
1

A Fortran-Python Interface for Integrating Machine Learning Parameterization into 1

Earth System Models 2

Tao Zhang1, Cyril Morcrette2,7, Meng Zhang3, Wuyin Lin1, Shaocheng Xie3, Ye Liu4, Kwinten Van 3

Weverberg5,6, Joana Rodrigues2 4

 5

1. Brookhaven National Laboratory, Upton, NY, USA 6

2. Met Office, FitzRoy Road, Exeter, EX13PB, UK 7

3. Lawrence Livermore National Laboratory, Livermore, CA, USA 8

4. Pacific Northwest National Laboratory, Richland, WA, USA 9

5. Department of Geography, Ghent University, Belgium 10

6. Royal Meteorological Institute of Belgium, Brussels, Belgium 11

7. Department of Mathematics and Statistics, Exeter University, Exeter, UK 12

Correspondence to: Tao Zhang (taozhang.ccs@gmail.com) 13

Abstract 14

Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from 15

subjective empirical assumptions and incomplete understanding of the underlying physical processes. 16

Recently, the growing representational capability of machine learning (ML) in solving complex problems 17

has spawned immense interests in climate science applications. Specifically, ML-based parameterizations 18

have been developed to represent convection, radiation and microphysics processes in ESMs by learning 19

from observations or high-resolution simulations, which have the potential to improve the accuracies and 20

alleviate the uncertainties. Previous works have developed some surrogate models for these processes 21

using ML. These surrogate models need to be coupled with the dynamical core of ESMs to investigate 22

the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-23

Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface 24

showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and Scikit-25

learn. We demonstrate the interface's modularity and reusability through two cases: a ML trigger function 26

for convection parameterization and a ML wildfire model. We conduct a comprehensive evaluation of 27

memory usage and computational overhead resulting from the integration of Python codes into the 28

Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, 29

tested, and integrated into ESMs. 30

 31

2

Plain Language 32

Earth System Models (ESMs) are crucial for understanding and predicting climate change. However, they 33

struggle to accurately simulate the climate due to uncertainties associated with parameterizing sub-grid 34

physics. Although higher-resolution models can reduce some uncertainties, they require significant 35

computational resources. Machine learning (ML) algorithms offer a solution by learning the important 36

relationships and features from high-resolution models. These ML algorithms can then be used to develop 37

parameterizations for coarser-resolution models, reducing computational and memory costs. To 38

incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for 39

calling Python functions within Fortran-based ESMs. Through two case studies, this interface 40

demonstrates its feasibility, modularity and effectiveness. 41

1. Introduction 42

Earth System Models (ESMs) play a crucial role in understanding the mechanism of the climate system 43

and projecting future changes. However, uncertainties arising from parameterizations of sub-grid 44

processes pose challenges to the reliability of model simulations (Hourdin et al., 2017). Kilometer-scale 45

high-resolution models (Schär et al., 2020) can potentially mitigate the uncertainties by directly resolving 46

some key subgrid-scale processes that need to be parameterized in conventional low-resolution ESMs. 47

Another promising method, superparameterization – a type of multi-model framework (MMF) (D. 48

Randall et al., 2003; D. A. Randall, 2013), explicitly resolves sub-grid processes by embedding high-49

resolution cloud-resolved models within the grid of low-resolution models. Consequently, both high-50

resolution models and superparameterization approaches have shown promise in improving the 51

representation of cloud formation and precipitation. However, their implementation is challenged by 52

exceedingly high computational costs. 53

 54

In recent years, machine learning (ML) techniques have emerged as a promising approach to 55

improve parameterizations in ESMs. They are capable of learning complex patterns and 56

relationships directly from observational data or high-resolution simulations, enabling the 57

capture of nonlinearities and intricate interactions that may be challenging to represent with 58

traditional parameterizations. For example, Zhang et al. (2021) proposed a ML trigger function 59

for a deep convection parameterization by learning from field observations, demonstrating its 60

superior accuracy compared to traditional CAPE-based trigger functions. Chen et al. (2023) 61

developed a neural network-based cloud fraction parameterization, better predicting both spatial 62

3

distribution and vertical structure of cloud fraction when compared to the traditional Xu-Randall 63

scheme (Xu & Randall, 1996). Krasnopolsky et al. (2013) prototyped a system using a neural 64

network to learn the convective temperature and moisture tendencies from cloud-resolving 65

model (CRM) simulations. These tendencies refer to the rates of change of various atmospheric 66

variables over one time step, diagnosed from particular parameterization schemes. These studies 67

lay the groundwork for integrating ML-based parameterization into ESMs. 68

 69

However, the aforementioned studies primarily focus on offline ML of parameterizations that do 70

not directly interact with ESMs. Recently, there have been efforts to implement ML 71

parameterizations that can be directly coupled with ESMs. Several studies have developed ML 72

parameterizations in ESMs by hard coding custom neural network modules, such as O’Gorman 73

& Dwyer (2018), Rasp et al. (2018), Han et al. (2020) and Gettelman et al. (2021). They 74

incorporated a Fortran-based ML inference module to allow the loading of the pre-trained ML 75

weights to reconstruct the ML algorithm in ESMs. The hard-coding has limitations. Such hard-76

coding approach restricts the ML algorithm’s ability to adapt to changes in the model dynamics 77

over time, as the ‘online’ updating requires a two-way coupling between the dominantly Fortran-78

based ESMs and Python ML libraries. 79

 80

Fortran-Keras Bridge (FKB; Ott et al. (2020)) and C Foreign Function Interface (CFFI; 81

https://cffi.readthedocs.io) are two packages that support two-way coupling between Fortran-based ESM 82

and Python based ML parameterizations. FKB enables tight integration of Keras deep learning models but 83

is specifically bound to the Keras library, limiting its compatibility with other frameworks like PyTorch 84

and Scikit-Learn. On the other hand, CFFI provides a more flexible solution that in principle supports 85

coupling various ML packages due to its language-agnostic design. Brenowitz & Bretherton (2018) 86

utilized it to enable the calling of Python ML algorithms within ESMs. However, the CFFI has several 87

limitations. When utilizing CFFI to interface Fortran and Python, it uses global data structures to pass 88

variables between the two languages. This approach results in additional memory overhead as variable 89

values need to be copied between languages, instead of being passed by reference. Additionally, CFFI 90

lacks automatic garbage collection for the unused memory within these data structures and copies. 91

Consequently, the memory usage of the program gradually increases over its lifetime. In addition, when 92

using CFFI to call Python functions from a Fortran program, the process involves several steps such as 93

registering variables into a global data structure, calling the Python function, and retrieving the calculated 94

https://www.zotero.org/google-docs/?YVGVSV

4

result. These multiple steps can introduce computational overhead due to the additional operations 95

required. 96

 97

Additionally, Wang et al. (2022) developed a coupler to facilitate two-way communication between ML 98

parameterizations and host ESMs. The coupler gathers state variables from the ESM using the Message 99

Passing Interface (MPI) and transfers them to a Python-based ML module. It then receives the output 100

from the Python code and returns them to the ESM. While this approach effectively bridges Fortran and 101

Python, its use of file-based data passing to exchange information between modules carries some 102

performance overhead relative to tighter coupling techniques. Optimizing the data transfer, such as via 103

shared memory, remains an area for improvement to fully leverage this coupler's ability to integrate 104

online-adaptive ML parameterizations within large-scale ESM simulations, which is the main goal for this 105

study. 106

 107

In this study, we investigate the integration of ML parameterizations into Fortran-based ESM 108

models by establishing a flexible interface that enables the invocation of ML algorithms in 109

Python from Fortran. This integration offers access to any Python codes from Fortran, including 110

a diverse range of ML frameworks, such as PyTorch, TensorFlow, and Scikit-learn, which can 111

effectively be utilized for parameterizing intricate atmospheric and other climate system 112

processes. The coupling of the Fortran model and the Python ML code needs to be performed for 113

thousands of model columns and over thousands of timesteps for a typical model simulation. 114

Therefore, it is crucial for the coupling interface to be both robust and efficient. We showcase the 115

feasibility and benefits of this approach through case studies that involve the parameterization of 116

deep convection and wildfire processes in ESMs. The two cases demonstrate the robustness and 117

efficiency of the coupling interface. The focus of this paper is on documenting the coupling 118

between the Fortran ESM and the ML algorithms and systematically evaluating the 119

computational efficiency and memory usage of different ML frameworks (such as Pytorch and 120

TensorFlow), different ML algorithms, and different configuration of a climate model. The 121

assessment of the scientific performance of the ML emulators will be addressed in follow-on 122

papers. The showcase examples emphasize the potential for high modularity and reusability by 123

separating the ML components into Python modules. This modular design facilitates independent 124

development and testing of ML-based parameterizations by researchers. It enables easier code 125

maintenance, updates, and the adoption of state-of-the-art ML techniques with only minimal 126

5

disrupting the existing Fortran infrastructure. Ultimately, this advancement will contribute to 127

enhanced predictions and a deeper comprehension of the evolving climate of our planet. It is 128

important to note that the current interface only supports executing deep learning algorithms on CPUs and 129

does not support running them on GPUs. 130

 131

The rest of this manuscript is organized as follows: Section 2 presents the detailed interface that 132

integrates ML into Fortran-based ESM models. Section 3 discusses the performance of the 133

interface and presents its application in two case studies. Finally, Section 4 provides a summary 134

of the findings and a discussion of their implications. 135

2. General design of the ML interface 136

2.1 Architecture of the ML interface 137

We developed an interface using shared memory to enable two-way coupling between Fortran and Python 138

(Figure 1). The ESM used in the demonstration in Figure 1 is the U.S. Department of Energy (DOE) 139

Energy Exascale Earth System Model (E3SM; Golaz et al., 2019, 2022). Because Fortran cannot directly 140

call Python, we utilized C as an intermediary since Fortran can call C functions. This approach leverages 141

C as a data hub to exchange information without requiring a framework-specific binding like KFB. As a 142

result, our interface supports invoking any Python-based ML package such as PyTorch, TensorFlow, and 143

scikit-learn from Fortran. While C can access Python scalar values through the built-in 144

PyObject_CallObject function from the Python C API, we employed Cython for its ability to transfer 145

array data between the languages. Using Cython, multidimensional data structures can be efficiently 146

passed between Fortran and Python modules via C, allowing for flexible training of ML algorithms within 147

ESMs. 148

6

 149
Figure 1. The interface of the ML bridge for two-way communication via memory between Fortran ESM 150

and Python ML module. 151

2.2 Code structure 152

Figure 2 illustrates how the framework operates using toy code example. The Fortran-Python interface 153

comprises a Fortran wrapper and C wrapper files, which are bound together. The Fortran-based ESM first 154

imports the Fortran wrapper, allowing it to call wrapper functions with input and output memory 155

addresses. The interface then passes these memory addresses to the Python-based ML module, which 156

performs the ML predictions and returns the output address to the Fortran model. 157

 158
Figure 2. Toy code illustrating the Fortran-Python interface. 159

Earth SystemModels (ESMs) Machine LearningData Hub

Fortran C/C++ Python

Memory
coupler

ocean

land

atmosphere

Sea-ice

Other
Comp.

7

 160

When coupling the Python ML module with the real model using the interface, additional steps should be 161

considered: 1. The ML module should remain active throughout the model simulations, without any 162

Python finalization calls, ensuring it is continuously available. 2. The Python module should load the 163

trained ML model and any required global data only once, rather than at each simulation step. This one-164

time initialization process improves efficiency and prevents unnecessary repetition. On the Fortran ESM 165

side, the init_ml() function is called within the atm_init_mct module to load the ML model and global 166

data (shown in Figure 3). Then, similar to the toy code, we call the wrapper function, pass input variables 167

to Python for ML predictions, and return the results to the Fortran side. 3. When compiling the complex 168

system, which includes Python, C, Cython, and Fortran code, the Python path should be specified in the 169

CFLAGS and LDFLAGS. It is important to note that without the position-independent compiling flag (-170

fPIC), the hybrid system will only work on a single node and may cause segmentation faults on multiple 171

nodes. Including it can resolve this issue, allowing multi-node compatibility. 172

 173

 174

 175
Figure 3. The code structure of the ML bridge interface using the ML closure in deep convection as an 176

example. 177

 178

In traditional ESMs, sub-grid scale parameterization routines such as convection parameterizations are 179

often calculated separately for each vertical column of the model domain. Meanwhile, the domain is 180

typically decomposed horizontally into 2D chunks that can be solved in parallel using MPI processes. 181

Each CPU core/MPI process is assigned a number of chunks of model columns to update asynchronously 182

(Figure 4). Our interface takes advantage of this existing parallel decomposition by designing the ML 183

calls to operate over all columns simultaneously within each chunk, rather than invoking the ML scheme 184

individually for each column. This allows the coupled model-ML system to leverage parallelism in the 185

8

neural network computations. If the ML were called separately for every column, parallel efficiencies 186

would not be realized. By aggregating inputs over the chunk-scale prior to interfacing with Python, 187

performance is improved through better utilization of multi-core and GPU-based ML capabilities during 188

parameterization calculations. 189

 190

 191
Figure 4. Data and system structure. The model domain is decomposed into chunks of columns. pver 192

refers to number of pressure vertical levels. A chunk contains multiple columns (up to pcol). Multiple 193

chunks can be assigned to each CPU core. 194

 195

 196

3. Results 197

The framework explained in the previous section provides seamless support for various ML 198

parameterizations and various ML frameworks, such as PyTorch, Tensorflow, and Scikit-learn. To 199

demonstrate the versatility of this framework, we applied it in two distinct case applications. The first 200

application replaces the conventional CAPE-based trigger function in a deep convection parameterization 201

with a machine-learned trigger function. The second application involves a ML-based wildfire model that 202

interacts bidirectionally with the ESM. We provide a brief introduction to these two cases. Detailed 203

descriptions and evaluations will be presented in separate papers. 204

 205

The framework's performance is influenced by two primary factors: increasing memory usage and 206

increasing computational overhead. Firstly, maintaining the Python environment fully persistent in 207

memory throughout model simulations can impact memory usage, especially for large ML algorithms. 208

9

This elevated memory footprint increases the risk of leaks or crashes as simulations progress. Secondly, 209

executing ML components within the Python interpreter inevitably introduces some overhead compared 210

to the original ESMs. The increased memory requirements and decreased computational efficiency 211

associated with these considerations can impact the framework's usability, flexibility, and scalability for 212

different applications. 213

 214

To comprehensively assess performance, we conducted a systematic evaluation of various ML 215

frameworks, ML algorithms, and physical models. This evaluation is built upon the foundations 216

established for evaluating the ML trigger function in the deep convection parameterization. 217

3.1 Application cases 218

3.1.1 ML trigger function in deep convection parameterization 219

In General Circulation Models, uncertainties in convection parameterizations are recognized to be closely 220

linked to the convection trigger function used in these schemes (Bechtold et al., 2004; Xie et al., 2004, 221

2019; Xie & Zhang, 2000; Lee et al., 2007). The convective trigger in a convective parameterization 222

determines when and where model convection should be triggered as the simulation advances. In many 223

convection parameterizations, the trigger function consists of a simple, arbitrary threshold for a physical 224

quantity, such as convective available potential energy (CAPE). Convection will be triggered if the CAPE 225

value exceeds a threshold value. 226

 227

In this work, we use this interface to test a newly developed ML trigger function in E3SM. The ML 228

trigger function was developed with the training data originating from simulations performed using the 229

kilometer-resolution (1.5 km grid spacing). Met Office Unified Model Regional Atmosphere 1.0 230

configuration (Bush et al., 2020). Each simulation consists of a limited area model (LAM) nested within a 231

global forecast model providing boundary conditions (Walters et al., 2017; Webster et al., 2008). In total 232

80 LAM simulations were run located so as to sample different geographical regions worldwide. Each 233

LAM was run for 1 month, with 2-hourly output, using a grid-length of 1.5 km, a 512 x 512 domain, and 234

a model physics package used for operational weather forecasting. The 1.5 km data is coarse-grained to 235

several scales from 15 to 144 km. . 236

 237

A two-stream neural network architecture is used for the ML model. The first stream takes profiles of 238

temperature, specific humidity and pressure across 72 levels at each scale as inputs and passes them 239

through a 4-layer convolutional neural network (CNN) with kernel sizes of 3, to extract large scale 240

10

features. The second stream takes mean orographic height, standard deviation of orographic height, land 241

fraction and the size of the grid-box as inputs. The outputs of the two streams are then combined and fed 242

into a 2-layer fully connected network to allow the ML model to leverage both atmospheric and surface 243

features when making its predictions. The output is a binary variable indicating whether the convection 244

happens, based on the condition of buoyant cloudy updrafts (BCU, e.g. Hartmann et al., 2019; Swann, 245

2001). If there are 3 contiguous levels where the predicted BCU is larger than 0.05, the convection 246

scheme is triggered. Once trained, the CNN is coupled to E3SM and thermodynamic information from 247

E3SM is passed to it to predict the trigger condition. Then, the predicted result is returned to E3SM. 248

 249

Figure 5 shows the comparison of annual mean precipitation between the control run using the traditional 250

CAPE-based trigger function and the run using the ML BCU trigger function. The ML BCU scheme 251

demonstrates reasonable spatial patterns of precipitation, similar to the control run, with comparable root-252

mean-square error and spatial correlation. Additional experiments exploring the definition of BCU and 253

varying the thresholds along with an in-depth analysis will be presented in a follow-up paper. 254

 255

 256
Figure 5. Comparison of annual mean precipitation between the control run using the CAPE-based 257

trigger function (a, c) and the run using the ML BCU trigger function (b, d). 258

3.1.2 ML learning fire model 259

Predicting wildfire burned area is challenging due to the complex interrelationships between fires, 260

climate, weather, vegetation, topography, and human activities (Huang et al., 2020). Traditionally, 261

statistical methods like multiple linear regression have been applied, but are limited in the number and 262

diversity of predictors considered (Yue et al., 2013). In this study, we develop a coupled fire-land-263

https://www.zotero.org/google-docs/?tncHCH

11

atmosphere framework that uses machine learning to predict wildfire area, enhancing long-term burned 264

area projections and assessing fire impacts by enabling simulations of interactions among fire, 265

atmosphere, land cover, and vegetation. 266

 267

The ML algorithm is trained using a monthly dataset, which includes the target variable of burned area, as 268

well as various predictor variables. These predictors encompass local meteorological data (e.g., surface 269

temperature, precipitation), land surface properties (e.g., monthly mean evapotranspiration and surface 270

soil moisture), and socioeconomic variables (e.g., gross domestic product, population density), as 271

described by Wang et al. (2022). In the coupled fire-land-atmosphere framework, meteorology variables 272

and land surface properties are provided by the E3SM. We use the eXtreme Gradient Boosting algorithm 273

implemented in Scikit-Learn to train the ML fire model. Figure 6 demonstrates that the ML4Fire model 274

exhibits superior performance in terms of spatial distribution compared to process-based fire models, 275

particularly in the Southern US region. Detailed analysis will be presented in a separate paper. The 276

ML4Fire model has proven to be a valuable tool for studying vegetation-fire interactions, enabling 277

seamless exploration of climate-fire feedbacks. 278

 279

 280

 281

Figure 6. Comparison between ML4Fire model and process-based fire model against the historical 282

burned area from Global Fire Emissions Database 5 from 2001-2020. R and BIAS are the spatial 283

pattern correlation and difference against the observation, respectively. 284

https://www.zotero.org/google-docs/?f45yl4

12

3.2 Performance of different ML frameworks 285

The Fortran-Python bridge ML interface supports various ML frameworks, including PyTorch, 286

TensorFlow, and scikit-learn. These ML frameworks can be trained offline using kilometer-scale high-287

resolution models (such as the ML trigger function) or observations (ML fire model). Once trained, they 288

can be plugged into the ML bridge interface through different API interfaces specific to each framework. 289

The coupled ML algorithms are persistently resident in memory, just like the other ESM components. 290

During each step of the process, the performance of the full system is significantly affected by memory 291

usage. If memory consumption increases substantially, it may lead to memory leaks as the number of time 292

step iteration increases. In addition, Python, being an interpreted language, is typically considered to have 293

slower performance compared to compiled languages like C/C++ and Fortran. Therefore, incorporating 294

Python may decrease computational performance. We examine the memory usage and computational 295

performance across various ML frameworks based on implementing the ML trigger function in E3SM. 296

The ML algorithm is implemented as a two-stream CNN model using Pytorch and TensorFlow 297

frameworks, as well as XGBoost using the Scikit-learn package. It should be noted that XGBoost, a 298

boosting tree-based model, is a completely different type of ML model compared to the CNNs, which are 299

the type of deep neural network. 300

 301
Figure 7. Computational and memory overhead as the simulation progresses for coupling the ML trigger 302
function with the E3SM model. The x-axis represents the simulated time step. The y-axis of (a) represents 303
the simulation speed measured in seconds per day (indicating the number of seconds required to simulate 304
one day). The y-axis of (b) represents the relative increase in memory usage for Scikit-learn, TensorFlow, 305
and PyTorch compared with CNTL. CNTL represents the original simulation without using the ML 306
framework. 307
 308

13

Figure 7 illustrates the computational and memory overhead associated with the ML parameterization 309

using different ML frameworks. It shows that XGBoost only exhibits a 20% increase in the simulation 310

time required for simulating one day due to its simpler algorithm. For more complex neural networks, 311

PyTorch incurs a 52% overhead, while TensorFlow's overhead is almost 100% – about two times as much 312

as the overhead by PyTorch. In terms of memory usage, we use the highwater memory metric (Gerber & 313

Wasserman, 2013), which represents the total memory footprint of a process. Scikit-learn and PyTorch do 314

not show any significant increase in memory usage. However, TensorFlow shows a considerable increase 315

up to 50MB per simulation day per MPI process element. This is significant because for a node with 48 316

cores, it would equate to an increase of around 2GB per simulated day on that node. This rapid memory 317

growth could quickly lead to a simulation crash due to insufficient memory during continuous 318

integrations, preventing the use in practical simulations. Our findings show that the TensorFlow 319

prediction function does not release memory after each call. Therefore, we recommend using PyTorch for 320

complex deep learning algorithms and Scikit-learn for simpler ML algorithms to avoid these potential 321

memory-related issues when using TensorFlow. 322

 323

Previous work, such as Brenowitz & Bretherton (2018, 2019) has utilized the CFFI package to establish 324

communication between Fortran ESM and ML Python. As described in the Introduction, while CFFI 325

offers flexibility in supporting various ML packages, it does have certain limitations. To pass variables 326

from Fortran to Python, the approach relies on global data structures to store all variables, including both 327

the input from Fortran to Python and the output returning to Fortran. Consequently, this package results in 328

additional memory copy operations and increasing overall memory usage. In contrast, our interface takes 329

a different approach by utilizing memory references to transfer data between Fortran and Python, 330

avoiding the need for global data structures and the associated overhead. This allows for a more efficient 331

data transfer process. 332

 333

In Figure 8, we present a comparison between the two frameworks by testing the different number of 334

elements passed from Fortran to Python. The evaluation is based on a demo example that focuses solely 335

on declaring arrays and transferring them from Fortran to Python, rather than a real E3SM simulation. 336

Figure 8a illustrates the impact of the number of passing elements on the overhead of the two interfaces. 337

As the number of elements exceeds 10!, the overhead of CFFI becomes significant. When the number 338

surpasses 10", the overhead of CFFI is nearly ten times greater than that of our interface. Regarding 339

memory usage, our interface maintains a stable memory footprint of approximately 60MB. Even as the 340

number of elements increases, the memory usage only shows minimal growth. However, for CFFI, the 341

14

memory usage starts at 80MB, which is 33% higher than our interface. As the number of elements 342

reaches 10", the memory overhead for CFFI dramatically rises to 180MB, twice as much as our interface. 343

 344

 345
Figure 8. Comparison of our framework and the CFFI framework in terms of computational time 346

and memory usage. The x-axis represents the number of elements transferred from Fortran to 347

Python, while the y-axis displays the total time (a) and total memory usage (b) for a 348

demonstration example. The evaluations presented are based on the average results obtained 349

from 5 separate tests. 350

 351

3.3 Performance of ML algorithms of different complexities 352

ML parameterizations can be implemented using various deep learning algorithms with different levels of 353

complexity. The computational performance and memory usage can be influenced by the complexity of 354

these algorithms. In the case of the ML trigger function, a two-stream four-layer CNN structure is 355

employed. We compare this structure with other ML algorithms such as Artificial Neural Network (ANN) 356

and Residual Network (ResNet), whose structures are detailed in Table 1. We selected these three ML 357

algorithms because they are commonly used in previous ML parameterization approaches, such as 358

(Brenowitz & Bretherton, 2019; Han et al., 2020; Wang et al., 2022). Systematically evaluating the hybrid 359

system with these ML methods using our interface can help identify bottlenecks and improve the system 360

computational performance. These algorithms are implemented in PyTorch. The algorithm’s complexity 361

is measured by the number of parameters, with the CNN having approximately 60 times more parameters 362

than ANN, and ResNet having roughly 1.5 times more parameters than CNN. 363

 364

 365

 366

15

Table 1. The structure and number of parameters of each ML algorithms. 367

Algorithms Structure # of parameters

ANN 3 x Linear 121,601

CNN 4 x Conv2d + 2 x Linear 7,466,753

ResNet 17 x Conv2d + 1 x Linear 11,177,025

 368

Figure 9 presents a comparison of the memory and computational costs between the CNTL run without 369

deep learning parameterization and the hybrid run with various deep learning algorithms. The same 370

specific process-element layout (placement of ESM component models on distributed CPU cores) is used 371

for all the simulations. Deep learning algorithms incur a significant yet affordable increase in memory 372

overhead, with at least a 20% increase compared to the CNTL run (Figure 9a). This is primarily due to the 373

integration of ML algorithms into the ESM, which persist throughout the simulations. Although there is a 374

notable increase in complexity among the deep learning algorithms, their memory usage only shows a 375

slight rise. This is because the memory increment resulting from the ML parameters is relatively small. 376

Specifically, ANN requires 1MB of memory, CNN requires 60MB, and the ResNet algorithms requires 377

85MB, which are calculated based on the number of parameters in each algorithm. When comparing these 378

values to the memory consumption of the CNTL run, which is approximately 3000MB, the additional 379

parameters' incremental memory consumption is not substantial. However, when we use 128 MPI 380

processes per node, it could bring the total memory requirement to approximately 460 GB per node. If the 381

available hardware memory is less than this, the process layout must be adjusted accordingly. 382

 383

In terms of computational performance, the Python-based ML calls inevitably introduce some overhead. 384

However, as shown in Figure 9b, the performance decrease is not substantial. The simple ANN model 385

reduces performance by only about 10% compared to the CNTL run, while even the more complex 386

ResNet model results in a 35% decrease. In contrast, Wang et al. (2022) reported a 100% overhead in 387

their interface, which transfers parameters via files. It is worth noting that in this study, the deep learning 388

algorithms are executed on CPUs. To enhance computational performance, future work could consider 389

utilizing GPUs for acceleration. 390

 391

In addition, we develop a performance model to estimate computational performance for the hybrid 392

model using different ML model sizes and complexities. This performance model, based on linear 393

regression, predicts the computational ratio relative to the CNTL run by taking the number of ML 394

16

parameters as input, shown in Figure 9b. It provides a simple yet effective way to capture this relationship 395

and serves as a valuable tool for performance prediction when incorporating more complicated ML 396

models. 397

 398
Figure 9. Comparison of CNTL and the hybrid model using various ML algorithms in terms of memory 399

and computation. CNTL is the default run without ML parameterizations. In (b), the left y-axis represents 400

the actual number of simulated years per day, while the right y-axis shows the relative performance 401

compared to the CNTL run (orange line). The gray line illustrates the regression between the number of 402

ML parameters (x) and the relative performance of the hybrid system (y). 403

 404

3.4 Performance for physical models of different complexities 405

ML parameterization can be applied to various ESM configurations, for example, with the E3SM 406

Atmosphere Model (EAM), we experiment with Single Column Model (SCM), the ultra low-resolution 407

model of EAM (ne4), and the nominal low resolution model of EAM (ne30) configurations. The SCM 408

consists of one single atmosphere column of a global EAM (Bogenschutz et al., 2020; Gettelman et al., 409

2019). ne4 has 384 columns, with each column representing the horizontal resolution of 7.5°. ne30 is the 410

default resolution for EAM and comprises 21,600 columns, with each column representing the horizontal 411

resolution of 1°. In the case of the ML trigger function, the memory overhead is approximately 500MB 412

for all configurations due to the loading of the ML algorithm, which does not vary with the configuration 413

of the ESM. 414

 415

17

 416
Figure 10. Compassion of CNTL and ML for various ESMs in terms of memory and computation. The 417

ESM configuration include SCM, ultra-low resolution model (ne4) and nominal low-resolution model 418

(ne30). 419

 420

Regarding computational performance, SCM utilizes 1 process, ne4 employs 1 node with 64 processes, 421

and ne30 utilizes 10 nodes with each node using 128 processes. In the case of SCM, the overhead 422

attributed to the ML parameterization is approximately 9% due to the utilization of only 1 process. 423

However, for ne4 and ne30, the overhead is 23% and 28% respectively (Figure 10). The increasing 424

computational overhead is primarily due to resource competition when multiple processes are used within 425

a single node. It is noted that although there is a significant computational gap between ML and CNTL 426

for ne4, the relative performance between ML and CNTL for ne4 is approximately 76.7%, which is close 427

to ne30 at 71.4%. 428

 429

4. Discussion and Conclusion 430

 ML algorithm can learn detailed information about cloud processes and atmospheric dynamics from 431

kilometer-scale models and observations and serves as an approximate surrogate for the kilometer-scale 432

model. Instead of explicitly simulating kilometer-scale processes, the ML algorithms can be designed to 433

capture the essential features and relationships between atmospheric variables by training on available 434

kilometer-scale data. The trained algorithms can then be used to develop parameterizations for use in 435

models at coarser resolutions, reducing the computational and memory costs. By using ML 436

parameterizations, scientists can effectively incorporate the insights gained from kilometer-scale models 437

for coarser-resolution simulations. Through learning the complex relationships and patterns present in the 438

18

high-resolution data, the ML-based parameterizations have the potentials to more accurately represent 439

cloud processes and atmospheric dynamics in the ESMs. This approach strikes a balance between 440

computational efficiency and capturing critical processes, enabling more realistic simulations and 441

predictions while minimizing computational resources. All these potential benefits in turn promote 442

innovative developments to facilitate increasing and more efficient use of ML parameterizations. 443

 444

In this study, we develop a novel Fortran-Python interface for developing ML parameterizations. This 445

interface demonstrates feasibility in supporting various ML frameworks, such as PyTorch, TensorFlow, 446

and Scikit-learn and enables the effective development of new ML-based parameterizations to explore 447

ML-based applications in ESMs. Through two cases - a ML trigger function in convection 448

parameterization and a ML wildfire model - we highlight high modularity and reusability of the 449

framework. We conduct a systematic evaluation of memory usage and computational overhead from the 450

integrated Python codes. 451

 452

Based on our performance evaluation, we observe that coupling ML algorithms using TensorFlow into 453

ESMs can lead to memory leaks. As a recommendation, we suggest using PyTorch for complex deep 454

learning algorithms and Scikit-learn for simple ML algorithms for the Fortran-Python ML interface. 455

 456

The memory overhead primarily arises from loading ML algorithms into ESMs. If the ML algorithms are 457

implemented using PyTorch or Scikit-learn, the memory usage will not increase significantly. The 458

computational overhead is influenced by the complexity of the neural network and the number of 459

processes running on a single node. As the complexity of the neural network increases, more parameters 460

in the neural network require forward computation. Similarly, when there are more processes running 461

on a single node, the integrated Python codes introduce more resource competition. 462

 463

Although this interface provides a flexible tool for ML parameterizations, it does not currently utilize 464

GPUs for ML algorithms. In Figure 3, it is shown that each chunk is assigned to a CPU core. However, to 465

effectively leverage GPUs, it is necessary to gather the variables from multiple chunks and pass them to 466

the GPUs. Additionally, if an ESM calls the Python ML module multiple times in each time step, the 467

computational overhead becomes significant. It is crucial to gather the variables and minimize the number 468

of calls. In the future, we will enhance the framework to support this mechanism, enabling GPU 469

utilization and overall performance improvement. 470

19

Acknowledge 471

This work was primarily supported by the Energy Exascale Earth System Model (E3SM) project of the 472

Earth and Environmental System Modeling program, funded by the US Department of Energy, Office of 473

Science, Office of Biological and Environmental Research. Research activity at BNL was under the 474

Brookhaven National Laboratory contract DE-SC0012704 (Tao Zhang, Wuyin Lin). The work at LLNL 475

was performed under the auspices of the US Department of Energy by the Lawrence Livermore National 476

Laboratory under Contract DE-AC52-07NA27344. The work at PNNL is performed under the Laboratory 477

Directed Research and Development Program at the Pacific Northwest National Laboratory. PNNL is 478

operated by DOE by the Battelle Memorial Institute under contract DE-A05-76RL01830. 479

 480

Author contribution 481

TZ developed the Fortran-Python Interface. CM and JR contributed the ML model for the trigger 482

function. YL contributed the ML model for the wire fire model. TZ and MZ assessed the performance of 483

the ML trigger function. TZ took the lead in preparing the manuscript, with valuable edits from CM, MZ, 484

WL, SX, YL, KW, and JR. All the co-authors provided valuable insights and comments for the 485

manuscript. 486

Conflict of Interest 487

The authors declare that they have no conflict of interest. 488

 489

Data Availability Statement 490

The Fortran-Python interface for developing ML parameterizations can be archived at 491
https://doi.org/10.5281/zenodo.11005103 (Zhang et al., 2024) and can be also accessed at 492
https://github.com/tzhang-ccs/ML4ESM. The E3SM model can be accessed at 493
https://zenodo.org/records/12175988 . The dataset for machine learning trigger function can be 494
accessed at https://zenodo.org/records/12205917. The dataset for machine learning wild fire can be 495
accessed at https://zenodo.org/records/12212258. 496

References 497

Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A. K., Köhler, M., Miller, M., & Redelsperger, J.-L. 498

(2004). The simulation of the diurnal cycle of convective precipitation over land in a global 499

https://doi.org/10.5281/zenodo.11005103
https://zenodo.org/records/12205917
https://zenodo.org/records/12212258

20

model. Quarterly Journal of the Royal Meteorological Society, 130(604), 3119–3137. 500

https://doi.org/10.1256/qj.03.103 501

Bogenschutz, P. A., Tang, S., Caldwell, P. M., Xie, S., Lin, W., & Chen, Y.-S. (2020). The E3SM version 502

1 single-column model. Geoscientific Model Development, 13(9), 4443–4458. 503

https://doi.org/10.5194/gmd-13-4443-2020 504

Brenowitz, N. D., & Bretherton, C. S. (2018). Prognostic validation of a neural network unified physics 505

parameterization. Geophysical Research Letters, 45(12), 6289–6298. 506

https://doi.org/10.1029/2018gl078510 507

Brenowitz, N. D., & Bretherton, C. S. (2019). Spatially extended tests of a neural network 508

parametrization trained by coarse-graining. Journal of Advances in Modeling Earth Systems, 509

11(8), 2728–2744. https://doi.org/10.1029/2019ms001711 510

Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Lean, 511

H., Lock, A., Manners, J., Mittermaier, M., Morcrette, C., North, R., Petch, J., Short, C., Vosper, 512

S., Walters, D., Webster, S., … Zerroukat, M. (2020). The first Met Office Unified Model–513

JULES Regional Atmosphere and Land configuration, RAL1. Geoscientific Model Development, 514

13(4), 1999–2029. https://doi.org/10.5194/gmd-13-1999-2020 515

Chen, G., Wang, W., Yang, S., Wang, Y., Zhang, F., & Wu, K. (2023). A Neural Network‐Based Scale‐516

Adaptive Cloud‐Fraction Scheme for GCMs. Journal of Advances in Modeling Earth Systems, 517

15(6), e2022MS003415. https://doi.org/10.1029/2022MS003415 518

E3SM Project, D. (2024). Energy Exascale Earth System Model v3.0.0 [Computer software]. [object 519

Object]. https://doi.org/10.11578/E3SM/DC.20240301.3 520

Gerber, R., & Wasserman, H. (2013). High Performance Computing and Storage Requirements for 521

Biological and Environmental Research Target 2017 (LBNL-6256E). Lawrence Berkeley 522

National Lab. (LBNL), Berkeley, CA (United States). https://doi.org/10.2172/1171504 523

21

Gettelman, A., Gagne, D. J., Chen, C.-C., Christensen, M. W., Lebo, Z. J., Morrison, H., & Gantos, G. 524

(2021). Machine Learning the Warm Rain Process. Journal of Advances in Modeling Earth 525

Systems, 13(2), e2020MS002268. https://doi.org/10.1029/2020MS002268 526

Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., & 527

Simpson, I. R. (2019). The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam 528

but a Tool for Model Evaluation and Development. Journal of Advances in Modeling Earth 529

Systems, 11(5), 1381–1401. https://doi.org/10.1029/2018MS001578 530

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., 531

Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., 532

Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. 533

S., … Zhu, Q. (2019). The DOE E3SM Coupled Model Version 1: Overview and Evaluation at 534

Standard Resolution. Journal of Advances in Modeling Earth Systems, 11(7), 2089–2129. 535

https://doi.org/10.1029/2018MS001603 536

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, 537

Q., Maltrud, M. E., Forsyth, R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., 538

Wang, H., Turner, A. K., Singh, B., Richter, J. H., … Bader, D. C. (2022). The DOE E3SM 539

Model Version 2: Overview of the Physical Model and Initial Model Evaluation. Journal of 540

Advances in Modeling Earth Systems, 14(12), e2022MS003156. 541

https://doi.org/10.1029/2022MS003156 542

Han, Y., Zhang, G. J., Huang, X., & Wang, Y. (2020). A Moist Physics Parameterization Based on Deep 543

Learning. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002076. 544

https://doi.org/10.1029/2020MS002076 545

Hartmann, D. L., Blossey, P. N., & Dygert, B. D. (2019). Convection and Climate: What Have We 546

Learned from Simple Models and Simplified Settings? Current Climate Change Reports, 5(3), 547

196–206. https://doi.org/10.1007/s40641-019-00136-9 548

22

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., Folini, D., Ji, D., Klocke, 549

D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M., & Williamson, D. (2017). The Art 550

and Science of Climate Model Tuning. Bulletin of the American Meteorological Society, 98(3), 551

589–602. https://doi.org/10.1175/BAMS-D-15-00135.1 552

Huang, H., Xue, Y., Li, F., & Liu, Y. (2020). Modeling long-term fire impact on ecosystem 553

characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-554

Fire v1.0. Geoscientific Model Development, 13(12), 6029–6050. https://doi.org/10.5194/gmd-13-555

6029-2020 556

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Belochitski, A. A. (2013). Using ensemble of neural 557

networks to learn stochastic convection parameterizations for climate and numerical weather 558

prediction models from data simulated by a cloud resolving model. Advances in Artificial Neural 559

Systems, 2013, 5–5. https://doi.org/10.1155/2013/485913 560

Lee, M.-I., Schubert, S. D., Suarez, M. J., Held, I. M., Lau, N.-C., Ploshay, J. J., Kumar, A., Kim, H.-K., 561

& Schemm, J.-K. E. (2007). An Analysis of the Warm-Season Diurnal Cycle over the Continental 562

United States and Northern Mexico in General Circulation Models. Journal of 563

Hydrometeorology, 8(3), 344–366. https://doi.org/10.1175/JHM581.1 564

O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameterize moist convection: 565

Potential for modeling of climate, climate change, and extreme events. Journal of Advances in 566

Modeling Earth Systems, 10(10), 2548–2563. https://doi.org/10.1029/2018ms001351 567

Randall, D. A. (2013). Beyond deadlock. Geophysical Research Letters, 40(22), 5970–5976. 568

https://doi.org/10.1002/2013GL057998 569

Randall, D., Khairoutdinov, M., Arakawa, A., & Grabowski, W. (2003). Breaking the Cloud 570

Parameterization Deadlock. Bulletin of the American Meteorological Society, 84(11), 1547–1564. 571

https://doi.org/10.1175/BAMS-84-11-1547 572

23

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate 573

models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689. 574

https://doi.org/10.1073/pnas.1810286115 575

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., 576

Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., 577

Schulthess, T. C., Sprenger, M., Ubbiali, S., & Wernli, H. (2020). Kilometer-Scale Climate 578

Models: Prospects and Challenges. Bulletin of the American Meteorological Society, 101(5), 579

E567–E587. https://doi.org/10.1175/BAMS-D-18-0167.1 580

Swann, H. (2001). Evaluation of the mass-flux approach to parametrizing deep convection. Quarterly 581

Journal of the Royal Meteorological Society, 127(574), 1239–1260. 582

https://doi.org/10.1002/qj.49712757406 583

Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, 584

N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., 585

Harris, C., Heming, J., Klingaman, N., … Xavier, P. (2017). The Met Office Unified Model 586

Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model 587

Development, 10(4), 1487–1520. https://doi.org/10.5194/gmd-10-1487-2017 588

Wang, X., Han, Y., Xue, W., Yang, G., & Zhang, G. J. (2022). Stable climate simulations using a realistic 589

general circulation model with neural network parameterizations for atmospheric moist physics 590

and radiation processes. Geoscientific Model Development, 15(9), 3923–3940. 591

https://doi.org/10.5194/gmd-15-3923-2022 592

Webster, S., Uddstrom, M., Oliver, H., & Vosper, S. (2008). A high-resolution modelling case study of a 593

severe weather event over New Zealand. Atmospheric Science Letters, 9(3), 119–128. 594

https://doi.org/10.1002/asl.172 595

Xu, K.-M., & Randall, D. A. (1996). A Semiempirical Cloudiness Parameterization for Use in Climate 596

Models. Journal of the Atmospheric Sciences, 53(21), 3084–3102. https://doi.org/10.1175/1520-597

0469(1996)053<3084:ASCPFU>2.0.CO;2 598

24

Zhang, T., Lin, W., Vogelmann, A. M., Zhang, M., Xie, S., Qin, Y., & Golaz, J.-C. (2021). Improving 599

Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine 600

Learning. Journal of Advances in Modeling Earth Systems, 13(5), e2020MS002365. 601

https://doi.org/10.1029/2020MS002365 602

Zhang, T., Morcrette, C., Zhang, M., Lin, W., Xie, S., Liu, Y., Weverberg, K. V., & Rodrigues, J. (2024). 603

tzhang-ccs/ML4ESM: ML4ESM_v1 (Version v1) [Computer software]. [object Object]. 604

https://doi.org/10.5281/ZENODO.11005103 605

 606

