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Abstract 14 

Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from 15 

subjective empirical assumptions and incomplete understanding of the underlying physical processes. 16 

Recently, the growing representational capability of machine learning (ML) in solving complex problems 17 

has spawned immense interests in climate science applications. Specifically, ML-based parameterizations 18 

have been developed to represent convection, radiation and microphysics processes in ESMs by learning 19 

from observations or high-resolution simulations, which have the potential to improve the accuracies and 20 

alleviate the uncertainties. Previous works have developed some surrogate models for these processes 21 

using ML.  These surrogate models need to be coupled with the dynamical core of ESMs to investigate 22 

the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-23 

Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface 24 

showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and Scikit-25 

learn. We demonstrate the interface's modularity and reusability through two cases: a ML trigger function 26 

for convection parameterization and a ML wildfire model. We conduct a comprehensive evaluation of 27 

memory usage and computational overhead resulting from the integration of Python codes into the 28 

Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, 29 

tested, and integrated into ESMs.   30 

 31 
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Plain Language  32 

Earth System Models (ESMs) are crucial for understanding and predicting climate change. However, they 33 

struggle to accurately simulate the climate due to uncertainties associated with parameterizing sub-grid 34 

physics. Although higher-resolution models can reduce some uncertainties, they require significant 35 

computational resources. Machine learning (ML) algorithms offer a solution by learning the important 36 

relationships and features from high-resolution models. These ML algorithms can then be used to develop 37 

parameterizations for coarser-resolution models, reducing computational and memory costs. To 38 

incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for 39 

calling Python functions within Fortran-based ESMs. Through two case studies, this interface 40 

demonstrates its feasibility, modularity and effectiveness.  41 

1. Introduction 42 

Earth System Models (ESMs) play a crucial role in understanding the mechanism of the climate system 43 

and projecting future changes. However, uncertainties arising from parameterizations of sub-grid 44 

processes pose challenges to the reliability of model simulations (Hourdin et al., 2017).  Kilometer-scale 45 

high-resolution models (Schär et al., 2020) can potentially mitigate the uncertainties by directly resolving 46 

some key subgrid-scale processes that need to be parameterized in conventional low-resolution ESMs. 47 

Another promising method, superparameterization – a type of multi-model framework (MMF) (D. 48 

Randall et al., 2003; D. A. Randall, 2013), explicitly resolves sub-grid processes by embedding high-49 

resolution cloud-resolved models within the grid of low-resolution models. Consequently, both high-50 

resolution models and superparameterization approaches have shown promise in improving the 51 

representation of cloud formation and precipitation. However, their implementation is challenged by 52 

exceedingly high computational costs.  53 

 54 

In recent years, machine learning (ML) techniques have emerged as a promising approach to 55 

improve parameterizations in ESMs. They are capable of learning complex patterns and 56 

relationships directly from observational data or high-resolution simulations, enabling the 57 

capture of nonlinearities and intricate interactions that may be challenging to represent with 58 

traditional parameterizations. For example, Zhang et al. (2021) proposed a ML trigger function 59 

for a deep convection parameterization by learning from field observations, demonstrating its 60 

superior accuracy compared to traditional CAPE-based trigger functions. Chen et al. (2023) 61 

developed a neural network-based cloud fraction parameterization, better predicting both spatial 62 
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distribution and vertical structure of cloud fraction when compared to the traditional Xu-Randall 63 

scheme (Xu & Randall, 1996). Krasnopolsky et al. (2013) prototyped a system using a neural 64 

network to learn the convective temperature and moisture tendencies from cloud-resolving 65 

model (CRM) simulations. These tendencies refer to the rates of change of various atmospheric 66 

variables over one time step, diagnosed from particular parameterization schemes. These studies 67 

lay the groundwork for integrating ML-based parameterization into ESMs. 68 

 69 

However, the aforementioned studies primarily focus on offline ML of parameterizations that do 70 

not directly interact with ESMs. Recently, there have been efforts to implement ML 71 

parameterizations that can be directly coupled with ESMs. Several studies have developed ML 72 

parameterizations in ESMs by hard coding custom neural network modules, such as O’Gorman 73 

& Dwyer (2018), Rasp et al. (2018), Han et al. (2020) and Gettelman et al. (2021). They 74 

incorporated a Fortran-based ML inference module to allow the loading of the pre-trained ML 75 

weights to reconstruct the ML algorithm in ESMs. The hard-coding has limitations Such hard-76 

coding approach restricts the ML algorithm’s ability to adapt to changes in the model dynamics 77 

over time, as the ‘online’ updating requires a two-way coupling between the dominantly Fortran-78 

based  ESMs and Python ML libraries. 79 

 80 

Fortran-Keras Bridge (FKB; Ott et al. (2020)) and C Foreign Function Interface (CFFI;  81 

https://cffi.readthedocs.io) are two packages that support two-way coupling between Fortran-based ESM 82 

and Python based ML parameterizations. FKB enables tight integration of Keras deep learning models but 83 

is specifically bound to the Keras library, limiting its compatibility with other frameworks like PyTorch 84 

and Scikit-Learn. On the other hand, CFFI provides a more flexible solution that in principle supports 85 

coupling various ML packages due to its language-agnostic design. Brenowitz & Bretherton (2018) 86 

utilized it to enable the calling of Python ML algorithms within ESMs. However, the CFFI has several 87 

limitations. When utilizing CFFI to interface Fortran and Python, it uses global data structures to pass 88 

variables between the two languages. This approach results in additional memory overhead as variable 89 

values need to be copied between languages, instead of being passed by reference. Additionally, CFFI 90 

lacks automatic garbage collection for the unused memory within these data structures and copies. 91 

Consequently, the memory usage of the program gradually increases over its lifetime. In addition, when 92 

using CFFI to call Python functions from a Fortran program, the process involves several steps such as 93 

registering variables into a global data structure, calling the Python function, and retrieving the calculated 94 

Deleted: . Kochkov et al. (2023) presented an innovative 95 
ML parameterization that feeds back from the dynamics, in 96 
order to improve stability and reduce bias. However,97 
Deleted: s98 

https://www.zotero.org/google-docs/?YVGVSV


4 
 

result. These multiple steps can introduce computational overhead due to the additional operations 99 

required.  100 

 101 

Additionally, Wang et al. (2022) developed a coupler to facilitate two-way communication between ML 102 

parameterizations and host ESMs. The coupler gathers state variables from the ESM using the Message 103 

Passing Interface (MPI) and transfers them to a Python-based ML module. It then receives the output 104 

from the Python code and returns them to the ESM. While this approach effectively bridges Fortran and 105 

Python, its use of file-based data passing to exchange information between modules carries some 106 

performance overhead relative to tighter coupling techniques. Optimizing the data transfer, such as via 107 

shared memory, remains an area for improvement to fully leverage this coupler's ability to integrate 108 

online-adaptive ML parameterizations within large-scale ESM simulations, which is the main goal for this 109 

study. 110 

 111 

In this study, we investigate the integration of ML parameterizations into Fortran-based ESM 112 

models by establishing a flexible interface that enables the invocation of ML algorithms in 113 

Python from Fortran. This integration offers access to any Python codes from Fortran, including 114 

a diverse range of ML frameworks, such as PyTorch, TensorFlow, and Scikit-learn, which can 115 

effectively be utilized for parameterizing intricate atmospheric and other climate system 116 

processes. The coupling of the Fortran model and the Python ML code needs to be performed for 117 

thousands of model columns and over thousands of timesteps for a typical model simulation. 118 

Therefore, it is crucial for the coupling interface to be both robust and efficient.  We showcase 119 

the feasibility and benefits of this approach through case studies that involve the 120 

parameterization of deep convection and wildfire processes in ESMs. The two cases demonstrate 121 

the robustness and efficiency of the coupling interface. The focus of this paper is on 122 

documenting the coupling between the Fortran ESM and the ML algorithms and systematically 123 

evaluating the computational efficiency and memory usage of different ML frameworks (such as 124 

Pytorch and TensorFlow), different ML algorithms, and different configuration of a climate 125 

model. The assessment of the scientific performance of the ML emulators will be addressed in 126 

follow-on papers. The showcase examples emphasize the potential for high modularity and 127 

reusability by separating the ML components into Python modules. This modular design 128 

facilitates independent development and testing of ML-based parameterizations by researchers. It 129 

enables easier code maintenance, updates, and the adoption of state-of-the-art ML techniques 130 
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with only minimal disrupting the existing Fortran infrastructure. Ultimately, this advancement 132 

will contribute to enhanced predictions and a deeper comprehension of the evolving climate of 133 

our planet. It is important to note that the current interface only supports executing deep learning 134 

algorithms on CPUs and does not support running them on GPUs. 135 

 136 

The rest of this manuscript is organized as follows: Section 2 presents the detailed interface that 137 

integrates ML into Fortran-based ESM models. Section 3 discusses the performance of the 138 

interface and presents its application in two case studies. Finally, Section 4 provides a summary 139 

of the findings and a discussion of their implications. 140 

2. General design of the ML interface 141 

2.1 Architecture of the ML interface 142 

We developed an interface using shared memory to enable two-way coupling between Fortran and Python 143 

(Figure 1). The ESM used in the demonstration in Figure 1 is the U.S. Department of Energy (DOE) 144 

Energy Exascale Earth System Model (E3SM; Golaz et al., 2019, 2022). Because Fortran cannot directly 145 

call Python, we utilized C as an intermediary since Fortran can call C functions.  This approach leverages 146 

C as a data hub to exchange information without requiring a framework-specific binding like KFB. As a 147 

result, our interface supports invoking any Python-based ML package such as PyTorch, TensorFlow, and 148 

scikit-learn from Fortran. While C can access Python scalar values through the built-in 149 

PyObject_CallObject function from the Python C API, we employed Cython for its ability to transfer 150 

array data between the languages. Using Cython, multidimensional data structures can be efficiently 151 

passed between Fortran and Python modules via C, allowing for flexible training of ML algorithms within 152 

ESMs. 153 
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 157 
Figure 1. The interface of the ML bridge for two-way communication via memory between Fortran ESM 158 

and Python ML module.  159 

2.2 Code structure 160 

Figure 2 illustrates how the framework operates using toy code example. The Fortran-Python interface 161 

comprises a Fortran wrapper and C wrapper files, which are bound together. The Fortran-based ESM first 162 

imports the Fortran wrapper, allowing it to call wrapper functions with input and output memory 163 

addresses. The interface then passes these memory addresses to the Python-based ML module, which 164 

performs the ML predictions and returns the output address to the Fortran model.  165 

 166 
Figure 2. Toy code illustrating the Fortran-Python interface. 167 
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 168 

When coupling the Python ML module with the real model using the interface, additional steps should be 169 

considered: 1. The ML module should remain active throughout the model simulations, without any 170 

Python finalization calls, ensuring it is continuously available. 2. The Python module should load the 171 

trained ML model and any required global data only once, rather than at each simulation step. This one-172 

time initialization process improves efficiency and prevents unnecessary repetition. On the Fortran ESM 173 

side, the init_ml() function is called within the atm_init_mct module to load the ML model and global 174 

data (shown in Figure 3). Then, similar to the toy code, we call the wrapper function, pass input variables 175 

to Python for ML predictions, and return the results to the Fortran side. 3. When compiling the complex 176 

system, which includes Python, C, Cython, and Fortran code, the Python path should be specified in the 177 

CFLAGS and LDFLAGS. It is important to note that without the position-independent compiling flag (-178 

fPIC), the hybrid system will only work on a single node and may cause segmentation faults on multiple 179 

nodes. Including it can resolve this issue, allowing multi-node compatibility. 180 

 181 

 182 

 183 
Figure 3. The code structure of the ML bridge interface using the ML closure in deep convection as an 184 

example.  185 

 186 

In traditional ESMs, sub-grid scale parameterization routines such as convection parameterizations are 187 

often calculated separately for each vertical column of the model domain. Meanwhile, the domain is 188 

typically decomposed horizontally into 2D chunks that can be solved in parallel using MPI processes. 189 

Each CPU core/MPI process is assigned a number of chunks of model columns to update asynchronously 190 

(Figure 4). Our interface takes advantage of this existing parallel decomposition by designing the ML 191 

calls to operate over all columns simultaneously within each chunk, rather than invoking the ML scheme 192 

individually for each column. This allows the coupled model-ML system to leverage parallelism in the 193 
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neural network computations. If the ML were called separately for every column, parallel efficiencies 223 

would not be realized. By aggregating inputs over the chunk-scale prior to interfacing with Python, 224 

performance is improved through better utilization of multi-core and GPU-based ML capabilities during 225 

parameterization calculations.  226 

 227 

 228 
Figure 4. Data and system structure. The model domain is decomposed into chunks of columns. pver 229 

refers to number of pressure vertical levels. A chunk contains multiple columns (up to pcol). Multiple 230 

chunks can be assigned to each CPU core.  231 

 232 

 233 

3. Results 234 

The framework explained in the previous section provides seamless support for various ML 235 

parameterizations and various ML frameworks, such as PyTorch, Tensorflow, and Scikit-learn. To 236 

demonstrate the versatility of this framework, we applied it in two distinct case applications. The first 237 

application replaces the conventional CAPE-based trigger function in a deep convection parameterization 238 

with a machine-learned trigger function. The second application involves a ML-based wildfire model that 239 

interacts bidirectionally with the ESM. We provide a brief introduction to these two cases. Detailed 240 

descriptions and evaluations will be presented in separate papers. 241 

 242 

The framework's performance is influenced by two primary factors: increasing memory usage and 243 

increasing computational overhead. Firstly, maintaining the Python environment fully persistent in 244 

memory throughout model simulations can impact memory usage, especially for large ML algorithms. 245 
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This elevated memory footprint increases the risk of leaks or crashes as simulations progress. Secondly, 255 

executing ML components within the Python interpreter inevitably introduces some overhead compared 256 

to the original ESMs. The increased memory requirements and decreased computational efficiency 257 

associated with these considerations can impact the framework's usability, flexibility, and scalability for 258 

different applications. 259 

 260 

To comprehensively assess performance, we conducted a systematic evaluation of various ML 261 

frameworks, ML algorithms, and physical models. This evaluation is built upon the foundations 262 

established for evaluating the ML trigger function in the deep convection parameterization. 263 

3.1 Application cases 264 

3.1.1 ML trigger function in deep convection parameterization 265 

In General Circulation Models,  uncertainties in convection parameterizations are recognized to be closely 266 

linked to the convection trigger function used in these schemes (Bechtold et al., 2004; Xie et al., 2004, 267 

2019; Xie & Zhang, 2000; Lee et al., 2007) . The convective trigger in a convective parameterization 268 

determines when and where model convection should be triggered as the simulation advances. In many 269 

convection parameterizations, the trigger function consists of a simple, arbitrary threshold for a physical 270 

quantity, such as convective available potential energy (CAPE).. Convection will be triggered if the 271 

CAPE value exceeds a threshold value.  272 

 273 

In this work, we use this interface to test a newly developed ML trigger function in E3SM. The ML 274 

trigger function was developed with the training data originating from simulations performed using the 275 

kilometer-resolution (1.5 km grid spacing). Met Office Unified Model Regional Atmosphere 1.0 276 

configuration (Bush et al., 2020). Each simulation consists of a limited area model (LAM) nested within a 277 

global forecast model providing boundary conditions (Walters et al., 2017; Webster et al., 2008). In total 278 

80 LAM simulations were run located so as to sample different geographical regions worldwide. Each 279 

LAM was run for 1 month, with 2-hourly output, using a grid-length of 1.5 km, a 512 x 512 domain, and 280 

a model physics package used for operational weather forecasting. The 1.5 km data is coarse-grained to 281 

several scales from 15 to 144 km..  282 

 283 

A two-stream neural network architecture is used for the ML model. The first stream takes profiles of 284 

temperature, specific humidity and pressure across 72 levels at each scale as inputs and passes them 285 

through a 4-layer convolutional neural network (CNN) with kernel sizes of 3, to extract large scale 286 
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features. The second stream takes mean orographic height, standard deviation of orographic height, land 323 

fraction and the size of the grid-box as inputs. The outputs of the two streams are then combined and fed 324 

into a 2-layer fully connected network to allow the ML model to leverage both atmospheric and surface 325 

features when making its predictions. The output is a binary variable indicating whether the convection 326 

happens, based on the condition of buoyant cloudy updrafts (BCU, e.g. Hartmann et al., 2019; Swann, 327 

2001). If there are 3 contiguous levels where the predicted BCU is larger than 0.05, the convection 328 

scheme is triggered. Once trained, the CNN is coupled to E3SM and thermodynamic information from 329 

E3SM is passed to it to predict the trigger condition. Then, the predicted result is returned to E3SM.  330 

 331 

 332 

 333 

Figure 5 shows the comparison of annual mean precipitation between the control run using the traditional 334 

CAPE-based trigger function and the run using the ML BCU trigger function. The ML BCU scheme 335 

demonstrates reasonable spatial patterns of precipitation, similar to the control run, with comparable root-336 

mean-square error and spatial correlation. Additional experiments exploring the definition of BCU and 337 

varying the thresholds along with an in-depth analysis will be presented in a follow-up paper. 338 

 339 

 340 
Figure 5.  Comparison of annual mean precipitation between the control run using the CAPE-based 341 

trigger function (a, c) and the run using the ML BCU trigger function (b, d).  342 

3.1.2 ML learning fire model  343 

Predicting wildfire burned area is challenging due to the complex interrelationships between fires, 344 

climate, weather, vegetation, topography, and human activities (Huang et al., 2020). Traditionally, 345 
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statistical methods like multiple linear regression have been applied, but are limited in the number and 363 

diversity of predictors considered (Yue et al., 2013).  In this study, we develop a coupled fire-land-364 

atmosphere framework that uses machine learning to predict wildfire area, enhancing long-term burned 365 

area projections and assessing fire impacts by enabling simulations of interactions among fire, 366 

atmosphere, land cover, and vegetation. 367 

 368 

The ML algorithm is trained using a monthly dataset, which includes the target variable of burned area, as 369 

well as various predictor variables. These predictors encompass local meteorological data (e.g., surface 370 

temperature, precipitation), land surface properties (e.g., monthly mean evapotranspiration and surface 371 

soil moisture), and socioeconomic variables (e.g., gross domestic product, population density), as 372 

described by Wang et al. (2022). In the coupled fire-land-atmosphere framework, meteorology variables 373 

and land surface properties are provided by the E3SM. We use the eXtreme Gradient Boosting algorithm 374 

implemented in Scikit-Learn to train the ML fire model. Figure 6 demonstrates that the ML4Fire model 375 

exhibits superior performance in terms of spatial distribution compared to process-based fire models, 376 

particularly in the Southern US region. Detailed analysis will be presented in a separate paper. The 377 

ML4Fire model has proven to be a valuable tool for studying vegetation-fire interactions, enabling 378 

seamless exploration of climate-fire feedbacks.      379 

 380 

 381 

 382 
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Figure 6. Comparison between ML4Fire model and process-based fire model against the historical 400 

burned area from Global Fire Emissions Database 5 from 2001-2020. R and BIAS are the spatial 401 

pattern correlation and difference against the observation, respectively.  402 

3.2 Performance of different ML frameworks  403 

The Fortran-Python bridge ML interface supports various ML frameworks, including PyTorch, 404 

TensorFlow, and scikit-learn. These ML frameworks can be trained offline using kilometer-scale high-405 

resolution models (such as the ML trigger function) or observations (ML fire model). Once trained, they 406 

can be plugged into the ML bridge interface through different API interfaces specific to each framework. 407 

The coupled ML algorithms are persistently resident in memory, just like the other ESM components. 408 

During each step of the process, the performance of the full system is significantly affected by memory 409 

usage. If memory consumption increases substantially, it may lead to memory leaks as the number of time 410 

step iteration increases. In addition, Python, being an interpreted language, is typically considered to have 411 

slower performance compared to compiled languages like C/C++ and Fortran. Therefore, incorporating 412 

Python may decrease computational performance. We examine the memory usage and computational 413 

performance across various ML frameworks based on implementing the ML trigger function in E3SM. 414 

The ML algorithm is implemented as a two-stream CNN model using Pytorch and TensorFlow 415 

frameworks, as well as XGBoost using the Scikit-learn package. It should be noted that XGBoost, a 416 

boosting tree-based model, is a completely different type of ML model compared to the CNNs, which are 417 

the type of deep neural network.   418 

 419 
Figure 7.  Computational and memory overhead as the simulation progresses for coupling the ML trigger 420 
function with the E3SM model. The x-axis represents the simulated time step. The y-axis of (a) represents 421 
the simulation speed measured in seconds per day (indicating the number of seconds required to simulate 422 
one day). The y-axis of (b) represents the relative increase in memory usage for Scikit-learn, TensorFlow, 423 
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and PyTorch compared with CNTL. CNTL represents the original simulation without using the ML 426 
framework.     427 
 428 

Figure 7 illustrates the computational and memory overhead associated with the ML parameterization 429 

using different ML frameworks. It shows that XGBoost only exhibits a 20% increase in the simulation 430 

time required for simulating one day due to its simpler algorithm. For more complex neural networks, 431 

PyTorch incurs a 52% overhead, while TensorFlow's overhead is almost 100% – about two times as much 432 

as the overhead by PyTorch. In terms of memory usage, we use the highwater memory metric (Gerber & 433 

Wasserman, 2013), which represents the total memory footprint of a process. Scikit-learn and PyTorch do 434 

not show any significant increase in memory usage. However, TensorFlow shows a considerable increase 435 

up to 50MB per simulation day per MPI process element. This is significant because for a node with 48 436 

cores, it would equate to an increase of around 2GB per simulated day on that node. This rapid memory 437 

growth could quickly lead to a simulation crash due to insufficient memory during continuous 438 

integrations, preventing the use in practical simulations. Our findings show that the TensorFlow 439 

prediction function does not release memory after each call. Therefore, we recommend using PyTorch for 440 

complex deep learning algorithms and Scikit-learn for simpler ML algorithms to avoid these potential 441 

memory-related issues when using TensorFlow.  442 

 443 

Previous work, such as Brenowitz & Bretherton (2018, 2019) has utilized the CFFI package to establish 444 

communication between Fortran ESM and ML Python. As described in the Introduction, while CFFI 445 

offers flexibility in supporting various ML packages, it does have certain limitations. To pass variables 446 

from Fortran to Python, the approach relies on global data structures to store all variables, including both 447 

the input from Fortran to Python and the output returning to Fortran. Consequently, this package results in 448 

additional memory copy operations and increasing overall memory usage. In contrast, our interface takes 449 

a different approach by utilizing memory references to transfer data between Fortran and Python, 450 

avoiding the need for global data structures and the associated overhead. This allows for a more efficient 451 

data transfer process.  452 

 453 

In Figure 8, we present a comparison between the two frameworks by testing the different number of 454 

elements passed from Fortran to Python. The evaluation is based on a demo example that focuses solely 455 

on declaring arrays and transferring them from Fortran to Python, rather than a real E3SM simulation. 456 

Figure 8a illustrates the impact of the number of passing elements on the overhead of the two interfaces. 457 

As the number of elements exceeds 10!, the overhead of CFFI becomes significant. When the number 458 

surpasses 10", the overhead of CFFI is nearly ten times greater than that of our interface. Regarding 459 
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memory usage, our interface maintains a stable memory footprint of approximately 60MB. Even as the 464 

number of elements increases, the memory usage only shows minimal growth. However, for CFFI, the 465 

memory usage starts at 80MB, which is 33% higher than our interface. As the number of elements 466 

reaches 10", the memory overhead for CFFI dramatically rises to 180MB, twice as much as our interface. 467 

 468 

 469 
Figure8. Comparison of our framework and the CFFI framework in terms of computational time 470 

and memory usage. The x-axis represents the number of elements transferred from Fortran to 471 

Python, while the y-axis displays the total time (a) and total memory usage (b) for a 472 

demonstration example. The evaluations presented are based on the average results obtained 473 

from 5 separate tests.  474 

 475 

3.3 Performance of ML algorithms of different complexities 476 

ML parameterizations can be implemented using various deep learning algorithms with different levels of 477 

complexity. The computational performance and memory usage can be influenced by the complexity of 478 

these algorithms. In the case of the ML trigger function, a two-stream four-layer CNN structure is 479 

employed. We compare this structure with other ML algorithms such as Artificial Neural Network (ANN) 480 

and Residual Network (ResNet), whose structures are detailed in Table 1. We selected these three ML 481 

algorithms because they are commonly used in previous ML parameterization approaches, such as 482 

(Brenowitz & Bretherton, 2019; Han et al., 2020; Wang et al., 2022). Systematically evaluating the hybrid 483 

system with these ML methods using our interface can help identify bottlenecks and improve the system 484 

computational performance. These algorithms are implemented in PyTorch. The algorithm’s complexity 485 

is measured by the number of parameters, with the CNN having approximately 60 times more parameters 486 

than ANN, and ResNet having roughly 1.5 times more parameters than CNN. 487 

 488 
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Table 1. The structure and number of parameters of each ML algorithms.  492 

Algorithms  Structure  # of parameters 

ANN 3 x Linear 121,601 

CNN 4 x Conv2d + 2 x Linear 7,466,753 

ResNet 17 x Conv2d + 1 x Linear 11,177,025 

 493 

Figure 9 presents a comparison of the memory and computational costs between the CNTL run without 494 

deep learning parameterization and the hybrid run with various deep learning algorithms. The same 495 

specific process-element layout (placement of ESM component models on distributed CPU cores) is used 496 

for all the simulations. Deep learning algorithms incur a significant yet affordable increase in memory 497 

overhead, with at least a 20% increase compared to the CNTL run (Figure 9a). This is primarily due to the 498 

integration of ML algorithms into the ESM, which persist throughout the simulations. Although there is a 499 

notable increase in complexity among the deep learning algorithms, their memory usage only shows a 500 

slight rise. This is because the memory increment resulting from the ML parameters is relatively small. 501 

Specifically, ANN requires 1MB of memory, CNN requires 60MB, and the ResNet algorithms requires 502 

85MB, which are calculated based on the number of parameters in each algorithm. When comparing these 503 

values to the memory consumption of the CNTL run, which is approximately 3000MB, the additional 504 

parameters' incremental memory consumption is not substantial. However, when we use 128 MPI 505 

processes per node, it could bring the total memory requirement to approximately 460 GB per node. If the 506 

available hardware memory is less than this, the process layout must be adjusted accordingly.   507 

 508 

In terms of computational performance, the Python-based ML calls inevitably introduce some overhead. 509 

However, as shown in Figure 9b, the performance decrease is not substantial. The simple ANN model 510 

reduces performance by only about 10% compared to the CNTL run, while even the more complex 511 

ResNet model results in a 35% decrease. In contrast, Wang et al. (2022) reported a 100% overhead in 512 

their interface, which transfers parameters via files. It is worth noting that in this study, the deep learning 513 

algorithms are executed on CPUs. To enhance computational performance, future work could consider 514 

utilizing GPUs for acceleration. 515 

 516 

In addition, we develop a performance model to estimate computational performance for the hybrid 517 

model using different ML model sizes and complexities. This performance model, based on linear 518 

regression, predicts the computational ratio relative to the CNTL run by taking the number of ML 519 
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parameters as input, shown in Figure 9b. It provides a simple yet effective way to capture this relationship 530 

and serves as a valuable tool for performance prediction when incorporating more complicated ML 531 

models.  532 

 533 
Figure 9. Comparison of CNTL and the hybrid model using various ML algorithms in terms of memory 534 

and computation. CNTL is the default run without ML parameterizations. In (b), the left y-axis represents 535 

the actual number of simulated years per day, while the right y-axis shows the relative performance 536 

compared to the CNTL run (orange line). The gray line illustrates the regression between the number of 537 

ML parameters (x) and the relative performance of the hybrid system (y). 538 

 539 

3.4 Performance for physical models of different complexities 540 

 541 
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Figure 10.  Compassion of CNTL and ML for various ESMs in terms of memory and computation. The 543 

ESM configuration include SCM, ultra-low resolution model (ne4) and nominal low-resolution model 544 

(ne30).  545 

 546 

ML parameterization can be applied to various ESM configurations, for example, with the E3SM 547 

Atmosphere Model (EAM), we experiment with Single Column Model (SCM), the ultra low-resolution 548 

model of EAM (ne4), and the nominal low resolution model of EAM (ne30) configurations. The SCM 549 

consists of one single atmosphere column of a global EAM (Bogenschutz et al., 2020; Gettelman et al., 550 

2019). ne4 has 384 columns, with each column representing the horizontal resolution of 7.5°. ne30 is the 551 

default resolution for EAM and comprises 21,600 columns, with each column representing the horizontal 552 

resolution of 1°.  In the case of the ML trigger function, the memory overhead is approximately 500MB 553 

for all configurations due to the loading of the ML algorithm, which does not vary with the configuration 554 

of the ESM.   555 

 556 

Regarding computational performance, SCM utilizes 1 process, ne4 employs 1 node with 64 processes, 557 

and ne30 utilizes 10 nodes with each node using 128 processes. In the case of SCM, the overhead 558 

attributed to the ML parameterization is approximately 9% due to the utilization of only 1 process. 559 

However, for ne4 and ne30, the overhead is 23% and 28% respectively (Figure 10). The increasing 560 

computational overhead is primarily due to resource competition when multiple processes are used within 561 

a single node. It is noted that although there is a significant computational gap between ML and CNTL 562 

for ne4, the relative performance between ML and CNTL for ne4 is approximately 76.7%, which is close 563 

to ne30 at 71.4%.  564 

 565 

4. Discussion and Conclusion  566 

ML algorithm can learn detailed information about cloud processes and atmospheric dynamics from 567 

kilometer-scale models and observations and serves as an approximate surrogate for the kilometer-scale 568 

model. Instead of explicitly simulating kilometer-scale processes, the ML algorithms can be designed to 569 

capture the essential features and relationships between atmospheric variables by training on available 570 

kilometer-scale data. The trained algorithms can then be used to develop parameterizations for use in 571 

models at coarser resolutions, reducing the computational and memory costs. By using ML 572 

parameterizations, scientists can effectively incorporate the insights gained from kilometer-scale models 573 

for coarser-resolution simulations. Through learning the complex relationships and patterns present in the 574 
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high-resolution data, the ML-based parameterizations have the potentials to more accurately represent 579 

cloud processes and atmospheric dynamics in the ESMs. This approach strikes a balance between 580 

computational efficiency and capturing critical processes, enabling more realistic simulations and 581 

predictions while minimizing computational resources. All these potential benefits in turn promote 582 

innovative developments to facilitate increasing and more efficient use of ML parameterizations.   583 

 584 

In this study, we develop a novel Fortran-Python interface for developing ML parameterizations. This 585 

interface demonstrates feasibility in supporting various ML frameworks, such as PyTorch, TensorFlow, 586 

and Scikit-learn and enables the effective development of new ML-based parameterizations to explore 587 

ML-based applications in ESMs. Through two cases - a ML trigger function in convection 588 

parameterization and a ML wildfire model - we highlight high modularity and reusability of the 589 

framework. We conduct a systematic evaluation of memory usage and computational overhead from the 590 

integrated Python codes.  591 

 592 

Based on our performance evaluation, we observe that coupling ML algorithms using TensorFlow into 593 

ESMs can lead to memory leaks. As a recommendation, we suggest using PyTorch for complex deep 594 

learning algorithms and Scikit-learn for simple ML algorithms for the Fortran-Python ML interface.  595 

 596 

The memory overhead primarily arises from loading ML algorithms into ESMs. If the ML algorithms are 597 

implemented using PyTorch or Scikit-learn, the memory usage will not increase significantly. The 598 

computational overhead is influenced by the complexity of the neural network and the number of 599 

processes running on a single node. As the complexity of the neural network increases, more parameters 600 

in the neural network require forward computation. Similarly, when there are more processes running on 601 

a single node, the integrated Python codes introduce more resource competition. 602 

 603 

Although this interface provides a flexible tool for ML parameterizations, it does not currently utilize 604 

GPUs for ML algorithms. In Figure 3, it is shown that each chunk is assigned to a CPU core. However, to 605 

effectively leverage GPUs, it is necessary to gather the variables from multiple chunks and pass them to 606 

the GPUs. Additionally, if an ESM calls the Python ML module multiple times in each time step, the 607 

computational overhead becomes significant. It is crucial to gather the variables and minimize the number 608 

of calls. In the future, we will enhance the framework to support this mechanism, enabling GPU 609 

utilization and overall performance improvement. 610 
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