑛𝑑		𝜃",%&' are the wind direction at grid i in the 199 

simulated and reference data respectively. 	*𝜃"	 − 𝜃",%&'*[),*+)] is the absolute value of difference at the ith grid 200 

between directions of simulated and reference wind speed (e.g., ERA5). The MD metric allows us to quantify the 201 

agreement in wind direction between two datasets in which the impact of high wind speed is taken into account.  202 

ENSO, IOD and Teleconnections  203 

Various parts of SEA are also affected by two prominent modes of variability: the El Niño - Southern Oscillation 204 

(ENSO) (Haylock and Mcbride, 2001; Chang et al., 2005; Juneng and Tangang, 2005; Qian et al., 2013) and 205 

Indian Ocean Dipole (IOD) (Xu et al., 2021) via atmospheric teleconnections. In this research, the teleconnection 206 

is defined by the temporal correlation between precipitation anomalies at each grid point and the ENSO/IDO 207 

indices. 208 



 9 

To track ENSO variability, the Niño3.4 index (5°S-5°N and 160°E-120°W) (Trenberth and Hoar, 1997; Shukla et 209 

al., 2011) derived for the 1951-2014 period as area-mean monthly SST anomalies with respect to a 1961-1990 210 

climatology is used. For IOD, we use the Dipole Mode Index [DMI; (Saji et al., 1999; Meyers et al., 2007)] DMI 211 

measures differences of monthly SST anomalies between the west equatorial Indian Ocean (50-70° E, 10°S-10°N) 212 

and those in the east (90-110°S, 10°S -0°N).  213 

We use a 5-monthly average Niño3.4 and IOD index to remove seasonal cycles. The resulting monthly time series 214 

are detrended using a fourth-order polynomial fit to remove the possible influence of a long-term trend and to 215 

better preserve high amplitude (<10 years) variability (Braganza et al., 2003). 216 

Since ENSO typically matures toward the end of the calendar year (Rasmusson and Carpenter, 1982), we consider 217 

ENSO developing years as year (0) and use the DJF means to identify ENSO events. Over SEA, ENSO interacts 218 

with the monsoon cycle and due to the varying monsoon onset between the northern and southern parts of the 219 

region, its seasonal evolution differs across regions (Figure s2). In particular, there is a lagged negative correlation 220 

between rainfall and ENSO over the Maritime Continent (MC) and the Philippines, which develops from May-221 

June, strengthens during July-August, and reaches its highest correlation during September-October of the 222 

developing year (year 0). On the other hand, this negative correlation becomes prominent over the northern parts 223 

during the subsequent boreal spring (from March-May of the year +1) (Wang et al., 2020; Chen et al., 2023). The 224 

negative correlation indicates dry anomalies during El Niňo and/or wet anomalies during La Nina. Therefore, in 225 

the context of this research, we examine the lead/lag Pearson correlation of the DJF Niño3.4 index in the 226 

developing year (year 0) with two different seasonal rainfalls: May-Oct (MJJASO) of the developing year (year 227 

0) and March-May (MAM) of the following year (year +1).  228 

Furthermore, considering the stronger influence of the IOD and its associated teleconnection during SON 229 

compared to other seasons (Mckenna et al., 2020), we calculated the in-phase Pearson correlation coefficient 230 

between the detrended precipitation anomaly and DMI for the SON season. The statistical significance of the 231 

correlation coefficient is tested using the Student t-test (alpha = 0.05). Note that IOD could exist as part of ENSO 232 

(Allan et al., 2001; Baquero-Bernal et al., 2002) and their coexistence could have strong impacts on rainfall 233 

variability over many parts of SEA (D'arrigo and Wilson, 2008; Amirudin et al., 2020), which is not investigated 234 

in this study.  235 

Previous literature has often focused on assessing the robustness of rainfall teleconnections (e.g., spatial patterns 236 

and amplitudes) across CMIP model ensembles. These assessments typically involve examining agreement in the 237 

sign of teleconnections such as through rainfall anomaly composites (Langenbrunner and Neelin, 2013) and 238 

regional average teleconnection strength over land (Perry et al., 2020) or a combination of both (Power and 239 

Delage, 2018) rather than evaluating the skill of an individual model. However, since rainfall teleconnections 240 

across SEA exhibit spatial and seasonal variability, the above metrics may be substantially influenced by internal 241 

variability. For high level qualification, we employ spatial correlation and simplified metrics to assess whether 242 

there are significant correlations teleconnections as recommended by Liu et al. (2024). We assess the similarity 243 

in the number of grid points detecting significant signals between observed and modelled teleconnections using a 244 

set of three metrics: Hit rate (HR), Miss Rate (MR) and False Alarm rate (FAR) as follows:  245 

HR = -%&.	/"01	23%%&20	4"56	3'	4"56"'"2.60	23%%&7.0"36
-%&.	/"01	4"56"'"2.60	23%%&7.0"36	"6	89:

	 246 
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MR = -%&.	/"01	4"56"'"2.60	23%%&7.0"36	"6	89:	;<0	/"01	63	4"56"'"2.60	23%%&7.0"36	"6	=3>&7
-%&.	/"01	4"56"'"2.60	23%%&7.0"36	"6	89:

  247 

FAR = -%&.	/"01	63	4"56"'"2.60	23%%&7.0"36	"6	89:	;<0	/"01	4"56"'"2.60	23%%&7.0"36	"6	=3>&7
-%&.	/"01	63	4"56"'"2.60	23%%&7.0"36	"6	89:

  248 

These metrics allow us to make sure that the model adequately simulates significant signals across the entire 249 

region. While HR ranges from 0-1, MR and FAR vary. A desirable model outcome includes a high HR value 250 

coupled with a low MR and FAR value, indicating the model's ability to adequately capture the significance of 251 

the correct signal in the right region (on grid scales) of teleconnections between ENSO and IOD and rainfall 252 

pattern.  253 

2.3. GCM independence assessment and future climate change spread 254 

Model independence could be assessed based on model components (e.g., shared atmospheric, land, and/or ocean 255 

models) and/or model output patterns. In this study, we employ both methods for testing GCM independence. 256 

Table 1 provides information on the principal components of the models used in this study. Note that model 257 

independence based on this criterion could depend on the model version (e.g., the same model with different levels 258 

of complexity). In addition, we acknowledge that the spatial pattern of error maps and future changes maps seem 259 

to correlate well with model dependency (Knutti et al., 2010; Knutti and Sedláček, 2013; Brunner et al., 2020; 260 

Brands, 2022). Therefore, we determine the independence of GCMs simply by calculating the correlation 261 

coefficient of historical biases and future projections between models and then apply a hierarchical clustering 262 

approach (Rousseeuw, 1987) to this correlation matrix to group models. This cluster analysis has been employed 263 

in previous literature for multiple purposes, e.g., to assess model dependency (Brunner et al., 2020; Masson and 264 

Knutti, 2011), spatial patterns of climatology and trends in climate extremes (Gibson et al., 2017) or spatial pattern 265 

of precipitation change signals (Gibson et al., 2024).  266 

Note that historical biases are calculated by comparing the climatology of total rainfall over the land area of SEA 267 

for the 1951-2014 period with corresponding data from an observed reference. Meanwhile, for future signals, we 268 

focus on the relative change (in percentage) between the far future (2070-2099) and the baseline (1961-1990) as 269 

suggested by the World Meteorological Organization (WMO). All analyses are conducted for two seasonal 270 

periods: wet MJJASO and dry NDJFMA seasons.   271 

We use the coarsest resolution (i.e., NESM ~216 km or 1.9°×1.9° resolution) among 32 GCMs as the target 272 

resolution for comparison. All data are interpolated into a spatial resolution of 1.9°×1.9° using a first-order 273 

conservative regridding method (Jones, 1999) to better capture the spatial discontinuity of precipitation 274 

((Contractor et al., 2018). 275 

Benchmarking CMIP6 GCMs against observations is conducted over land for precipitation and the 276 

teleconnections between precipitation and modes of variability while 850-hPa winds from ERA5 allow the 277 

comparison to also be extended over the ocean.  278 

Hereafter, we select APHRODITE as the primary baseline for all the main figures, as it utilises the greatest number 279 

of rain gauges of any dataset. We include the results related to all other observational datasets in the 280 

Supplementary section (Fig. s3-8) and provide a detailed explanation of related results in the main text for 281 

intercomparison purposes.  282 
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3 Results  283 

3.1 Minimum Standard Metrics (MSMs) 284 

3.1.1 Mean absolute percentage error (MAPE) and Spatial correlation (Scor) 285 

We initially assess the performance of CMIP6 GCMs in reproducing the spatial distribution of precipitation, using 286 

the first two MSMs: MAPE and Scor. Previous studies have emphasized strong seasonal and regional contrasts in 287 

rainfall distribution over Southeast Asia (Nguyen et al., 2023). Therefore, we focus on comparing the seasonal 288 

climatology (1951-2014) of total rainfall during wet days (e.g., precipitation ≥  1mm) between models and 289 

APHRODITE for both wet MJJASO and dry NDJFMA seasons (Fig. 2 and Fig. 3 respectively). For MSMs, our 290 

strategy is to retain as many models as possible. We establish benchmarking thresholds based on the requirements 291 

of downscaling CMIP6 from CORDEX communities and our understanding of reasonable model performance 292 

based on current scientific understanding. In particular, GCMs should adequately produce the spatial distribution 293 

of rainfall and without a strong wet or dry bias. In addition, we also identify observational uncertainties through 294 

inter-comparison of multiple precipitation datasets. Considering variations in model performance across seasons, 295 

we also set different thresholds for benchmarking models for different seasons. In particular, due to a better 296 

model’s ability to capture spatial variability of precipitation during the dry season compared to the wet season 297 

(Desmet and Ngo-Duc, 2022), we adopt a more lenient approach by relaxing our expectation for a spatial 298 

distribution metric, setting the Scor threshold ≥ 0.4 for the wet season and ≥ 0.75 for the dry season. However, 299 

for the MAPE score, we apply a stricter criterion, as we require models to closely simulate observed rainfall 300 

intensity over SEA. For both wet and dry seasons, we set the benchmarking threshold for MAPE at ≤ 0.75. With 301 

this threshold, our objective is to identify models capable of capturing the spatial variability of rainfall across at 302 

least 40% (Scor	≥ 0.4) or 75% (Scor	≥ 0.75) of the domain during wet and dry seasons respectively, with a 303 

wet/dry bias of no more than 75% compared to observations (MAPE ≤ 0.75) for both seasons.  304 

We first discuss key features of the wet season (MJJASO; Fig. 2). Models are ranked from wettest to driest based 305 

on their regionally-averaged climatologies (i.e., the average of accumulated precipitation over all land grid points 306 

inside the domain). Models that meet our benchmarking thresholds for MAPE and Scor (i.e., calculated against 307 

APHRODITE) are highlighted by purple-coloured boxes. In general, CMIP6 GCMs demonstrate a wet bias in 308 

terms of regional averages, ranging from 6.32 mm/year to 131.78 mm/year except for MPI-ESM1-2-LR (-1.29 309 

mm/year). However, there is spatial variability in the distribution of wet and dry biases. While most of these 310 

models consistently show wet biases over MC, dry biases are observed in different locations on the mainland 311 

across models [e.g., along the west coast (e.g., EC-Earth, IPSL and CMCC families) or east coast (e.g., CNRM 312 

family) as well as in some northern regions (e.g., MPI family)]. Among the wettest GCMs, including INM, IPSL, 313 

NorESM2-MM and CESM2 family, the largest biases are predominantly over MC. Interestingly, most CMIP6 314 

GCMs can capture the spatial variability of rainfall (Scor is around or greater than 0.5), except for the IPSL-family 315 

simulations (Scors of 0.11 and 0.13). Using the threshold definitions mentioned above, six models fail to meet 316 

these benchmarks, exhibiting obvious grouping by GCM group. For example, IPSL-CM6A-LR and IPSL-CM6A-317 

LR-INCA fail due to their low Scor (0.13 and 0.11 respectively) and high MAPE (1.20 and 1.26 respectively). 318 

While INM-CM5-0 and INM-CM4-8 models meet our set expectation in relation to spatial variability, they fail 319 

to meet the MAPE threshold due to their overestimation of rainfall across the entire region (e.g., MAPE ranging 320 
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from 1.29 to 1.38 respectively). All mentioned failed models exhibit high MAPE values, ranging from 0.81 to 321 

1.28.    322 

 323 

Figure 2. The seasonal climatological (1951-2014) bias (in mm/year) for each model against the APHRODITE observational 324 
product during the wet season (May-October; MJJASO), ranked wettest to driest based on regionally-averaged bias. The mean 325 
absolute percentage error (MAPE) and spatial correlation (Scor) calculated against APHRODITE are shown in the upper right 326 
corner. Values highlighted in purple-coloured boxes indicate values that meet our defined benchmarking thresholds. All 327 
analyses are considered at the resolution of the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 328 
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329 
Figure 3. Same as figure 2 but for the dry season (Nov-April; NDJFMA).  330 

The corresponding results for the dry season reveal some interesting features (Fig. 3). First, there are substantial 331 

similarities in the spatial distribution of climatological rainfall biases across models during this season. CMIP6 332 

GCMs consistently show small biases over Indochina and large wet biases over MC. A better spatial correlation 333 

with observations (i.e., Scor > 0.8) is obtained during the dry season, consistent with previous findings [e.g., 334 

CORDEX-CMIP5 RCMs (Nguyen et al., 2022) or CMIP6 GCMs (Desmet and Ngo-Duc, 2022)] in highlighting 335 

the dependence of model performance on the season. With improved performance in capturing the spatial variation 336 

of total precipitation intensity compared to the wet season, all models meet our expected performance in spatial 337 

variability. However, INM- and IPSL-family models still fail the MAPE criterion since they exhibit much higher 338 

precipitation intensity than APHRODITE, particularly over MC. Note that over SEA, APHRODITE is drier than 339 

other precipitation products particularly over MC (Nguyen et al., 2020). 340 
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It is important to note that whether a model passes or fails the benchmarking is strongly dependent on the choice 341 

of threshold as emphasised in Isphording et al. (2024). For instance, more simulations would fail this test if we 342 

set a higher threshold of Scor, notably for the MJJASO season case. 343 

3.1.2. Seasonal cycle 344 

In this section, we follow the simplified method developed by Isphording et al. (2024) in quantifying the phase 345 

and structure of the seasonal cycle. In particular, we rank total monthly precipitation from wettest to driest. We 346 

then define the benchmarking threshold such that the four wettest and driest observed months must fall within the 347 

six wettest and driest months simulated by models (Fig. 4).  348 

 349 

Figure 4. The climatological (1951-2014), average total monthly rainfall over the mainland Southeast Asia are ranked from 350 
driest to wettest for each CMIP6 simulation. Brown shades (1-6) indicate the six driest months while teal colours (7-12) 351 
indicate the six wettest months. The models failed in benchmarking are highlighted in orange colour. All analyses are 352 
considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 353 
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Overall, most CMIP6 GCMs reproduce the phase well but tend to overestimate precipitation intensity, notably for 354 

the observed precipitation peaks during boreal summer (Fig. s3). The INM- and IPSL-family simulations stand 355 

out, consistent with the wettest biases observed in spatial patterns (section 3.1.1).  356 

According to the benchmarking threshold definitions, all models meet the benchmark for simulating the four 357 

wettest observed months. However, six models do not pass the benchmark for simulating the four driest observed 358 

months, as highlighted in orange in Fig. 4. Specifically, one of the four driest months according to the 359 

APHRODITE dataset (December through March) is ranked as the sixth wettest month (ranked 7th in Fig. 4) by 360 

these models.  361 

3.1.3. Significant trend 362 

The final MSM aims to explore how rainfall changes over time (Isphording et al., 2024). In this part, we compare 363 

the signal of statistically significant simulated and observed trends using the wet (Fig. 5) and dry (Fig. 6) seasons 364 

accumulated precipitation. A Theil-Sen trend is calculated over a 65-year period (1951-2014) and tested at a 5% 365 

significance level using a Mann-Kendall significant test (Kendall, 1975).  366 

There is a significant decreasing trend in observed total precipitation during the wet season (Figure 5 – top panel) 367 

while the dry season has a significant increasing trend (Figure 6 - top panel). A model fails this benchmark if it 368 

exhibits an opposite significant trend to that of the observations. Using this definition, all models pass this 369 

benchmark during the wet season, but MRI-ESM2-0 and MPI-ESM-1-2-HR fail during the dry season.  370 

Note that AR6 [Chapter 8 (Douville et al., 2021)] stated much more confidence in precipitation trends over MC 371 

after 1980. Therefore, we conducted an additional trend calculation (figures not shown) over the 33-year (1982-372 

2014) period for all considered observational products. Although there are differences in the slope of changes 373 

among observational products, their direction (not shown) remains the same as the 1951-2014 period.  374 
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 375 
Figure 5. The observed (top row) and modelled seasonal average total precipitation across Southeast Asia land areas during 376 
the wet season (May-October, MJJASO) for the period 1951-2014. The direction of the observed Thiel-Sen trend is the 377 
benchmark (top row). The Theil-Sen trend line for each of the simulations is plotted in grey if the models fail the benchmark 378 
and in purple if they pass. The magnitude of the trend is noted in the top middle corner and the results of the Mann-Kendall 379 
significance test is noted in the bottom right corner. Models are sorted based on the magnitude of the spatial average to match 380 
the order of Figure 2. All analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). All models pass the 381 
benchmark. 382 

 383 
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 384 
Figure 6.  Same as Figure 5 but for the boreal dry season (November – April, NDJFMA).  385 

Table 3 summarizes the MSM benchmarking results for the 32 CMIP6 GCMs tested. There are 19 simulations 386 

that pass all MSMs and therefore meet the minimum requirements for the purpose of this study. 387 
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Table 3.  Summary of model performance against the MSMs for precipitation. Models pass the benchmarks are highlighted 388 
in bold. 389 

Simulations 
Wet season Dry season Seasonal 

cycle  

Trend 
Pass/7 

MAPE Scor MAPE Scor Wet Dry 

ACCESS-CM2 + + + + + + + 7 

ACCESS-ESM1-5 + + + + - + + 6 

BCC-CSM2-MR + + + + + + + 7 

CESM2 + + + + + + + 7 

CMCC-CM2-HR4 + + + + + + + 7 

CMCC-CM2-SR5 + + + + + + + 7 

CMCC-ESM2 + + + + + + + 7 

CNRM-CM6-1 + + + + - + + 6 

CNRM-CM6-1-HR + + + + - + + 6 

CNRM-ESM2-1 + + + + + + + 7 

E3SM-1-0 + + + + + + + 7 

EC-Earth3-AerChem + + + + - + + 6 

EC-Earth3-CC + + + + - + + 6 

EC-Earth3 + + + + + + + 7 

EC-Earth3-Veg + + + + + + + 7 

EC-Earth3-Veg-LR + + + + + + + 7 

GFDL-CM4 + + + + + + + 7 

GFDL-ESM4 + + + + + + + 7 

HadGEM3-GC31-MM + + + + + + + 7 

INM-CM4-8 - + - + + + + 5 

INM-CM5-0 - + - + + + + 5 

IPSL-CM6A-LR - - - + + + + 4 

IPSL-CM6A-LR-INCA - - - + + + + 4 

MIROC6 + + + + + + + 7 

MPI-ESM1-2-HR + + + + - + - 5 

MPI-ESM1-2-LR + + + + + + + 7 

MRI-ESM2-0 + - + + + + + 6 

NESM3 + + - + + + + 5 

NorESM2-MM - + + + + + + 6 

SAM0-UNICON + + + + + + + 7 

TaiESM1 + + + + + + + 7 

While the BMF was designed for precipitation, we can also apply the MSMs to other climate variables such as 390 

annual mean near-surface temperature (see Supplementary Fig. s4-7 and Tables s1). For temperature, we use the 391 

APHRODITE daily temperature datasets [version V1204R1 and V1204XR (Yatagai et al., 2012)] that span 1961–392 

2015. In general, CMIP6 GCMs show biases for average temperature, with a greater number of GCMs exhibiting 393 

cold biases rather than warm biases (Fig. s4). Almost all models succeed in simulating the observed spatial 394 
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distribution (e.g., Scor greater than 0.75), phases (e.g., no model fails the benchmarking for temperature annual 395 

cycle, Figures s5-6) and historical trends (e.g., increase trend, Fig. s7) of temperature. Overall, models are better 396 

at simulating temperature characteristics (e.g., spatial pattern, annual cycle, and trend) than precipitation over 397 

SEA. Out of four models that fail the MSMs for near-surface temperature, two INM-family simulations do not 398 

meet the expected spatial distribution benchmark (Scor ≥0.85) while CNRM-CM6-1-HR and NESM3 show the 399 

largest relative errors compared to APHRODITE (MAPE = 0.08). These four models also fail in MSMs for 400 

precipitation, as discussed above. 401 

3.2 Versatility metrics – Process-oriented metrics 402 

In addition to the MSMs, our aim is to select a subset of GCMs for dynamical downscaling that simulate 403 

precipitation mechanisms. Therefore, in the next steps we focus on process-oriented metrics which capture the 404 

relationship between precipitation and other variables well.  405 

3.2.1. Monsoon wind  406 

We seek to identify models that adequately depict the low-level circulation over SEA during two prominent 407 

seasons: boreal summer (June-September; JJAS) and winter (December-February, DJF), by comparing them to 408 

ERA5 (Fig. 7 and 8 respectively). To measure the agreement between simulated and observed wind patterns in 409 

terms of intensity and direction, we employ three metrics: Scor; MAPE and MD (see section 2.2.3) and we set the 410 

benchmarking threshold for each metric in dealing with limited simulations at this versatility stage. In particular, 411 

we define the threshold for wind intensity as MAPE ≤ 0.65 to seek models that do not overestimate the amplitude 412 

of monsoon wind. In terms of wind structure, we set a stricter benchmarking threshold for Scor as ≥	0.70, aiming 413 

to retain models that adequately represent the distribution of wind intensity across the whole region. Recognizing 414 

that wind magnitude might be the same at a location, but different directions could substantially impact rainfall 415 

patterns, we consider a threshold for direction MD as ≤	20 degrees. This criterion helps to eliminate models where 416 

high-speed wind direction deviates significantly from observed patterns.  417 

During summer, ERA5 shows westerly winds flowing from the Bay of Bengal into Indochina, then deviating 418 

northward to the northern Philippines (along 10N). Concurrently, easterly winds from Australia traverse MC and 419 

Papua (see Fig. 7). Conversely, in winter, the wind patterns are largely reversed (Fig. 8). The easterly and north-420 

easterly winds from the north pass through the Philippines, reaching the southern coast of Vietnam and the 421 

Malaysian peninsula, while westerly winds predominate between the Indonesian islands towards Papua.  422 

Overall, the subset of CMIP6 GCMs capture the circulation structure relatively well (Scor ranging from 0.72 to 423 

0.92 for DJF and from 0.81 to 0.95 for JJAS) but tend to overestimate the wind intensity relative to ERA5, 424 

particularly over high-speed wind areas. For example, the westerly component from the Bay of Bengal during 425 

JJAS or the easterly component over MC during DJF is too strong compared to ERA5. These might link with the 426 

wet biases discussed in section 5.1. Interestingly, all MSM-selected models for precipitation capture the direction 427 

of the main components of JJAS monsoon flow well.  428 



 20 

 429 
Figure 7. The spatial distribution of the climatology (1979-2014) of low-level wind circulation during the summer (JJAS) 430 
(vectors) in ERA5 reanalysis (highlighted by red title) and for individual simulations selected using MSM. All analyses are 431 
considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). Shading indicates the magnitude of wind (in m s-1). The 432 
mean absolute percentage error (MAPE) and spatial correlation (Scor) calculated against ERA5 are plotted in the upper right 433 
corners respectively. The mean of difference in wind direction (MD) referenced to ERA5 is shown in the lower left corner.  434 
Values highlighted in purple-coloured boxes indicate that they meet our defined benchmarking thresholds. Models are ranked 435 
from highest to lowest values of MD.  436 
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 437 
Figure 8. Same as Figure 7 but for the boreal winter wind (December-February, DJF) 438 

Using the definition of benchmark thresholds mentioned above, all models meet our expectations for wind 439 

intensity (MAPE) during the summer season but two fail for the winter season (i.e., MAPE of 0.79 for CMCC-440 

CM2-HR4 and 0.69 for MIROC6). Interestingly, only one model fails in benchmarking for wind spatial 441 

distribution and direction:  CNRM-ESM2-1 (MD is 21.67 during DJF, Fig. 8). 442 

3.2.3 Rainfall teleconnections with modes of variability  443 

The rainfall teleconnection for DJF ENSO is examined for two different seasons: the extended summer season of 444 

the developing year (MJJASO of year 0) the boreal spring of the following year (MAM of year +1) while the 445 

precipitation-IOD teleconnection is analysed for boreal autumn (SON). To benchmark CMIP6 GCMs, three 446 

metrics (HR, MR and FAR, see section 2.2.3) are calculated for each GCM considering the thresholds ≥ 0.5 for 447 

HR and ≤ 0.65 for MR and FAR, given the limited number of simulations used at this stage.  448 
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 449 
Figure 9. Lead correlation coefficients of the boreal summer (May-October, MJJASO year 0) rainfall with the mature phase 450 
of ENSO (December-January-February, DJF year 0 of Niño3.4 indices) for observations from APHRODITE with HadISST; 451 
individual CMIP6 GCM models during the period 1951-2014. The stippling indicates the grid points where the correlation 452 
coefficient is statistically significant at 95% confidence level according to the Student t-test. The Hite Rate (HR), Miss Rate 453 
(MR) and False Alarm Rate (FAR) calculated against APHRODITE are shown in the bottom left and upper right corners 454 
respectively. All analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). Values highlighted in purple-455 
coloured boxes indicate values that meet our defined benchmarking thresholds. Models are ranked from highest to lowest 456 
values of HR. 457 

The results for observations and CMIP6 GCMs selected from MSMs are shown in Fig. 9-11 respectively. The 458 

observed teleconnections vary widely by region and season. In general, ENSO-induced summer rainfall variability 459 

is dominant over MC (e.g., Sumatra and Java, Fig. 9), while spring variability is dominant over Indochina, 460 

northern Borneo and Philippines (Fig. 10), which agrees with the evolution and seasonal circulation migration 461 

mentioned in previous literature (Juneng and Tangang, 2005; Supari et al., 2018; Wang et al., 2020). On the other 462 

hand, IOD-induced rainfall variability is more pronounced during the SON season over MC (Fig. 11). 463 



 23 

 464 
Figure 10. Similar with Figure 9 but for the lag correlation coefficients the mature phase of ENSO (December-January-465 
February, DJF year 0 of Niño3.4 indices) with the boreal spring (March-April-May, MAM year +1) rainfall for (a) observations 466 
from APHRODITE with HadISST; (b)-(k) individual CMIP6 GCM models during the period 1951-2014. Models are ranked 467 
from highest to lowest values of HR. All analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 468 

CMIP6 GCMs (Fig. 10) demonstrate reasonable accuracy in simulating the spatial distribution of the ENSO 469 

teleconnection, but tend to overestimate its strength, particularly over regions where observed temporal correlation 470 

coefficients are non-significant. During MJJASO of the developing year, most models successfully reproduce 471 

significant negative signals over MC (e.g., high HR values ranging from 0.66 to 0.7 and low MR values less than 472 

0.4). During boreal spring of the following year (MAM of year 1), the ENSO-signals in CMIP6 GCMs match the 473 

observed pattern better than those during MJJASO of the developing year (Fig. 9), particularly over Indochina. 474 

Higher values of HR and lower MRs are found in most CMIP6 GCMs. This is consistent with previous literature 475 

that highlight that GCMs tend to overestimate ENSO variability across much of the equatorial Pacific (Mckenna 476 

et al., 2020) produce a poor representation of the ENSO life cycle (Taschetto et al., 2014; Mckenna et al., 2020) 477 

and interaction between ENSO and IOD (Mckenna et al., 2020; Planton et al., 2021). Note that certain models 478 

consistently perform well across seasons, such as EC-Earth3-Veg, EC-Earth3-CC, GFDL-ESM4 or HadGEM3-479 

GM31-MM while others, like BCC-CSM2-MR and CESM-2, exhibit less favourable performance in capturing 480 
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ENSO teleconnections over the region (Fig. 9 and 10). Eight out of 19 models, including the EC-Earth3 family, 481 

ACCESS-CM2, E3SM1-0, GFDL-ESM4, HadGEM3-GCM31-MM, MPI-ESM1-2-LR, SAM0-UNICON, UK-482 

ESM1-0-LL meet the ENSO teleconnection benchmark. Among models that did not pass the benchmark, many 483 

indicate an overestimation of observed non-significant ENSO signals (FAR) over the mainland during the 484 

MJJASO of year 0 (e.g., FAR of CMCM-CM2-HR,  TaiESM1 andGFDL-CM4 is 0.76, 0.75 and 0.72 respectively) 485 

or over MC during MAM of the following year (e.g., FAR of CMCC-CMS-SR5, EC-Earth3-Veg-LR and  CMCC-486 

ESM2 are 0.84, 0.77 and 0.74 respectively). 487 

 488 
Figure 11. Correlation coefficient of the boreal autumn (September-October-November, SON) rainfall with IOD (DMI) 489 
indices for observations from APHRODITE with HadISST and for individual CMIP6 GCMs during the period 1951-2014. 490 
The stippling indicates the grid points where the correlation coefficient is statistically significant at 95% confidence level 491 
according to the Student t-test. The Hite Rate (HR), Miss Rate (MR) and False Alarm Rate (FAR) calculated against 492 
APHRODITE are plotted in the bottom left and upper right corners respectively. Values highlighted in purple-coloured boxes 493 
indicate values that meet our defined benchmarking thresholds. Models are ranked from highest to lowest values of HR. All 494 
analyses are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 495 

Interestingly, the precipitation-IOD teleconnection shows some notable similarities among the 18 CMIP6 GCMs 496 

considered at the versatility metrics stage (Fig. 11). Most models capture the significant negative correlation over 497 

Java and southern Borneo, resulting in high HR values (ranging from 0.58 to 0.75). An exception is CESM2, 498 
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which produces non-significant signals over the entire region (Fig. 11). Interestingly, models that demonstrate 499 

weak performance in simulating ENSO teleconnections (e.g., BCC-CSM2-MR, CESM2 and CNCC-CM2-HR) 500 

also struggle to accurately simulate the IOD teleconnection. Using the same threshold definitions as established 501 

for assessing the ENSO teleconnection, we identify 14 out of 18 models that pass the benchmarking for IOD-502 

teleconnection. 503 

Table 4. Summary model performance against the versatility metrics that focused on precipitation drivers and modes of 504 
variability (ENSO and IOD teleconnections). Models that meet or exceed the benchmarks are highlighted in bold. All analyses 505 
are considered at the coarsest CMIP6 GCM (i.e., NESM3, ~ 216km). 506 

Simulations 

Monsoon circulation ENSO Teleconnection IOD 
teleconnection 

Pass/15 JJAS DJF MJJASO  MAM  SON  

Scor MD MAPE Scor MD MAPE MR FAR HR MR FAR HR MR FAR HR 

ACCESS-CM2 + + + + + + + + + + + + + + + 15 
BCC-CSM2-MR + + + + + + - + - + + + + + + 13 
CESM2 + + + + + + - + + - - + - - + 10 
CMCC-CM2-HR4 + + + - + + + + - + + + - + - 11 
CMCC-CM2-SR5 + + + + + + + + + + + - + + + 14 
CMCC-ESM2 + + + + + + + + + + + - + + + 14 
CNRM-ESM2-1 + + + - - - + + + + + + + + + 12 
E3SM-1-0 + + + + + + + + + + + + + + + 15 
EC-Earth3 + + + + + + + + + + + + + + + 15 
EC-Earth3-Veg + + + + + + + + + + + + + + + 15 
EC-Earth3-Veg-LR + + + + + + + + + + + - + + + 14 
GFDL-CM4 + + + + + + + + - + + + + + + 14 
GFDL-ESM4 + + + + + + + + + + + + + + + 15 
HadGEM3-GC31-
MM + + + + + + + + + + + + + + + 15 

MIROC6 + + + - + + + + + + + - + + + 13 
MPI-ESM1-2-LR + + + + + + + + + + + + - + + 14 
SAM0-UNICON + + + + + + + + + + + + + + + 15 
TaiESM1 + + + + + + + + - + + - + + + 13 
UKESM1-0-LL + + + + + + + + + + + + + + + 15 

Given the large observational uncertainty, particularly in rainfall estimation over the region (Nguyen et al., 2020; 507 

Nguyen et al., 2022), we apply the BMF using different reference datasets while maintaining a consistent 508 

benchmarking threshold definition. This evaluation identifies a similar list of models meeting the minimum 509 

standards of performance (Table s1). However, exceptions are noted, for instance, MPI-ESM1-2-LR fails to meet 510 

the MSMs when compared with GPDD_FDD but passes with other references. Similarly, NorESM2-MM exhibits 511 

varying performance across different observational products. However, even if these two models are included in 512 

the subsequent selection steps, they fail to meet one or more versatility metrics. For instance, MPI-ESM1-2-LR 513 

fails the IOD-teleconnection benchmark (Fig. 11 and Table 4) while NorESM2-MM fails on the ENSO-514 

teleconnection benchmark; Fig. s9). 515 
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It is acknowledged that different SST products vary in capturing the teleconnection. Figure s8 indicates the notable 516 

similarities among SST products in capturing the response of precipitation with modes of variability over SEA 517 

except for the teleconnection between DJF (year 0) ENSO and MJJASO (year 0) precipitation. However, despite 518 

the diversity in SST products, the final selection of models passing the BMF remains the same.  519 

Table 4 summarises the results of benchmarking 19 CMIP6 GCMs selected from the MSM for the versatility 520 

metrics. At this point of applying the BMF, we find 8 models (ACCESS-CM2, E3SM1-0, EC-Earth3, EC-Earth3-521 

Veg, GFDL-CM4, HadGEM3-GC31-MM, SAM0-UNICON, UKESM1-0-LL) meet our expectations in 522 

simulating precipitation drivers and teleconnections with modes of variability. This could be due to the fact that 523 

IOD is an ENSO artefact (Dommenget, 2011). 524 

3.3 Future climate change signals and model dependence  525 

 526 
Figure 12.  CMIP6 GCM climate change signal (2070-2099 relative to 1961-1990) over mainland Southeast Asia during (a) 527 
the wet (MJJASO) and (b) the dry (NDJFMA) seasons. The analyses are conducted for the GCMs that simulated at least 528 
monthly near-surface air temperature (tas) and precipitation (pr) for the SSP-3.70 scenario. Note that some models that did not 529 
simulate tas or pr for SSP-3.70 (e.g., E3SM1-0, HadGEM3-GCM31-MM, SAM0-UNICON) are not plotted. 530 

In this section, we examine the climate change signals from CMIP6 GCMs that provide at least mean temperature 531 

and precipitation data for the SSP3-7.0 scenario across two distinct seasons (see Fig. 12). Note that some models, 532 

such as CNRM-CM6-1-HR and EC-Earth3-Veg-LR (listed in Table 1), do not offer the sub-daily data (e.g., 533 

atmospheric variables in three dimensions at 6-hour intervals) required for dynamical downscaling at the time of 534 

writing. Nevertheless, we include these models in our analysis to gain insights into the future climate change 535 

responses of CMIP6 GCMs. Interestingly, while temperature projections show general agreement of an increasing 536 

trend (ranging from 2.1°C to 5.1°C), precipitation projections exhibit large variation in both signal and magnitude 537 



 27 

(ranging from -4.3% to 12.9%). Therefore, we cannot see the linear relationship between the change in regional 538 

total precipitation and temperature. Among the eight models that pass our BMF a priori expectations, there are 539 

only five models that provide at least data for monthly near-surface temperature (tas) and precipitation (pre), and 540 

they are distributed across the wide range of temperature and precipitation signals over SEA. They include: the 541 

wettest models in both seasons with mid-range projected temperatures [e.g. for the MJJASO season: EC-Earth3 542 

(10 % and 3.6 °C) and EC-Earth3_Veg (8.9% and 3.4 °C), Fig. 12a]; a model with the largest increase in 543 

temperature: UKESM1-0-LL (e.g., 5.1 °C during the MJJASO season); a model with larger response in 544 

precipitation and lower warming: GFDL-ESM4 (e.g., -11.2 % and 2.5 °C during the MJJASO season) and a model 545 

with a high-range temperature and mid-range precipitation response: ACCESS-CM2 (e.g., 4.9% and 4.2 °C during 546 

the MJJASO season).  547 

 548 
Figure 13. Dendrogram with hierarchical clustering applied for a matrix of spatial correlation coefficient between CMIP6 549 
climate models for the long-term changes (2070-2099 SSP3-7.0 relative to 1961-1990) in total precipitation during the wet 550 
season (MJJASO). The matrix is plotted for GCMs that simulated at least monthly near-surface air temperature (tas) and 551 
precipitation (pr) for the SSP-3.70 scenario only. Models are clustered with the Ward’s linkage criterion. 552 

The dendrogram and matrix of spatial correlation between CMIP6 GCMs are shown for Southeast Asia for 553 

climatological bias (Fig. s10-11) and long-term changes (Fig. 13-14) in total precipitation. As before we focus on 554 

the wet (MJJASO) and dry (NDJFMA) seasons. Historical correlations highlight notable similarities between 555 

models in historical bias maps (mostly significant and greater than 0.5) except UK-ESM1-0-LL which shows 556 

poorer relationships with other models (e.g., correlation coefficients with other models are less than 0.5) (Fig s10-557 



 28 

11). However, there is higher independence in projection maps compared with that in historical maps. This 558 

interesting feature needs to further investigate.  559 

Clustering analysis indicates three main spatial change clusters for the MJJASO season, as shown in the 560 

dendrogram (Fig. 13). This indicates similarities in the spatial pattern of the climate change response maps (e.g., 561 

correlations greater than 0.5) not only among models from the same families [e.g., among the MetOffice GCM-562 

based family (i.e., UKESM1-0-LL, ACCESS’s family] and in model families that share the same model 563 

components (e.g., UK-ESM1-0-LL and EC-Earth3 families share the same ocean model of NEMO3.6; Table 1) 564 

but also in less obvious families like CNRM and INM families or EC-Earth-based and GFDL-based simulations. 565 

An exception is EC-Earth-Veg-LR which appears in different main clusters compared with other EC-Earth-based 566 

simulations. As indicated in the MJJASO dendrogram, the BMF-passing models that have data available for 567 

dynamical downscaling are in two main clusters including: EC-Earth3/ EC-Earth-veg/ GFDL-ESM4 and 568 

UKESM1-0-LL/ ACCESS-CM2. 569 

 570 
Figure 14. Similar to figure 13 but for the dry season (November – April, NDJFMA).  571 

Figure 14 indicates two main spatial change clusters in the dry season. Interestingly, some models from the same 572 

family (e.g., EC-Earth3 and EC-Earth-Veg) still belong to the same main cluster but span different branches of 573 

the dendrogram. This might be related to the different role of internal variability in determining the level of 574 

uncertainty for precipitation during different seasons and needs further investigation. Interestingly, among models 575 

that pass the BMF, EC-Earth3 and EC-Earth-veg appear on a main cluster while UKESM1-0-LL, ACCESS-CM2 576 
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and GFDL-ESM4 are in the other main cluster for the NDJFMA dendrogram. This highlights the dependence of 577 

clustering analysis on the season.  578 

We acknowledge that a model's good performance in simulating historical climate conditions does not necessarily 579 

guarantee similar accuracy in future climate projections, a well-recognized issue in climate modelling (Herger et 580 

al., 2019). However, there are no arguments in the literature suggesting that models with weaker skill in simulating 581 

historical climatology perform better in future projections. On the contrary, we believe that models demonstrating 582 

good performance in both statistical and process-based metrics are more likely to provide credible future 583 

projections given their proven ability to accurately simulate the physical mechanisms responsible for generating 584 

rainfall in the region.  585 

In general, based on our evaluation of model performance, model dependence and future climate change spread, 586 

we identify two independent groups of models to use for dynamical downscaling over SEA, that is, EC-Earth3/ 587 

EC-Earth-Veg, ACCESS-CM2/UKESM1-0-LL. Models from these two groups also offer atmospheric variables 588 

in three dimensions at 6-hour intervals required for dynamical downscaling (Table 1). Given the inconsistency of 589 

classification of GFDL-ESM4 during different seasons and metrics, it is suggested to consider GFDL-ESM4 with 590 

caution.  591 

4 Discussion  592 

Our results somewhat differ from traditional model evaluation studies like Desmet and Ngo-Duc (2022), which 593 

ranks models by evaluation metrics and identifies a list of the best models including EC-Earth3, EC-Earth3-Veg, 594 

CNRM-CM6-1-HR, FGOALS-f3-L, HadGEM3-GC31-MM, GISS-E2-1-G, GFDL-ESM4, CIESM-WACCM 595 

and FIO-ESM-2-0. First, rather than ranking models, our aim is to retain models that meet our predefined 596 

expectations (e.g., benchmarking thresholds). Second, the list of examined models is different since we especially 597 

focus on models with a resolution greater than 2 degrees to avoid the impacts of coarser resolutions in GCMs on 598 

dynamical downscaling. Furthermore, while Desmet and Ngo-Duc (2022) combine model performance in 599 

simulating surface climates (e.g., precipitation, near-surface temperature) and climate processes (e.g., low-level 600 

atmospheric circulation), our focus is solely on precipitation, its drivers and teleconnections with modes of 601 

variability.  602 

We acknowledge that the list of models passing the BMF might change, depending on how the benchmarking 603 

thresholds are defined. Isphording et al. (2024) notes that the definition of the benchmarking thresholds for the 604 

MSMs and versatility metrics can be subjective, and they should be chosen to fit the purpose of the study while 605 

incorporating strong scientific reasoning. The strategy employed here involves defining the benchmarking 606 

thresholds based on our knowledge of observational uncertainty over the region. In addition, we aim to give each 607 

model the ‘benefit of doubt’, thus retaining a broad range of plausible future climate change responses. In 608 

particular, in the initial step of the BMF framework, we are generous in defining the benchmark threshold for the 609 

wet season given the lower model performance compared with the dry season. This approach results in 19 out of 610 

32 models passing the MSMs. Subsequently we employ versatility metrics to cover a more process-based 611 

assessment. Given previous studies have highlighted the overestimation of GCMs in simulating precipitation 612 

drivers and its teleconnections and limited possible simulations at this stage, we also set relaxed thresholds for 613 
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various metrics to maximize the number of models passing the BMF. We feel this is a pragmatic approach to 614 

retain a reasonable sample size and explore plausible futures. However, we acknowledge that dynamical 615 

downscaling experiments often require significant computing resources and only a small subset of GCMs should 616 

be pre-selected. Therefore, we narrow down our selection of 8 GCMs for further assessment using metrics related 617 

to model dependency and future climate change spread.  618 

Previous studies suggest the potential impact of smoothing the extreme values when interpolating to coarser 619 

resolutions, which might affect the skill score metrics used to measure percentage errors in a simulation relative 620 

to a reference (i.e., MAPE). Although we observe a higher number of failed models for the same skill when 621 

conducting the BMF at the GCM original resolutions (Table s4), we identify a similar subset of models meeting 622 

all minimum performance requirements (Table s4). This suggests that the coarser resolution of ~210 km used for 623 

benchmarking is not the main reason behind the results of quantifying model skill used in this study. This is in 624 

line with Nguyen et al. (2022), where they demonstrate that model components (e.g., configurations in different 625 

schemes) are the main reason behind the model biases rather than model resolution.  626 

The relationship between model structures and model biases is investigated in the model dependency section using 627 

cluster analysis. We acknowledge that grouping of models might changes for not only for considered periods and 628 

seasons (as discussed in section 3.3) but also for considered metrics. Interestingly, using mean percentage changes 629 

as distance measure between models, we identify similar main clusters of EC-Earth3/ EC-Earth-Veg and 630 

ACCESS-CM2/ UKESM1-0-LL among models that passing the BMF (Fig. s12-s13). This subset of models is 631 

suitable for dynamical downscaling over Southeast Asia.  632 

The customized BMF implemented in this study offers a consistent framework for model evaluation across the 633 

whole CORDEX-SEA domain. The framework can be further developed and applied extensively to sub-regions 634 

of interest, in particular within the upcoming Climatic hazard Assessment to enhance Resilience against climate 635 

Extremes for Southeast Asian megacities (CARE for SEA megacities) Project of CORDEX-SEA. In this project, 636 

each mega city can identify their climate priority and the associated metrics for selecting a fit-for-purpose subset 637 

of models. This framework could also be implemented in impact-related projections over SEA, for particular 638 

sectors: agriculture, forestry, water etc. for credible future projections.  639 

5 Conclusion 640 

In this paper, we apply the insight gained from the CMIP6 selection process for dynamical downscaling across 641 

various CORDEX-domains to Southeast Asia by encompassing several critical factors: model performance, model 642 

independence, data availability and the spread of future climate change projections.  643 

Rather than exhaustively evaluating all performance aspects of the models in simulating the Southeast Asian 644 

climate, our focus is on selecting models that simulate precipitation well, including its drivers and teleconnections 645 

given the high uncertainty in rainfall projections over the region. In addition, we apply a novel standardised 646 

benchmarking framework – a new approach in identifying a subset of fit-for-purpose models that align with a 647 

user’s a priori performance expectations. This framework has two stages of assessment: statistical-based metrics 648 

and process/regime-based metrics, conducted for both wet (MJJASO) and dry (NDJFMA) seasons.  649 
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From the first step we identify 19 GCMs that meet our minimum criteria for simulating the fundamental 650 

characteristics (e.g., bias, spatial distribution, seasonality, and trends) of seasonal rainfall. GCMs generally exhibit 651 

wet biases, particularly over the complex terrain of the Maritime Continent. These models then undergo a second 652 

evaluation, focusing on their ability to simulate climate processes and teleconnections with modes of variability. 653 

While these models consistently capture atmospheric circulation and teleconnections with modes of variability 654 

over the region, they exhibit a tendency to overestimate their strength. Ultimately, our framework narrows down 655 

the selection to eight GCMs that meet our model performance expectations in simulating fundamental 656 

characteristics of precipitation, key drivers, and teleconnections over Southeast Asia. There are obvious high-657 

performing GCMs from allied modelling groups, highlighting the dependency of the subset of models identified 658 

from the framework. Consequently, additional tests on model independence, data availability for the SSP 3-7.0, 659 

and the spread of future climate change are conducted. These tests lead to the identification of two independent 660 

groups of models (e.g., EC-Earth3-Veg/EC-Earth3 and ACCESS-CM2/UKESM1-0-LL) that align with our a 661 

priori expectations for dynamical downscaling over CORDEX-SEA. It is recommended that only one model from 662 

each group be chosen to avoid models that are too closely related.  663 
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