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Abstract 14 

Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from 15 

subjective empirical assumptions and incomplete understanding of the underlying physical processes. 16 

Recently, the growing representational capability of machine learning (ML) in solving complex problems 17 

has spawned immense interests in climate science applications. Specifically, ML-based parameterizations 18 

have been developed to represent convection, radiation and microphysics processes in ESMs by learning 19 

from observations or high-resolution simulations, which have the potential to improve the accuracies and 20 

alleviate the uncertainties. Previous works have developed some surrogate models for these processes 21 

using ML.  These surrogate models need to be coupled with the dynamical core of ESMs to investigate 22 

the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-23 

Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface 24 

showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and Scikit-25 

learn. We demonstrate the interface's modularity and reusability through two cases: a ML trigger function 26 

for convection parameterization and a ML wildfire model. We conduct a comprehensive evaluation of 27 

memory usage and computational overhead resulting from the integration of Python codes into the 28 

Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, 29 

tested, and integrated into ESMs.   30 

 31 
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Plain Language  32 

Earth System Models (ESMs) are crucial for understanding and predicting climate change. However, they 33 

struggle to accurately simulate the climate due to uncertainties associated with parameterizing sub-grid 34 

physics. Although higher-resolution models can reduce some uncertainties, they require significant 35 

computational resources. Machine learning (ML) algorithms offer a solution by learning the important 36 

relationships and features from high-resolution models. These ML algorithms can then be used to develop 37 

parameterizations for coarser-resolution models, reducing computational and memory costs. To 38 

incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for 39 

calling Python functions within Fortran-based ESMs. Through two case studies, this interface 40 

demonstrates its feasibility, modularity and effectiveness.  41 

1. Introduction 42 

Earth System Models (ESMs) play a crucial role in understanding the mechanism of the climate system 43 

and projecting future changes. However, uncertainties arising from parameterizations of sub-grid 44 

processes pose challenges to the reliability of model simulations (Hourdin et al., 2017).  Kilometer-scale 45 

high-resolution models (Schär et al., 2020) can potentially mitigate the uncertainties by directly resolving 46 

some key subgrid-scale processes that need to be parameterized in conventional low-resolution ESMs. 47 

Another promising method, superparameterization – a type of multi-model framework (MMF) (D. 48 

Randall et al., 2003; D. A. Randall, 2013), explicitly resolves sub-grid processes by embedding high-49 

resolution cloud-resolved models within the grid of low-resolution models. Consequently, both high-50 

resolution models and superparameterization approaches have shown promise in improving the 51 

representation of cloud formation and precipitation. However, their implementation is challenged by 52 

exceedingly high computational costs.  53 

 54 

In recent years, machine learning (ML) techniques have emerged as a promising approach to 55 

improve parameterizations in ESMs. They are capable of learning complex patterns and 56 

relationships directly from observational data or high-resolution simulations, enabling the 57 

capture of nonlinearities and intricate interactions that may be challenging to represent with 58 

traditional parameterizations. For example, Zhang et al. (2021) proposed a ML trigger function 59 

for a deep convection parameterization by learning from field observations, demonstrating its 60 

superior accuracy compared to traditional CAPE-based trigger functions. Chen et al. (2023) 61 

developed a neural network-based cloud fraction parameterization, better predicting both spatial 62 
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distribution and vertical structure of cloud fraction when compared to the traditional Xu-Randall 63 

scheme (Xu & Randall, 1996). Krasnopolsky et al. (2013) prototyped a system using a neural 64 

network to learn the convective temperature and moisture tendencies from cloud-resolving 65 

model (CRM) simulations. These tendencies refer to the rates of change of various atmospheric 66 

variables over one time step, diagnosed from particular parameterization schemes. These studies 67 

lay the groundwork for integrating ML-based parameterization into ESMs. 68 

 69 

However, the aforementioned studies primarily focus on offline ML of parameterizations that do 70 

not directly interact with ESMs. Recently, there have been efforts to implement ML 71 

parameterizations that can be directly coupled with ESMs. Several studies have developed ML 72 

parameterizations in ESMs by hard coding custom neural network modules, such as O’Gorman 73 

& Dwyer (2018), Rasp et al. (2018), Han et al. (2020) and Gettelman et al. (2021). They 74 

incorporated a Fortran-based ML inference module to allow the loading of the pre-trained ML 75 

weights to reconstruct the ML algorithm in ESMs. The hard-coding has limitations. Such hard-76 

coding approach restricts the ML algorithm’s ability to adapt to changes in the model dynamics 77 

over time, as the ‘online’ updating requires a two-way coupling between the dominantly Fortran-78 

based  ESMs and Python ML libraries. 79 

 80 

Fortran-Keras Bridge (FKB; Ott et al. (2020)) and C Foreign Function Interface (CFFI;  81 

https://cffi.readthedocs.io) are two packages that support two-way coupling between Fortran-based ESM 82 

and Python based ML parameterizations. FKB enables tight integration of Keras deep learning models but 83 

is specifically bound to the Keras library, limiting its compatibility with other frameworks like PyTorch 84 

and Scikit-Learn. On the other hand, CFFI provides a more flexible solution that in principle supports 85 

coupling various ML packages due to its language-agnostic design. Brenowitz & Bretherton (2018) 86 

utilized it to enable the calling of Python ML algorithms within ESMs. However, the CFFI has several 87 

limitations. When utilizing CFFI to interface Fortran and Python, it uses global data structures to pass 88 

variables between the two languages. This approach results in additional memory overhead as variable 89 

values need to be copied between languages, instead of being passed by reference. Additionally, CFFI 90 

lacks automatic garbage collection for the unused memory within these data structures and copies. 91 

Consequently, the memory usage of the program gradually increases over its lifetime. In addition, when 92 

using CFFI to call Python functions from a Fortran program, the process involves several steps such as 93 

registering variables into a global data structure, calling the Python function, and retrieving the calculated 94 

https://www.zotero.org/google-docs/?YVGVSV
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result. These multiple steps can introduce computational overhead due to the additional operations 95 

required.  96 

 97 

Additionally, Wang et al. (2022) developed a coupler to facilitate two-way communication between ML 98 

parameterizations and host ESMs. The coupler gathers state variables from the ESM using the Message 99 

Passing Interface (MPI) and transfers them to a Python-based ML module. It then receives the output 100 

from the Python code and returns them to the ESM. While this approach effectively bridges Fortran and 101 

Python, its use of file-based data passing to exchange information between modules carries some 102 

performance overhead relative to tighter coupling techniques. Optimizing the data transfer, such as via 103 

shared memory, remains an area for improvement to fully leverage this coupler's ability to integrate 104 

online-adaptive ML parameterizations within large-scale ESM simulations, which is the main goal for this 105 

study. 106 

 107 

In this study, we investigate the integration of ML parameterizations into Fortran-based ESM 108 

models by establishing a flexible interface that enables the invocation of ML algorithms in 109 

Python from Fortran. This integration offers access to any Python codes from Fortran, including 110 

a diverse range of ML frameworks, such as PyTorch, TensorFlow, and Scikit-learn, which can 111 

effectively be utilized for parameterizing intricate atmospheric and other climate system 112 

processes. The coupling of the Fortran model and the Python ML code needs to be performed for 113 

thousands of model columns and over thousands of timesteps for a typical model simulation. 114 

Therefore, it is crucial for the coupling interface to be both robust and efficient. We showcase the 115 

feasibility and benefits of this approach through case studies that involve the parameterization of 116 

deep convection and wildfire processes in ESMs. The two cases demonstrate the robustness and 117 

efficiency of the coupling interface. The focus of this paper is on documenting the coupling 118 

between the Fortran ESM and the ML algorithms and systematically evaluating the 119 

computational efficiency and memory usage of different ML frameworks (such as Pytorch and 120 

TensorFlow), different ML algorithms, and different configuration of a climate model. The 121 

assessment of the scientific performance of the ML emulators will be addressed in follow-on 122 

papers. The showcase examples emphasize the potential for high modularity and reusability by 123 

separating the ML components into Python modules. This modular design facilitates independent 124 

development and testing of ML-based parameterizations by researchers. It enables easier code 125 

maintenance, updates, and the adoption of state-of-the-art ML techniques with only minimal 126 
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disrupting the existing Fortran infrastructure. Ultimately, this advancement will contribute to 127 

enhanced predictions and a deeper comprehension of the evolving climate of our planet. It is 128 

important to note that the current interface only supports executing deep learning algorithms on CPUs and 129 

does not support running them on GPUs. 130 

 131 

The rest of this manuscript is organized as follows: Section 2 presents the detailed interface that 132 

integrates ML into Fortran-based ESM models. Section 3 discusses the performance of the 133 

interface and presents its application in two case studies. Finally, Section 4 provides a summary 134 

of the findings and a discussion of their implications. 135 

2. General design of the ML interface 136 

2.1 Architecture of the ML interface 137 

We developed an interface using shared memory to enable two-way coupling between Fortran and Python 138 

(Figure 1). The ESM used in the demonstration in Figure 1 is the U.S. Department of Energy (DOE) 139 

Energy Exascale Earth System Model (E3SM; Golaz et al., 2019, 2022). Because Fortran cannot directly 140 

call Python, we utilized C as an intermediary since Fortran can call C functions.  This approach leverages 141 

C as a data hub to exchange information without requiring a framework-specific binding like KFB. As a 142 

result, our interface supports invoking any Python-based ML package such as PyTorch, TensorFlow, and 143 

scikit-learn from Fortran. While C can access Python scalar values through the built-in 144 

PyObject_CallObject function from the Python C API, we employed Cython for its ability to transfer 145 

array data between the languages. Using Cython, multidimensional data structures can be efficiently 146 

passed between Fortran and Python modules via C, allowing for flexible training of ML algorithms within 147 

ESMs. 148 
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 149 
Figure 1. The interface of the ML bridge for two-way communication via memory between Fortran ESM 150 

and Python ML module.  151 

2.2 Code structure 152 

Figure 2 illustrates how the framework operates using toy code example. The Fortran-Python interface 153 

comprises a Fortran wrapper and C wrapper files, which are bound together. The Fortran-based ESM first 154 

imports the Fortran wrapper, allowing it to call wrapper functions with input and output memory 155 

addresses. The interface then passes these memory addresses to the Python-based ML module, which 156 

performs the ML predictions and returns the output address to the Fortran model.  157 

 158 
Figure 2. Toy code illustrating the Fortran-Python interface. 159 
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 160 

When coupling the Python ML module with the real model using the interface, additional steps should be 161 

considered: 1. The ML module should remain active throughout the model simulations, without any 162 

Python finalization calls, ensuring it is continuously available. 2. The Python module should load the 163 

trained ML model and any required global data only once, rather than at each simulation step. This one-164 

time initialization process improves efficiency and prevents unnecessary repetition. On the Fortran ESM 165 

side, the init_ml() function is called within the atm_init_mct module to load the ML model and global 166 

data (shown in Figure 3). Then, similar to the toy code, we call the wrapper function, pass input variables 167 

to Python for ML predictions, and return the results to the Fortran side. 3. When compiling the complex 168 

system, which includes Python, C, Cython, and Fortran code, the Python path should be specified in the 169 

CFLAGS and LDFLAGS. It is important to note that without the position-independent compiling flag (-170 

fPIC), the hybrid system will only work on a single node and may cause segmentation faults on multiple 171 

nodes. Including it can resolve this issue, allowing multi-node compatibility. 172 

      173 

 174 

 175 
Figure 3. The code structure of the ML bridge interface using the ML closure in deep convection as an 176 

example.  177 

 178 

In traditional ESMs, sub-grid scale parameterization routines such as convection parameterizations are 179 

often calculated separately for each vertical column of the model domain. Meanwhile, the domain is 180 

typically decomposed horizontally into 2D chunks that can be solved in parallel using MPI processes. 181 

Each CPU core/MPI process is assigned a number of chunks of model columns to update asynchronously 182 

(Figure 4). Our interface takes advantage of this existing parallel decomposition by designing the ML 183 

calls to operate over all columns simultaneously within each chunk, rather than invoking the ML scheme 184 

individually for each column. This allows the coupled model-ML system to leverage parallelism in the 185 
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neural network computations. If the ML were called separately for every column, parallel efficiencies 186 

would not be realized. By aggregating inputs over the chunk-scale prior to interfacing with Python, 187 

performance is improved through better utilization of multi-core and GPU-based ML capabilities during 188 

parameterization calculations.       189 

 190 

 191 
Figure 4. Data and system structure. The model domain is decomposed into chunks of columns. pver 192 

refers to number of pressure vertical levels. A chunk contains multiple columns (up to pcol). Multiple 193 

chunks can be assigned to each CPU core.  194 

 195 

      196 

3. Results 197 

The framework explained in the previous section provides seamless support for various ML 198 

parameterizations and various ML frameworks, such as PyTorch, Tensorflow, and Scikit-learn. To 199 

demonstrate the versatility of this framework, we applied it in two distinct case applications. The first 200 

application replaces the conventional CAPE-based trigger function in a deep convection parameterization 201 

with a machine-learned trigger function. The second application involves a ML-based wildfire model that 202 

interacts bidirectionally with the ESM. We provide a brief introduction to these two cases. Detailed 203 

descriptions and evaluations will be presented in separate papers. 204 

 205 

The framework's performance is influenced by two primary factors: increasing memory usage and 206 

increasing computational overhead. Firstly, maintaining the Python environment fully persistent in 207 

memory throughout model simulations can impact memory usage, especially for large ML algorithms. 208 
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This elevated memory footprint increases the risk of leaks or crashes as simulations progress. Secondly, 209 

executing ML components within the Python interpreter inevitably introduces some overhead compared 210 

to the original ESMs. The increased memory requirements and decreased computational efficiency 211 

associated with these considerations can impact the framework's usability, flexibility, and scalability for 212 

different applications. 213 

 214 

To comprehensively assess performance, we conducted a systematic evaluation of various ML 215 

frameworks, ML algorithms, and physical models. This evaluation is built upon the foundations 216 

established for evaluating the ML trigger function in the deep convection parameterization. 217 

3.1 Application cases 218 

3.1.1 ML trigger function in deep convection parameterization 219 

In General Circulation Models,  uncertainties in convection parameterizations are recognized to be closely 220 

linked to the convection trigger function used in these schemes (Bechtold et al., 2004; Xie et al., 2004, 221 

2019; Xie & Zhang, 2000; Lee et al., 2007). The convective trigger in a convective parameterization 222 

determines when and where model convection should be triggered as the simulation advances. In many 223 

convection parameterizations, the trigger function consists of a simple, arbitrary threshold for a physical 224 

quantity, such as convective available potential energy (CAPE). Convection will be triggered if the CAPE 225 

value exceeds a threshold value.  226 

 227 

In this work, we use this interface to test a newly developed ML trigger function in E3SM. The ML 228 

trigger function was developed with the training data originating from simulations performed using the 229 

kilometer-resolution (1.5 km grid spacing). Met Office Unified Model Regional Atmosphere 1.0 230 

configuration (Bush et al., 2020). Each simulation consists of a limited area model (LAM) nested within a 231 

global forecast model providing boundary conditions (Walters et al., 2017; Webster et al., 2008). In total 232 

80 LAM simulations were run located so as to sample different geographical regions worldwide. Each 233 

LAM was run for 1 month, with 2-hourly output, using a grid-length of 1.5 km, a 512 x 512 domain, and 234 

a model physics package used for operational weather forecasting. The 1.5 km data is coarse-grained to 235 

several scales from 15 to 144 km.     .       236 

      237 

A two-stream neural network architecture is used for the ML model. The first stream takes profiles of 238 

temperature, specific humidity and pressure across 72 levels at each scale as inputs and passes them 239 

through a 4-layer convolutional neural network (CNN) with kernel sizes of 3, to extract large scale 240 
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features. The second stream takes mean orographic height, standard deviation of orographic height, land 241 

fraction and the size of the grid-box as inputs. The outputs of the two streams are then combined and fed 242 

into a 2-layer fully connected network to allow the ML model to leverage both atmospheric and surface 243 

features when making its predictions.  The output is a binary variable indicating whether the convection 244 

happens, based on the condition of buoyant cloudy updrafts (BCU, e.g. Hartmann et al., 2019; Swann, 245 

2001). If there are 3 contiguous levels where the predicted BCU is larger than 0.05, the convection 246 

scheme is triggered. Once trained, the CNN is coupled to E3SM and thermodynamic information from 247 

E3SM is passed to it to predict the trigger condition. Then, the predicted result is returned to E3SM.       248 

 249 

Figure 5 shows the comparison of annual mean precipitation between the control run using the traditional 250 

CAPE-based trigger function and the run using the ML BCU trigger function. The ML BCU scheme 251 

demonstrates reasonable spatial patterns of precipitation, similar to the control run, with comparable root-252 

mean-square error and spatial correlation. Additional experiments exploring the definition of BCU and 253 

varying the thresholds along with an in-depth analysis will be presented in a follow-up paper. 254 

 255 

 256 
Figure 5.  Comparison of annual mean precipitation between the control run using the CAPE-based 257 

trigger function (a, c) and the run using the ML BCU trigger function (b, d).  258 

3.1.2 ML learning fire model  259 

Predicting wildfire burned area is challenging due to the complex interrelationships between fires, 260 

climate, weather, vegetation, topography, and human activities (Huang et al., 2020). Traditionally, 261 

statistical methods like multiple linear regression have been applied, but are limited in the number and 262 

diversity of predictors considered (Yue et al., 2013).  In this study, we develop a coupled fire-land-263 

https://www.zotero.org/google-docs/?tncHCH
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atmosphere framework that uses machine learning to predict wildfire area, enhancing long-term burned 264 

area projections and assessing fire impacts by enabling simulations of interactions among fire, 265 

atmosphere, land cover, and vegetation. 266 

 267 

The ML algorithm is trained using a monthly dataset, which includes the target variable of burned area, as 268 

well as various predictor variables. These predictors encompass local meteorological data (e.g., surface 269 

temperature, precipitation), land surface properties (e.g., monthly mean evapotranspiration and surface 270 

soil moisture), and socioeconomic variables (e.g., gross domestic product, population density), as 271 

described by Wang et al. (2022). In the coupled fire-land-atmosphere framework, meteorology variables 272 

and land surface properties are provided by the E3SM. We use the eXtreme Gradient Boosting algorithm 273 

implemented in Scikit-Learn to train the ML fire model. Figure 6 demonstrates that the ML4Fire model 274 

exhibits superior performance in terms of spatial distribution compared to process-based fire models, 275 

particularly in the Southern US region. Detailed analysis will be presented in a separate paper. The 276 

ML4Fire model has proven to be a valuable tool for studying vegetation-fire interactions, enabling 277 

seamless exploration of climate-fire feedbacks.      278 

      279 

 280 

      281 

Figure 6. Comparison between ML4Fire model and process-based fire model against the historical 282 

burned area from Global Fire Emissions Database 5 from 2001-2020. R and BIAS are the spatial 283 

pattern correlation and difference against the observation, respectively.  284 

https://www.zotero.org/google-docs/?f45yl4
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3.2 Performance of different ML frameworks  285 

The Fortran-Python bridge ML interface supports various ML frameworks, including PyTorch, 286 

TensorFlow, and scikit-learn. These ML frameworks can be trained offline using kilometer-scale high-287 

resolution models (such as the ML trigger function) or observations (ML fire model). Once trained, they 288 

can be plugged into the ML bridge interface through different API interfaces specific to each framework. 289 

The coupled ML algorithms are persistently resident in memory, just like the other ESM components. 290 

During each step of the process, the performance of the full system is significantly affected by memory 291 

usage. If memory consumption increases substantially, it may lead to memory leaks as the number of time 292 

step iteration increases. In addition, Python, being an interpreted language, is typically considered to have 293 

slower performance compared to compiled languages like C/C++ and Fortran. Therefore, incorporating 294 

Python may decrease computational performance. We examine the memory usage and computational 295 

performance across various ML frameworks based on implementing the ML trigger function in E3SM. 296 

The ML algorithm is implemented as a two-stream CNN model using Pytorch and TensorFlow 297 

frameworks, as well as XGBoost using the Scikit-learn package. It should be noted that XGBoost, a 298 

boosting tree-based model, is a completely different type of ML model compared to the CNNs, which are 299 

the type of deep neural network.   300 

 301 
Figure 7.  Computational and memory overhead as the simulation progresses for coupling the ML trigger 302 
function with the E3SM model. The x-axis represents the simulated time step. The y-axis of (a) represents 303 
the simulation speed measured in seconds per day (indicating the number of seconds required to simulate 304 
one day). The y-axis of (b) represents the relative increase in memory usage for Scikit-learn, TensorFlow, 305 
and PyTorch compared with CNTL. CNTL represents the original simulation without using the ML 306 
framework.     307 
 308 
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Figure 7 illustrates the computational and memory overhead associated with the ML parameterization 309 

using different ML frameworks. It shows that XGBoost only exhibits a 20% increase in the simulation 310 

time required for simulating one day due to its simpler algorithm. For more complex neural networks, 311 

PyTorch incurs a 52% overhead, while TensorFlow's overhead is almost 100% – about two times as much 312 

as the overhead by PyTorch. In terms of memory usage, we use the highwater memory metric (Gerber & 313 

Wasserman, 2013), which represents the total memory footprint of a process. Scikit-learn and PyTorch do 314 

not show any significant increase in memory usage. However, TensorFlow shows a considerable increase 315 

up to 50MB per simulation day per MPI process element. This is significant because for a node with 48 316 

cores, it would equate to an increase of around 2GB per simulated day on that node. This rapid memory 317 

growth could quickly lead to a simulation crash due to insufficient memory during continuous 318 

integrations, preventing the use in practical simulations. Our findings show that the TensorFlow 319 

prediction function does not release memory after each call. Therefore, we recommend using PyTorch for 320 

complex deep learning algorithms and Scikit-learn for simpler ML algorithms to avoid these potential 321 

memory-related issues when using TensorFlow.  322 

 323 

Previous work, such as Brenowitz & Bretherton (2018, 2019) has utilized the CFFI package to establish 324 

communication between Fortran ESM and ML Python. As described in the Introduction, while CFFI 325 

offers flexibility in supporting various ML packages, it does have certain limitations. To pass variables 326 

from Fortran to Python, the approach relies on global data structures to store all variables, including both 327 

the input from Fortran to Python and the output returning to Fortran. Consequently, this package results in 328 

additional memory copy operations and increasing overall memory usage. In contrast, our interface takes 329 

a different approach by utilizing memory references to transfer data between Fortran and Python, 330 

avoiding the need for global data structures and the associated overhead. This allows for a more efficient 331 

data transfer process.  332 

 333 

In Figure 8, we present a comparison between the two frameworks by testing the different number of 334 

elements passed from Fortran to Python. The evaluation is based on a demo example that focuses solely 335 

on declaring arrays and transferring them from Fortran to Python, rather than a real E3SM simulation. 336 

Figure 8a illustrates the impact of the number of passing elements on the overhead of the two interfaces. 337 

As the number of elements exceeds 10!, the overhead of CFFI becomes significant. When the number 338 

surpasses 10", the overhead of CFFI is nearly ten times greater than that of our interface. Regarding 339 

memory usage, our interface maintains a stable memory footprint of approximately 60MB. Even as the 340 

number of elements increases, the memory usage only shows minimal growth. However, for CFFI, the 341 
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memory usage starts at 80MB, which is 33% higher than our interface. As the number of elements 342 

reaches 10", the memory overhead for CFFI dramatically rises to 180MB, twice as much as our interface. 343 

 344 

 345 
Figure 8. Comparison of our framework and the CFFI framework in terms of computational time 346 

and memory usage. The x-axis represents the number of elements transferred from Fortran to 347 

Python, while the y-axis displays the total time (a) and total memory usage (b) for a 348 

demonstration example. The evaluations presented are based on the average results obtained 349 

from 5 separate tests.  350 

 351 

3.3 Performance of ML algorithms of different complexities 352 

ML parameterizations can be implemented using various deep learning algorithms with different levels of 353 

complexity. The computational performance and memory usage can be influenced by the complexity of 354 

these algorithms. In the case of the ML trigger function, a two-stream four-layer CNN structure is 355 

employed. We compare this structure with other ML algorithms such as Artificial Neural Network (ANN) 356 

and Residual Network (ResNet), whose structures are detailed in Table 1. We selected these three ML 357 

algorithms because they are commonly used in previous ML parameterization approaches, such as 358 

(Brenowitz & Bretherton, 2019; Han et al., 2020; Wang et al., 2022). Systematically evaluating the hybrid 359 

system with these ML methods using our interface can help identify bottlenecks and improve the system 360 

computational performance. These algorithms are implemented in PyTorch. The algorithm’s complexity 361 

is measured by the number of parameters, with the CNN having approximately 60 times more parameters 362 

than ANN, and ResNet having roughly 1.5 times more parameters than CNN. 363 

 364 

 365 

 366 
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Table 1. The structure and number of parameters of each ML algorithms.  367 

Algorithms  Structure  # of parameters 

ANN 3 x Linear 121,601 

CNN 4 x Conv2d + 2 x Linear 7,466,753 

ResNet 17 x Conv2d + 1 x Linear 11,177,025 

 368 

Figure 9 presents a comparison of the memory and computational costs between the CNTL run without 369 

deep learning parameterization and the hybrid run with various deep learning algorithms. The same 370 

specific process-element layout (placement of ESM component models on distributed CPU cores) is used 371 

for all the simulations. Deep learning algorithms incur a significant yet affordable increase in memory 372 

overhead, with at least a 20% increase compared to the CNTL run (Figure 9a). This is primarily due to the 373 

integration of ML algorithms into the ESM, which persist throughout the simulations. Although there is a 374 

notable increase in complexity among the deep learning algorithms, their memory usage only shows a 375 

slight rise. This is because the memory increment resulting from the ML parameters is relatively small. 376 

Specifically, ANN requires 1MB of memory, CNN requires 60MB, and the ResNet algorithms requires 377 

85MB, which are calculated based on the number of parameters in each algorithm. When comparing these 378 

values to the memory consumption of the CNTL run, which is approximately 3000MB, the additional 379 

parameters' incremental memory consumption is not substantial. However, when we use 128 MPI 380 

processes per node, it could bring the total memory requirement to approximately 460 GB per node. If the 381 

available hardware memory is less than this, the process layout must be adjusted accordingly.   382 

 383 

In terms of computational performance, the Python-based ML calls inevitably introduce some overhead. 384 

However, as shown in Figure 9b, the performance decrease is not substantial. The simple ANN model 385 

reduces performance by only about 10% compared to the CNTL run, while even the more complex 386 

ResNet model results in a 35% decrease. In contrast, Wang et al. (2022) reported a 100% overhead in 387 

their interface, which transfers parameters via files. It is worth noting that in this study, the deep learning 388 

algorithms are executed on CPUs. To enhance computational performance, future work could consider 389 

utilizing GPUs for acceleration. 390 

 391 

In addition, we develop a performance model to estimate computational performance for the hybrid 392 

model using different ML model sizes and complexities. This performance model, based on linear 393 

regression, predicts the computational ratio relative to the CNTL run by taking the number of ML 394 
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parameters as input, shown in Figure 9b. It provides a simple yet effective way to capture this relationship 395 

and serves as a valuable tool for performance prediction when incorporating more complicated ML 396 

models.  397 

 398 
Figure 9. Comparison of CNTL and the hybrid model using various ML algorithms in terms of memory 399 

and computation. CNTL is the default run without ML parameterizations. In (b), the left y-axis represents 400 

the actual number of simulated years per day, while the right y-axis shows the relative performance 401 

compared to the CNTL run (orange line). The gray line illustrates the regression between the number of 402 

ML parameters (x) and the relative performance of the hybrid system (y). 403 

 404 

3.4 Performance for physical models of different complexities 405 

ML parameterization can be applied to various ESM configurations, for example, with the E3SM 406 

Atmosphere Model (EAM), we experiment with Single Column Model (SCM), the ultra low-resolution 407 

model of EAM (ne4), and the nominal low resolution model of EAM (ne30) configurations. The SCM 408 

consists of one single atmosphere column of a global EAM (Bogenschutz et al., 2020; Gettelman et al., 409 

2019). ne4 has 384 columns, with each column representing the horizontal resolution of 7.5°. ne30 is the 410 

default resolution for EAM and comprises 21,600 columns, with each column representing the horizontal 411 

resolution of 1°.  In the case of the ML trigger function, the memory overhead is approximately 500MB 412 

for all configurations due to the loading of the ML algorithm, which does not vary with the configuration 413 

of the ESM.   414 

 415 
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 416 
Figure 10.  Compassion of CNTL and ML for various ESMs in terms of memory and computation. The 417 

ESM configuration include SCM, ultra-low resolution model (ne4) and nominal low-resolution model 418 

(ne30).  419 

 420 

Regarding computational performance, SCM utilizes 1 process, ne4 employs 1 node with 64 processes, 421 

and ne30 utilizes 10 nodes with each node using 128 processes. In the case of SCM, the overhead 422 

attributed to the ML parameterization is approximately 9% due to the utilization of only 1 process. 423 

However, for ne4 and ne30, the overhead is 23% and 28% respectively (Figure 10). The increasing 424 

computational overhead is primarily due to resource competition when multiple processes are used within 425 

a single node. It is noted that although there is a significant computational gap between ML and CNTL 426 

for ne4, the relative performance between ML and CNTL for ne4 is approximately 76.7%, which is close 427 

to ne30 at 71.4%.  428 

 429 

4. Discussion and Conclusion  430 

     ML algorithm can learn detailed information about cloud processes and atmospheric dynamics from 431 

kilometer-scale models and observations and serves as an approximate surrogate for the kilometer-scale 432 

model. Instead of explicitly simulating kilometer-scale processes, the ML algorithms can be designed to 433 

capture the essential features and relationships between atmospheric variables by training on available 434 

kilometer-scale data. The trained algorithms can then be used to develop parameterizations for use in 435 

models at coarser resolutions, reducing the computational and memory costs. By using ML 436 

parameterizations, scientists can effectively incorporate the insights gained from kilometer-scale models 437 

for coarser-resolution simulations. Through learning the complex relationships and patterns present in the 438 
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high-resolution data, the ML-based parameterizations have the potentials to more accurately represent 439 

cloud processes and atmospheric dynamics in the ESMs. This approach strikes a balance between 440 

computational efficiency and capturing critical processes, enabling more realistic simulations and 441 

predictions while minimizing computational resources. All these potential benefits in turn promote 442 

innovative developments to facilitate increasing and more efficient use of ML parameterizations.   443 

 444 

In this study, we develop a novel Fortran-Python interface for developing ML parameterizations. This 445 

interface demonstrates feasibility in supporting various ML frameworks, such as PyTorch, TensorFlow, 446 

and Scikit-learn and enables the effective development of new ML-based parameterizations to explore 447 

ML-based applications in ESMs. Through two cases - a ML trigger function in convection 448 

parameterization and a ML wildfire model - we highlight high modularity and reusability of the 449 

framework. We conduct a systematic evaluation of memory usage and computational overhead from the 450 

integrated Python codes.  451 

 452 

Based on our performance evaluation, we observe that coupling ML algorithms using TensorFlow into 453 

ESMs can lead to memory leaks. As a recommendation, we suggest using PyTorch for complex deep 454 

learning algorithms and Scikit-learn for simple ML algorithms for the Fortran-Python ML interface.  455 

 456 

The memory overhead primarily arises from loading ML algorithms into ESMs. If the ML algorithms are 457 

implemented using PyTorch or Scikit-learn, the memory usage will not increase significantly. The 458 

computational overhead is influenced by the complexity of the neural network and the number of 459 

processes running on a single node. As the complexity of the neural network increases, more parameters 460 

in the neural network require forward      computation. Similarly, when there are more processes running 461 

on a single node, the integrated Python codes introduce more resource competition. 462 

 463 

Although this interface provides a flexible tool for ML parameterizations, it does not currently utilize 464 

GPUs for ML algorithms. In Figure 3, it is shown that each chunk is assigned to a CPU core. However, to 465 

effectively leverage GPUs, it is necessary to gather the variables from multiple chunks and pass them to 466 

the GPUs. Additionally, if an ESM calls the Python ML module multiple times in each time step, the 467 

computational overhead becomes significant. It is crucial to gather the variables and minimize the number 468 

of calls. In the future, we will enhance the framework to support this mechanism, enabling GPU 469 

utilization and overall performance improvement. 470 
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