
1

A Fortran-Python Interface for Integrating Machine Learning Parameterization into 1

Earth System Models 2

Tao Zhang1, Cyril Morcrette2,7, Meng Zhang3, Wuyin Lin1, Shaocheng Xie3, Ye Liu4, Kwinten Van 3

Weverberg5,6, Joana Rodrigues2 4

 5

1. Brookhaven National Laboratory, Upton, NY, USA 6

2. Met Office, FitzRoy Road, Exeter, EX13PB, UK 7

3. Lawrence Livermore National Laboratory, Livermore, CA, USA 8

4. Pacific Northwest National Laboratory, Richland, WA, USA 9

5. Department of Geography, Ghent University, Belgium 10

6. Royal Meteorological Institute of Belgium, Brussels, Belgium 11

7. Department of Mathematics and Statistics, Exeter University, Exeter, UK 12

Correspondence to: Tao Zhang (taozhang.ccs@gmail.com) 13

Abstract 14

Parameterizations in Earth System Models (ESMs) are subject to biases and uncertainties arising from 15

subjective empirical assumptions and incomplete understanding of the underlying physical processes. 16

Recently, the growing representational capability of machine learning (ML) in solving complex problems 17

has spawned immense interests in climate science applications. Specifically, ML-based parameterizations 18

have been developed to represent convection, radiation and microphysics processes in ESMs by learning 19

from observations or high-resolution simulations, which have the potential to improve the accuracies and 20

alleviate the uncertainties. Previous works have developed some surrogate models for these processes 21

using ML. These surrogate models need to be coupled with the dynamical core of ESMs to investigate 22

the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-23

Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface 24

showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and Scikit-25

learn. We demonstrate the interface's modularity and reusability through two cases: a ML trigger function 26

for convection parameterization and a ML wildfire model. We conduct a comprehensive evaluation of 27

memory usage and computational overhead resulting from the integration of Python codes into the 28

Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, 29

tested, and integrated into ESMs. 30

 31

2

Plain Language 32

Earth System Models (ESMs) are crucial for understanding and predicting climate change. However, they 33

struggle to accurately simulate the climate due to uncertainties associated with parameterizing sub-grid 34

physics. Although higher-resolution models can reduce some uncertainties, they require significant 35

computational resources. Machine learning (ML) algorithms offer a solution by learning the important 36

relationships and features from high-resolution models. These ML algorithms can then be used to develop 37

parameterizations for coarser-resolution models, reducing computational and memory costs. To 38

incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for 39

calling Python functions within Fortran-based ESMs. Through two case studies, this interface 40

demonstrates its feasibility, modularity and effectiveness. 41

1. Introduction 42

Earth System Models (ESMs) play a crucial role in understanding the mechanism of the climate system 43

and projecting future changes. However, uncertainties arising from parameterizations of sub-grid 44

processes pose challenges to the reliability of model simulations (Hourdin et al., 2017). Kilometer-scale 45

high-resolution models (Schär et al., 2020) can potentially mitigate the uncertainties by directly resolving 46

some key subgrid-scale processes that need to be parameterized in conventional low-resolution ESMs. 47

Another promising method, superparameterization – a type of multi-model framework (MMF) (D. 48

Randall et al., 2003; D. A. Randall, 2013), explicitly resolves sub-grid processes by embedding high-49

resolution cloud-resolved models within the grid of low-resolution models. Consequently, both high-50

resolution models and superparameterization approaches have shown promise in improving the 51

representation of cloud formation and precipitation. However, their implementation is challenged by 52

exceedingly high computational costs. 53

 54

In recent years, machine learning (ML) techniques have emerged as a promising approach to 55

improve parameterizations in ESMs. They are capable of learning complex patterns and 56

relationships directly from observational data or high-resolution simulations, enabling the 57

capture of nonlinearities and intricate interactions that may be challenging to represent with 58

traditional parameterizations. For example, Zhang et al. (2021) proposed a ML trigger function 59

for a deep convection parameterization by learning from field observations, demonstrating its 60

superior accuracy compared to traditional CAPE-based trigger functions. Chen et al. (2023) 61

developed a neural network-based cloud fraction parameterization, better predicting both spatial 62

3

distribution and vertical structure of cloud fraction when compared to the traditional Xu-Randall 63

scheme (Xu & Randall, 1996). Krasnopolsky et al. (2013) prototyped a system using a neural 64

network to learn the convective temperature and moisture tendencies from cloud-resolving 65

model (CRM) simulations. These tendencies refer to the rates of change of various atmospheric 66

variables over one time step, diagnosed from particular parameterization schemes. These studies 67

lay the groundwork for integrating ML-based parameterization into ESMs. 68

 69

However, the aforementioned studies primarily focus on offline ML of parameterizations that do 70

not directly interact with ESMs. Recently, there have been efforts to implement ML 71

parameterizations that can be directly coupled with ESMs. Several studies have developed ML 72

parameterizations in ESMs by hard coding custom neural network modules, such as O’Gorman 73

& Dwyer (2018), Rasp et al. (2018), Han et al. (2020) and Gettelman et al. (2021). They 74

incorporated a Fortran-based ML inference module to allow the loading of the pre-trained ML 75

weights to reconstruct the ML algorithm in ESMs. The hard-coding has limitations Such hard-76

coding approach restricts the ML algorithm’s ability to adapt to changes in the model dynamics 77

over time, as the ‘online’ updating requires a two-way coupling between the dominantly Fortran-78

based ESMs and Python ML libraries. 79

 80

Fortran-Keras Bridge (FKB; Ott et al. (2020)) and C Foreign Function Interface (CFFI; 81

https://cffi.readthedocs.io) are two packages that support two-way coupling between Fortran-based ESM 82

and Python based ML parameterizations. FKB enables tight integration of Keras deep learning models but 83

is specifically bound to the Keras library, limiting its compatibility with other frameworks like PyTorch 84

and Scikit-Learn. On the other hand, CFFI provides a more flexible solution that in principle supports 85

coupling various ML packages due to its language-agnostic design. Brenowitz & Bretherton (2018) 86

utilized it to enable the calling of Python ML algorithms within ESMs. However, the CFFI has several 87

limitations. When utilizing CFFI to interface Fortran and Python, it uses global data structures to pass 88

variables between the two languages. This approach results in additional memory overhead as variable 89

values need to be copied between languages, instead of being passed by reference. Additionally, CFFI 90

lacks automatic garbage collection for the unused memory within these data structures and copies. 91

Consequently, the memory usage of the program gradually increases over its lifetime. In addition, when 92

using CFFI to call Python functions from a Fortran program, the process involves several steps such as 93

registering variables into a global data structure, calling the Python function, and retrieving the calculated 94

Deleted: . Kochkov et al. (2023) presented an innovative 95
ML parameterization that feeds back from the dynamics, in 96
order to improve stability and reduce bias. However,97
Deleted: s98

https://www.zotero.org/google-docs/?YVGVSV

4

result. These multiple steps can introduce computational overhead due to the additional operations 99

required. 100

 101

Additionally, Wang et al. (2022) developed a coupler to facilitate two-way communication between ML 102

parameterizations and host ESMs. The coupler gathers state variables from the ESM using the Message 103

Passing Interface (MPI) and transfers them to a Python-based ML module. It then receives the output 104

from the Python code and returns them to the ESM. While this approach effectively bridges Fortran and 105

Python, its use of file-based data passing to exchange information between modules carries some 106

performance overhead relative to tighter coupling techniques. Optimizing the data transfer, such as via 107

shared memory, remains an area for improvement to fully leverage this coupler's ability to integrate 108

online-adaptive ML parameterizations within large-scale ESM simulations, which is the main goal for this 109

study. 110

 111

In this study, we investigate the integration of ML parameterizations into Fortran-based ESM 112

models by establishing a flexible interface that enables the invocation of ML algorithms in 113

Python from Fortran. This integration offers access to any Python codes from Fortran, including 114

a diverse range of ML frameworks, such as PyTorch, TensorFlow, and Scikit-learn, which can 115

effectively be utilized for parameterizing intricate atmospheric and other climate system 116

processes. The coupling of the Fortran model and the Python ML code needs to be performed for 117

thousands of model columns and over thousands of timesteps for a typical model simulation. 118

Therefore, it is crucial for the coupling interface to be both robust and efficient. We showcase 119

the feasibility and benefits of this approach through case studies that involve the 120

parameterization of deep convection and wildfire processes in ESMs. The two cases demonstrate 121

the robustness and efficiency of the coupling interface. The focus of this paper is on 122

documenting the coupling between the Fortran ESM and the ML algorithms and systematically 123

evaluating the computational efficiency and memory usage of different ML frameworks (such as 124

Pytorch and TensorFlow), different ML algorithms, and different configuration of a climate 125

model. The assessment of the scientific performance of the ML emulators will be addressed in 126

follow-on papers. The showcase examples emphasize the potential for high modularity and 127

reusability by separating the ML components into Python modules. This modular design 128

facilitates independent development and testing of ML-based parameterizations by researchers. It 129

enables easier code maintenance, updates, and the adoption of state-of-the-art ML techniques 130

Deleted: including 131

5

with only minimal disrupting the existing Fortran infrastructure. Ultimately, this advancement 132

will contribute to enhanced predictions and a deeper comprehension of the evolving climate of 133

our planet. It is important to note that the current interface only supports executing deep learning 134

algorithms on CPUs and does not support running them on GPUs. 135

 136

The rest of this manuscript is organized as follows: Section 2 presents the detailed interface that 137

integrates ML into Fortran-based ESM models. Section 3 discusses the performance of the 138

interface and presents its application in two case studies. Finally, Section 4 provides a summary 139

of the findings and a discussion of their implications. 140

2. General design of the ML interface 141

2.1 Architecture of the ML interface 142

We developed an interface using shared memory to enable two-way coupling between Fortran and Python 143

(Figure 1). The ESM used in the demonstration in Figure 1 is the U.S. Department of Energy (DOE) 144

Energy Exascale Earth System Model (E3SM; Golaz et al., 2019, 2022). Because Fortran cannot directly 145

call Python, we utilized C as an intermediary since Fortran can call C functions. This approach leverages 146

C as a data hub to exchange information without requiring a framework-specific binding like KFB. As a 147

result, our interface supports invoking any Python-based ML package such as PyTorch, TensorFlow, and 148

scikit-learn from Fortran. While C can access Python scalar values through the built-in 149

PyObject_CallObject function from the Python C API, we employed Cython for its ability to transfer 150

array data between the languages. Using Cython, multidimensional data structures can be efficiently 151

passed between Fortran and Python modules via C, allowing for flexible training of ML algorithms within 152

ESMs. 153

Deleted: out154

Deleted: important to note155

Deleted: ¶156

6

 157
Figure 1. The interface of the ML bridge for two-way communication via memory between Fortran ESM 158

and Python ML module. 159

2.2 Code structure 160

Figure 2 illustrates how the framework operates using toy code example. The Fortran-Python interface 161

comprises a Fortran wrapper and C wrapper files, which are bound together. The Fortran-based ESM first 162

imports the Fortran wrapper, allowing it to call wrapper functions with input and output memory 163

addresses. The interface then passes these memory addresses to the Python-based ML module, which 164

performs the ML predictions and returns the output address to the Fortran model. 165

 166
Figure 2. Toy code illustrating the Fortran-Python interface. 167

Earth SystemModels (ESMs) Machine LearningData Hub

Fortran C/C++ Python

Memory
coupler

ocean

land

atmosphere

Sea-ice

Other
Comp.

Formatted: Centered

Formatted: Font: (Default) Arial, (Asian) Arial

7

 168

When coupling the Python ML module with the real model using the interface, additional steps should be 169

considered: 1. The ML module should remain active throughout the model simulations, without any 170

Python finalization calls, ensuring it is continuously available. 2. The Python module should load the 171

trained ML model and any required global data only once, rather than at each simulation step. This one-172

time initialization process improves efficiency and prevents unnecessary repetition. On the Fortran ESM 173

side, the init_ml() function is called within the atm_init_mct module to load the ML model and global 174

data (shown in Figure 3). Then, similar to the toy code, we call the wrapper function, pass input variables 175

to Python for ML predictions, and return the results to the Fortran side. 3. When compiling the complex 176

system, which includes Python, C, Cython, and Fortran code, the Python path should be specified in the 177

CFLAGS and LDFLAGS. It is important to note that without the position-independent compiling flag (-178

fPIC), the hybrid system will only work on a single node and may cause segmentation faults on multiple 179

nodes. Including it can resolve this issue, allowing multi-node compatibility. 180

 181

 182

 183
Figure 3. The code structure of the ML bridge interface using the ML closure in deep convection as an 184

example. 185

 186

In traditional ESMs, sub-grid scale parameterization routines such as convection parameterizations are 187

often calculated separately for each vertical column of the model domain. Meanwhile, the domain is 188

typically decomposed horizontally into 2D chunks that can be solved in parallel using MPI processes. 189

Each CPU core/MPI process is assigned a number of chunks of model columns to update asynchronously 190

(Figure 4). Our interface takes advantage of this existing parallel decomposition by designing the ML 191

calls to operate over all columns simultaneously within each chunk, rather than invoking the ML scheme 192

individually for each column. This allows the coupled model-ML system to leverage parallelism in the 193

Deleted: The interface consists of two stages. The first 194
stage involves initializing the ML environment, which 195
persists throughout the model simulations. On the Fortran 196
ESM side, the init_ml() function is called in the 197
atm_init_mct module. Through the Fortran Interface and C 198
Bridge, the corresponding function in the Python ML 199
component is invoked. This function loads the ML-related 200
global data and the trained ML algorithm. This initialization 201
process is performed only once to enhance efficiency and 202
avoid unnecessary repetition during the simulations. The 203
second stage involves the actual invocation of the ML 204
process. The example here is an ML-based closure for the 205
deep convection parameterization. We aim to utilize ML to 206
calculate Convective Available Potential Energy (CAPE) by 207
utilizing an ML emulator based on high-resolution cloud-208
resolving model simulations. We call the cape_ml function 209
in the Fortran module zm_conv, providing temperature, 210
pressure, and humidity as input variables, and defining the 211
returned CAPE from the ML side. Through the Fortran 212
Interface and C Bridge, these three variables are passed to 213
the Python ML component. In the Python ML component, 214
the received variables, along with other pre-loaded global 215
data and the trained ML algorithm, are used to calculate the 216
ML-based CAPE. The calculated result is then returned to 217
the Fortran ESM. The Fortran ESM utilizes this ML-derived 218
CAPE to determine how convection will evolve.219
Deleted: ¶220
Deleted: 2221

Deleted: 3222

8

neural network computations. If the ML were called separately for every column, parallel efficiencies 223

would not be realized. By aggregating inputs over the chunk-scale prior to interfacing with Python, 224

performance is improved through better utilization of multi-core and GPU-based ML capabilities during 225

parameterization calculations. 226

 227

 228
Figure 4. Data and system structure. The model domain is decomposed into chunks of columns. pver 229

refers to number of pressure vertical levels. A chunk contains multiple columns (up to pcol). Multiple 230

chunks can be assigned to each CPU core. 231

 232

 233

3. Results 234

The framework explained in the previous section provides seamless support for various ML 235

parameterizations and various ML frameworks, such as PyTorch, Tensorflow, and Scikit-learn. To 236

demonstrate the versatility of this framework, we applied it in two distinct case applications. The first 237

application replaces the conventional CAPE-based trigger function in a deep convection parameterization 238

with a machine-learned trigger function. The second application involves a ML-based wildfire model that 239

interacts bidirectionally with the ESM. We provide a brief introduction to these two cases. Detailed 240

descriptions and evaluations will be presented in separate papers. 241

 242

The framework's performance is influenced by two primary factors: increasing memory usage and 243

increasing computational overhead. Firstly, maintaining the Python environment fully persistent in 244

memory throughout model simulations can impact memory usage, especially for large ML algorithms. 245

Deleted: The Python, C, Cython and Fortran code 246
components are compiled together into a unified executable 247
file. Table 1 shows the detailed steps to enable the ML 248
bridge interface in E3SM.249

Deleted: 3250

Formatted: Centered

Deleted: Table 1. The steps to enable the ML bridge 251
framework in E3SM252
Deleted: ¶253
Formatted: Font: (Default) Arial, (Asian) Arial

Deleted: t254

9

This elevated memory footprint increases the risk of leaks or crashes as simulations progress. Secondly, 255

executing ML components within the Python interpreter inevitably introduces some overhead compared 256

to the original ESMs. The increased memory requirements and decreased computational efficiency 257

associated with these considerations can impact the framework's usability, flexibility, and scalability for 258

different applications. 259

 260

To comprehensively assess performance, we conducted a systematic evaluation of various ML 261

frameworks, ML algorithms, and physical models. This evaluation is built upon the foundations 262

established for evaluating the ML trigger function in the deep convection parameterization. 263

3.1 Application cases 264

3.1.1 ML trigger function in deep convection parameterization 265

In General Circulation Models, uncertainties in convection parameterizations are recognized to be closely 266

linked to the convection trigger function used in these schemes (Bechtold et al., 2004; Xie et al., 2004, 267

2019; Xie & Zhang, 2000; Lee et al., 2007) . The convective trigger in a convective parameterization 268

determines when and where model convection should be triggered as the simulation advances. In many 269

convection parameterizations, the trigger function consists of a simple, arbitrary threshold for a physical 270

quantity, such as convective available potential energy (CAPE).. Convection will be triggered if the 271

CAPE value exceeds a threshold value. 272

 273

In this work, we use this interface to test a newly developed ML trigger function in E3SM. The ML 274

trigger function was developed with the training data originating from simulations performed using the 275

kilometer-resolution (1.5 km grid spacing). Met Office Unified Model Regional Atmosphere 1.0 276

configuration (Bush et al., 2020). Each simulation consists of a limited area model (LAM) nested within a 277

global forecast model providing boundary conditions (Walters et al., 2017; Webster et al., 2008). In total 278

80 LAM simulations were run located so as to sample different geographical regions worldwide. Each 279

LAM was run for 1 month, with 2-hourly output, using a grid-length of 1.5 km, a 512 x 512 domain, and 280

a model physics package used for operational weather forecasting. The 1.5 km data is coarse-grained to 281

several scales from 15 to 144 km.. 282

 283

A two-stream neural network architecture is used for the ML model. The first stream takes profiles of 284

temperature, specific humidity and pressure across 72 levels at each scale as inputs and passes them 285

through a 4-layer convolutional neural network (CNN) with kernel sizes of 3, to extract large scale 286

Deleted: Convection plays a vital role in atmospheric 287
processes, such as precipitation formation, heat and moisture 288
transport, and energy redistribution (Arakawa, 2004; 289
Arakawa & Schubert, 1974). However, the deficiencies in 290
convection parameterizations constitute one of the principal 291
sources of uncertainties 292
Deleted: i293
Deleted: (D. A. Randall, 2013) . Some294
Deleted: Figure 4a illustrates how the CAPE-based trigger 295
function works296
Deleted: , such as 70 J/kg used in E3SM version 1297
Deleted: and apply it to298
Deleted: 299
Deleted: The ML trigger function was developed with300
Deleted: 301
Deleted: t302
Deleted: 303
Deleted: originating304
Deleted: 305
Deleted: This physics package does not include a 306
convective parameterization scheme, but does include a 307
representation of fractional cloudiness (Bush et al., 2020).308
Deleted: , comparable to the scale a global model might be 309
run at310
Deleted: At each scale, 311
Deleted: we assess whether individual pixels can be 312
considered to be buoyant cloudy updrafts (BCU, e.g. 313
Hartmann et al., 2019; Swann, 2001). Here, the threshold for 314
buoyant is local virtual temperature more than 0.1 K warmer 315
than the average at that scale and height. Cloudy is defined 316
whenever the fractional cloud cover is greater than 0.0 and 317
updraft is defined as vertical ascent larger than 0.2 m/s. In 318
each averaging region, the number of grid points that meet 319
all three criteria are counted and saved as a profile of BCU 320
fraction. 321
Deleted: ¶322

10

features. The second stream takes mean orographic height, standard deviation of orographic height, land 323

fraction and the size of the grid-box as inputs. The outputs of the two streams are then combined and fed 324

into a 2-layer fully connected network to allow the ML model to leverage both atmospheric and surface 325

features when making its predictions. The output is a binary variable indicating whether the convection 326

happens, based on the condition of buoyant cloudy updrafts (BCU, e.g. Hartmann et al., 2019; Swann, 327

2001). If there are 3 contiguous levels where the predicted BCU is larger than 0.05, the convection 328

scheme is triggered. Once trained, the CNN is coupled to E3SM and thermodynamic information from 329

E3SM is passed to it to predict the trigger condition. Then, the predicted result is returned to E3SM. 330

 331

 332

 333

Figure 5 shows the comparison of annual mean precipitation between the control run using the traditional 334

CAPE-based trigger function and the run using the ML BCU trigger function. The ML BCU scheme 335

demonstrates reasonable spatial patterns of precipitation, similar to the control run, with comparable root-336

mean-square error and spatial correlation. Additional experiments exploring the definition of BCU and 337

varying the thresholds along with an in-depth analysis will be presented in a follow-up paper. 338

 339

 340
Figure 5. Comparison of annual mean precipitation between the control run using the CAPE-based 341

trigger function (a, c) and the run using the ML BCU trigger function (b, d). 342

3.1.2 ML learning fire model 343

Predicting wildfire burned area is challenging due to the complex interrelationships between fires, 344

climate, weather, vegetation, topography, and human activities (Huang et al., 2020). Traditionally, 345

Deleted: The output pf the ML model is a profile of BCU.346

Deleted: the profile of BCU. If there are 3 contiguous 347
levels where the predicted BCU is larger than 0.05, the 348
convection scheme is triggered. 349

Deleted: 350
Deleted: Figure 4. Structure of traditional CAPE-based and 351
the new ML BCU-based trigger function. The rectangles in 352
LAM represent the LAM domains. 353
Deleted: ¶354
Deleted: The ML trigger function is implemented using this 355
two-stream architecture and coupled with the E3SM model 356
using the framework described in Section 2. 357
Deleted: 358

Deleted: Wildfires in the United States have significantly 359
increased in frequency and intensity in recent decades, 360
resulting in substantial direct and indirect losses (Iglesias et 361
al., 2022). …362

11

statistical methods like multiple linear regression have been applied, but are limited in the number and 363

diversity of predictors considered (Yue et al., 2013). In this study, we develop a coupled fire-land-364

atmosphere framework that uses machine learning to predict wildfire area, enhancing long-term burned 365

area projections and assessing fire impacts by enabling simulations of interactions among fire, 366

atmosphere, land cover, and vegetation. 367

 368

The ML algorithm is trained using a monthly dataset, which includes the target variable of burned area, as 369

well as various predictor variables. These predictors encompass local meteorological data (e.g., surface 370

temperature, precipitation), land surface properties (e.g., monthly mean evapotranspiration and surface 371

soil moisture), and socioeconomic variables (e.g., gross domestic product, population density), as 372

described by Wang et al. (2022). In the coupled fire-land-atmosphere framework, meteorology variables 373

and land surface properties are provided by the E3SM. We use the eXtreme Gradient Boosting algorithm 374

implemented in Scikit-Learn to train the ML fire model. Figure 6 demonstrates that the ML4Fire model 375

exhibits superior performance in terms of spatial distribution compared to process-based fire models, 376

particularly in the Southern US region. Detailed analysis will be presented in a separate paper. The 377

ML4Fire model has proven to be a valuable tool for studying vegetation-fire interactions, enabling 378

seamless exploration of climate-fire feedbacks. 379

 380

 381

 382

Deleted: Alternatively, ML algorithms that capture 383
statistical relationships between the burned area and 384
environmental factors have shown promising burned area 385
prediction (Kondylatos et al., 2022; Li et al., 2023; Wang et 386
al., 2022, 2023). However, improving long-term burned area 387
projections and evaluating fire impacts requires the coupling 388
of the fire model to an earth system model, which allows 389
simulations of the interactions between the fire, atmosphere, 390
land cover and vegetation (Huang et al., 2021). To achieve 391
this, we develop a coupled fire-land-atmosphere framework 392
using ML. …393

Deleted: , as illustrated in Figure 6394

Deleted: 7395

Deleted: 396
Deleted: Figure 6. Structure of ML fire model (ML4Fire) 397
coupled into E3SM model. 398
Deleted: ¶399

https://www.zotero.org/google-docs/?tncHCH
https://www.zotero.org/google-docs/?f45yl4

12

Figure 6. Comparison between ML4Fire model and process-based fire model against the historical 400

burned area from Global Fire Emissions Database 5 from 2001-2020. R and BIAS are the spatial 401

pattern correlation and difference against the observation, respectively. 402

3.2 Performance of different ML frameworks 403

The Fortran-Python bridge ML interface supports various ML frameworks, including PyTorch, 404

TensorFlow, and scikit-learn. These ML frameworks can be trained offline using kilometer-scale high-405

resolution models (such as the ML trigger function) or observations (ML fire model). Once trained, they 406

can be plugged into the ML bridge interface through different API interfaces specific to each framework. 407

The coupled ML algorithms are persistently resident in memory, just like the other ESM components. 408

During each step of the process, the performance of the full system is significantly affected by memory 409

usage. If memory consumption increases substantially, it may lead to memory leaks as the number of time 410

step iteration increases. In addition, Python, being an interpreted language, is typically considered to have 411

slower performance compared to compiled languages like C/C++ and Fortran. Therefore, incorporating 412

Python may decrease computational performance. We examine the memory usage and computational 413

performance across various ML frameworks based on implementing the ML trigger function in E3SM. 414

The ML algorithm is implemented as a two-stream CNN model using Pytorch and TensorFlow 415

frameworks, as well as XGBoost using the Scikit-learn package. It should be noted that XGBoost, a 416

boosting tree-based model, is a completely different type of ML model compared to the CNNs, which are 417

the type of deep neural network. 418

 419
Figure 7. Computational and memory overhead as the simulation progresses for coupling the ML trigger 420
function with the E3SM model. The x-axis represents the simulated time step. The y-axis of (a) represents 421
the simulation speed measured in seconds per day (indicating the number of seconds required to simulate 422
one day). The y-axis of (b) represents the relative increase in memory usage for Scikit-learn, TensorFlow, 423

Deleted: 7424

Deleted: 8425

13

and PyTorch compared with CNTL. CNTL represents the original simulation without using the ML 426
framework. 427
 428

Figure 7 illustrates the computational and memory overhead associated with the ML parameterization 429

using different ML frameworks. It shows that XGBoost only exhibits a 20% increase in the simulation 430

time required for simulating one day due to its simpler algorithm. For more complex neural networks, 431

PyTorch incurs a 52% overhead, while TensorFlow's overhead is almost 100% – about two times as much 432

as the overhead by PyTorch. In terms of memory usage, we use the highwater memory metric (Gerber & 433

Wasserman, 2013), which represents the total memory footprint of a process. Scikit-learn and PyTorch do 434

not show any significant increase in memory usage. However, TensorFlow shows a considerable increase 435

up to 50MB per simulation day per MPI process element. This is significant because for a node with 48 436

cores, it would equate to an increase of around 2GB per simulated day on that node. This rapid memory 437

growth could quickly lead to a simulation crash due to insufficient memory during continuous 438

integrations, preventing the use in practical simulations. Our findings show that the TensorFlow 439

prediction function does not release memory after each call. Therefore, we recommend using PyTorch for 440

complex deep learning algorithms and Scikit-learn for simpler ML algorithms to avoid these potential 441

memory-related issues when using TensorFlow. 442

 443

Previous work, such as Brenowitz & Bretherton (2018, 2019) has utilized the CFFI package to establish 444

communication between Fortran ESM and ML Python. As described in the Introduction, while CFFI 445

offers flexibility in supporting various ML packages, it does have certain limitations. To pass variables 446

from Fortran to Python, the approach relies on global data structures to store all variables, including both 447

the input from Fortran to Python and the output returning to Fortran. Consequently, this package results in 448

additional memory copy operations and increasing overall memory usage. In contrast, our interface takes 449

a different approach by utilizing memory references to transfer data between Fortran and Python, 450

avoiding the need for global data structures and the associated overhead. This allows for a more efficient 451

data transfer process. 452

 453

In Figure 8, we present a comparison between the two frameworks by testing the different number of 454

elements passed from Fortran to Python. The evaluation is based on a demo example that focuses solely 455

on declaring arrays and transferring them from Fortran to Python, rather than a real E3SM simulation. 456

Figure 8a illustrates the impact of the number of passing elements on the overhead of the two interfaces. 457

As the number of elements exceeds 10!, the overhead of CFFI becomes significant. When the number 458

surpasses 10", the overhead of CFFI is nearly ten times greater than that of our interface. Regarding 459

Deleted: 8460

Deleted: 461
Deleted: 462

Deleted: 463

14

memory usage, our interface maintains a stable memory footprint of approximately 60MB. Even as the 464

number of elements increases, the memory usage only shows minimal growth. However, for CFFI, the 465

memory usage starts at 80MB, which is 33% higher than our interface. As the number of elements 466

reaches 10", the memory overhead for CFFI dramatically rises to 180MB, twice as much as our interface. 467

 468

 469
Figure8. Comparison of our framework and the CFFI framework in terms of computational time 470

and memory usage. The x-axis represents the number of elements transferred from Fortran to 471

Python, while the y-axis displays the total time (a) and total memory usage (b) for a 472

demonstration example. The evaluations presented are based on the average results obtained 473

from 5 separate tests. 474

 475

3.3 Performance of ML algorithms of different complexities 476

ML parameterizations can be implemented using various deep learning algorithms with different levels of 477

complexity. The computational performance and memory usage can be influenced by the complexity of 478

these algorithms. In the case of the ML trigger function, a two-stream four-layer CNN structure is 479

employed. We compare this structure with other ML algorithms such as Artificial Neural Network (ANN) 480

and Residual Network (ResNet), whose structures are detailed in Table 1. We selected these three ML 481

algorithms because they are commonly used in previous ML parameterization approaches, such as 482

(Brenowitz & Bretherton, 2019; Han et al., 2020; Wang et al., 2022). Systematically evaluating the hybrid 483

system with these ML methods using our interface can help identify bottlenecks and improve the system 484

computational performance. These algorithms are implemented in PyTorch. The algorithm’s complexity 485

is measured by the number of parameters, with the CNN having approximately 60 times more parameters 486

than ANN, and ResNet having roughly 1.5 times more parameters than CNN. 487

 488

Deleted: 489
Deleted: 9490

Deleted: 2491

15

Table 1. The structure and number of parameters of each ML algorithms. 492

Algorithms Structure # of parameters

ANN 3 x Linear 121,601

CNN 4 x Conv2d + 2 x Linear 7,466,753

ResNet 17 x Conv2d + 1 x Linear 11,177,025

 493

Figure 9 presents a comparison of the memory and computational costs between the CNTL run without 494

deep learning parameterization and the hybrid run with various deep learning algorithms. The same 495

specific process-element layout (placement of ESM component models on distributed CPU cores) is used 496

for all the simulations. Deep learning algorithms incur a significant yet affordable increase in memory 497

overhead, with at least a 20% increase compared to the CNTL run (Figure 9a). This is primarily due to the 498

integration of ML algorithms into the ESM, which persist throughout the simulations. Although there is a 499

notable increase in complexity among the deep learning algorithms, their memory usage only shows a 500

slight rise. This is because the memory increment resulting from the ML parameters is relatively small. 501

Specifically, ANN requires 1MB of memory, CNN requires 60MB, and the ResNet algorithms requires 502

85MB, which are calculated based on the number of parameters in each algorithm. When comparing these 503

values to the memory consumption of the CNTL run, which is approximately 3000MB, the additional 504

parameters' incremental memory consumption is not substantial. However, when we use 128 MPI 505

processes per node, it could bring the total memory requirement to approximately 460 GB per node. If the 506

available hardware memory is less than this, the process layout must be adjusted accordingly. 507

 508

In terms of computational performance, the Python-based ML calls inevitably introduce some overhead. 509

However, as shown in Figure 9b, the performance decrease is not substantial. The simple ANN model 510

reduces performance by only about 10% compared to the CNTL run, while even the more complex 511

ResNet model results in a 35% decrease. In contrast, Wang et al. (2022) reported a 100% overhead in 512

their interface, which transfers parameters via files. It is worth noting that in this study, the deep learning 513

algorithms are executed on CPUs. To enhance computational performance, future work could consider 514

utilizing GPUs for acceleration. 515

 516

In addition, we develop a performance model to estimate computational performance for the hybrid 517

model using different ML model sizes and complexities. This performance model, based on linear 518

regression, predicts the computational ratio relative to the CNTL run by taking the number of ML 519

Deleted: 2520

Deleted: 10521

Deleted: A522

Deleted: 10523

Deleted: However, there is a significant decrease in 524
computational performance as the complexity of the deep 525
learning algorithms increases (Figure 10b). This is primarily 526
due to the larger number of parameters in neural networks, 527
which require more forward computations528
Deleted: .529

16

parameters as input, shown in Figure 9b. It provides a simple yet effective way to capture this relationship 530

and serves as a valuable tool for performance prediction when incorporating more complicated ML 531

models. 532

 533
Figure 9. Comparison of CNTL and the hybrid model using various ML algorithms in terms of memory 534

and computation. CNTL is the default run without ML parameterizations. In (b), the left y-axis represents 535

the actual number of simulated years per day, while the right y-axis shows the relative performance 536

compared to the CNTL run (orange line). The gray line illustrates the regression between the number of 537

ML parameters (x) and the relative performance of the hybrid system (y). 538

 539

3.4 Performance for physical models of different complexities 540

 541

Deleted: 10542

17

Figure 10. Compassion of CNTL and ML for various ESMs in terms of memory and computation. The 543

ESM configuration include SCM, ultra-low resolution model (ne4) and nominal low-resolution model 544

(ne30). 545

 546

ML parameterization can be applied to various ESM configurations, for example, with the E3SM 547

Atmosphere Model (EAM), we experiment with Single Column Model (SCM), the ultra low-resolution 548

model of EAM (ne4), and the nominal low resolution model of EAM (ne30) configurations. The SCM 549

consists of one single atmosphere column of a global EAM (Bogenschutz et al., 2020; Gettelman et al., 550

2019). ne4 has 384 columns, with each column representing the horizontal resolution of 7.5°. ne30 is the 551

default resolution for EAM and comprises 21,600 columns, with each column representing the horizontal 552

resolution of 1°. In the case of the ML trigger function, the memory overhead is approximately 500MB 553

for all configurations due to the loading of the ML algorithm, which does not vary with the configuration 554

of the ESM. 555

 556

Regarding computational performance, SCM utilizes 1 process, ne4 employs 1 node with 64 processes, 557

and ne30 utilizes 10 nodes with each node using 128 processes. In the case of SCM, the overhead 558

attributed to the ML parameterization is approximately 9% due to the utilization of only 1 process. 559

However, for ne4 and ne30, the overhead is 23% and 28% respectively (Figure 10). The increasing 560

computational overhead is primarily due to resource competition when multiple processes are used within 561

a single node. It is noted that although there is a significant computational gap between ML and CNTL 562

for ne4, the relative performance between ML and CNTL for ne4 is approximately 76.7%, which is close 563

to ne30 at 71.4%. 564

 565

4. Discussion and Conclusion 566

ML algorithm can learn detailed information about cloud processes and atmospheric dynamics from 567

kilometer-scale models and observations and serves as an approximate surrogate for the kilometer-scale 568

model. Instead of explicitly simulating kilometer-scale processes, the ML algorithms can be designed to 569

capture the essential features and relationships between atmospheric variables by training on available 570

kilometer-scale data. The trained algorithms can then be used to develop parameterizations for use in 571

models at coarser resolutions, reducing the computational and memory costs. By using ML 572

parameterizations, scientists can effectively incorporate the insights gained from kilometer-scale models 573

for coarser-resolution simulations. Through learning the complex relationships and patterns present in the 574

Deleted: 11575

Deleted: 11576

Deleted: In this study, we develop a novel Fortran-Python 577
interface for developing ML parameterizations. 578

18

high-resolution data, the ML-based parameterizations have the potentials to more accurately represent 579

cloud processes and atmospheric dynamics in the ESMs. This approach strikes a balance between 580

computational efficiency and capturing critical processes, enabling more realistic simulations and 581

predictions while minimizing computational resources. All these potential benefits in turn promote 582

innovative developments to facilitate increasing and more efficient use of ML parameterizations. 583

 584

In this study, we develop a novel Fortran-Python interface for developing ML parameterizations. This 585

interface demonstrates feasibility in supporting various ML frameworks, such as PyTorch, TensorFlow, 586

and Scikit-learn and enables the effective development of new ML-based parameterizations to explore 587

ML-based applications in ESMs. Through two cases - a ML trigger function in convection 588

parameterization and a ML wildfire model - we highlight high modularity and reusability of the 589

framework. We conduct a systematic evaluation of memory usage and computational overhead from the 590

integrated Python codes. 591

 592

Based on our performance evaluation, we observe that coupling ML algorithms using TensorFlow into 593

ESMs can lead to memory leaks. As a recommendation, we suggest using PyTorch for complex deep 594

learning algorithms and Scikit-learn for simple ML algorithms for the Fortran-Python ML interface. 595

 596

The memory overhead primarily arises from loading ML algorithms into ESMs. If the ML algorithms are 597

implemented using PyTorch or Scikit-learn, the memory usage will not increase significantly. The 598

computational overhead is influenced by the complexity of the neural network and the number of 599

processes running on a single node. As the complexity of the neural network increases, more parameters 600

in the neural network require forward computation. Similarly, when there are more processes running on 601

a single node, the integrated Python codes introduce more resource competition. 602

 603

Although this interface provides a flexible tool for ML parameterizations, it does not currently utilize 604

GPUs for ML algorithms. In Figure 3, it is shown that each chunk is assigned to a CPU core. However, to 605

effectively leverage GPUs, it is necessary to gather the variables from multiple chunks and pass them to 606

the GPUs. Additionally, if an ESM calls the Python ML module multiple times in each time step, the 607

computational overhead becomes significant. It is crucial to gather the variables and minimize the number 608

of calls. In the future, we will enhance the framework to support this mechanism, enabling GPU 609

utilization and overall performance improvement. 610

Deleted: gradient611

19

Acknowledge 612

This work was primarily supported by the Energy Exascale Earth System Model (E3SM) project of the 613

Earth and Environmental System Modeling program, funded by the US Department of Energy, Office of 614

Science, Office of Biological and Environmental Research. Research activity at BNL was under the 615

Brookhaven National Laboratory contract DE-SC0012704 (Tao Zhang, Wuyin Lin). The work at LLNL 616

was performed under the auspices of the US Department of Energy by the Lawrence Livermore National 617

Laboratory under Contract DE-AC52-07NA27344. The work at PNNL is performed under the Laboratory 618

Directed Research and Development Program at the Pacific Northwest National Laboratory. PNNL is 619

operated by DOE by the Battelle Memorial Institute under contract DE-A05-76RL01830. 620

 621

Author contribution 622

TZ developed the Fortran-Python Interface. CM and JR contributed the ML model for the trigger 623

function. YL contributed the ML model for the wire fire model. TZ and MZ assessed the performance of 624

the ML trigger function. TZ took the lead in preparing the manuscript, with valuable edits from CM, MZ, 625

WL, SX, YL, KW, and JR. All the co-authors provided valuable insights and comments for the 626

manuscript. 627

Conflict of Interest 628

The authors declare that they have no conflict of interest. 629

 630

Data Availability Statement 631

The Fortran-Python interface for developing ML parameterizations can be archived at 632
https://doi.org/10.5281/zenodo.11005103 (Zhang et al., 2024) and can be also accessed at 633
https://github.com/tzhang-ccs/ML4ESM. The E3SM model can be accessed at 634
https://zenodo.org/records/12175988 . The dataset for machine learning trigger function can be accessed 635
at https://zenodo.org/records/12205917. The dataset for machine learning wild fire can be accessed at 636
https://zenodo.org/records/12212258. 637

References 638

Bechtold, P., Chaboureau, J.-P., Beljaars, A., Betts, A. K., Köhler, M., Miller, M., & Redelsperger, J.-L. 639

(2004). The simulation of the diurnal cycle of convective precipitation over land in a global 640

Deleted: https://doi.org/10.11578/E3SM/dc.20240301.3 641
(E3SM Project, 2024)642

https://doi.org/10.5281/zenodo.11005103
https://zenodo.org/records/12205917
https://zenodo.org/records/12212258

20

model. Quarterly Journal of the Royal Meteorological Society, 130(604), 3119–3137. 643

https://doi.org/10.1256/qj.03.103 644

Bogenschutz, P. A., Tang, S., Caldwell, P. M., Xie, S., Lin, W., & Chen, Y.-S. (2020). The E3SM version 645

1 single-column model. Geoscientific Model Development, 13(9), 4443–4458. 646

https://doi.org/10.5194/gmd-13-4443-2020 647

Brenowitz, N. D., & Bretherton, C. S. (2018). Prognostic validation of a neural network unified physics 648

parameterization. Geophysical Research Letters, 45(12), 6289–6298. 649

https://doi.org/10.1029/2018gl078510 650

Brenowitz, N. D., & Bretherton, C. S. (2019). Spatially extended tests of a neural network 651

parametrization trained by coarse-graining. Journal of Advances in Modeling Earth Systems, 652

11(8), 2728–2744. https://doi.org/10.1029/2019ms001711 653

Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Lean, 654

H., Lock, A., Manners, J., Mittermaier, M., Morcrette, C., North, R., Petch, J., Short, C., Vosper, 655

S., Walters, D., Webster, S., … Zerroukat, M. (2020). The first Met Office Unified Model–656

JULES Regional Atmosphere and Land configuration, RAL1. Geoscientific Model Development, 657

13(4), 1999–2029. https://doi.org/10.5194/gmd-13-1999-2020 658

Chen, G., Wang, W., Yang, S., Wang, Y., Zhang, F., & Wu, K. (2023). A Neural Network‐Based Scale‐659

Adaptive Cloud‐Fraction Scheme for GCMs. Journal of Advances in Modeling Earth Systems, 660

15(6), e2022MS003415. https://doi.org/10.1029/2022MS003415 661

E3SM Project, D. (2024). Energy Exascale Earth System Model v3.0.0 [Computer software]. [object 662

Object]. https://doi.org/10.11578/E3SM/DC.20240301.3 663

Gerber, R., & Wasserman, H. (2013). High Performance Computing and Storage Requirements for 664

Biological and Environmental Research Target 2017 (LBNL-6256E). Lawrence Berkeley 665

National Lab. (LBNL), Berkeley, CA (United States). https://doi.org/10.2172/1171504 666

21

Gettelman, A., Gagne, D. J., Chen, C.-C., Christensen, M. W., Lebo, Z. J., Morrison, H., & Gantos, G. 667

(2021). Machine Learning the Warm Rain Process. Journal of Advances in Modeling Earth 668

Systems, 13(2), e2020MS002268. https://doi.org/10.1029/2020MS002268 669

Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., & 670

Simpson, I. R. (2019). The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam 671

but a Tool for Model Evaluation and Development. Journal of Advances in Modeling Earth 672

Systems, 11(5), 1381–1401. https://doi.org/10.1029/2018MS001578 673

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., 674

Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., 675

Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. 676

S., … Zhu, Q. (2019). The DOE E3SM Coupled Model Version 1: Overview and Evaluation at 677

Standard Resolution. Journal of Advances in Modeling Earth Systems, 11(7), 2089–2129. 678

https://doi.org/10.1029/2018MS001603 679

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, 680

Q., Maltrud, M. E., Forsyth, R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., 681

Wang, H., Turner, A. K., Singh, B., Richter, J. H., … Bader, D. C. (2022). The DOE E3SM 682

Model Version 2: Overview of the Physical Model and Initial Model Evaluation. Journal of 683

Advances in Modeling Earth Systems, 14(12), e2022MS003156. 684

https://doi.org/10.1029/2022MS003156 685

Han, Y., Zhang, G. J., Huang, X., & Wang, Y. (2020). A Moist Physics Parameterization Based on Deep 686

Learning. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002076. 687

https://doi.org/10.1029/2020MS002076 688

Hartmann, D. L., Blossey, P. N., & Dygert, B. D. (2019). Convection and Climate: What Have We 689

Learned from Simple Models and Simplified Settings? Current Climate Change Reports, 5(3), 690

196–206. https://doi.org/10.1007/s40641-019-00136-9 691

22

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., Folini, D., Ji, D., Klocke, 692

D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M., & Williamson, D. (2017). The Art 693

and Science of Climate Model Tuning. Bulletin of the American Meteorological Society, 98(3), 694

589–602. https://doi.org/10.1175/BAMS-D-15-00135.1 695

Huang, H., Xue, Y., Li, F., & Liu, Y. (2020). Modeling long-term fire impact on ecosystem 696

characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-697

Fire v1.0. Geoscientific Model Development, 13(12), 6029–6050. https://doi.org/10.5194/gmd-13-698

6029-2020 699

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Belochitski, A. A. (2013). Using ensemble of neural 700

networks to learn stochastic convection parameterizations for climate and numerical weather 701

prediction models from data simulated by a cloud resolving model. Advances in Artificial Neural 702

Systems, 2013, 5–5. https://doi.org/10.1155/2013/485913 703

Lee, M.-I., Schubert, S. D., Suarez, M. J., Held, I. M., Lau, N.-C., Ploshay, J. J., Kumar, A., Kim, H.-K., 704

& Schemm, J.-K. E. (2007). An Analysis of the Warm-Season Diurnal Cycle over the Continental 705

United States and Northern Mexico in General Circulation Models. Journal of 706

Hydrometeorology, 8(3), 344–366. https://doi.org/10.1175/JHM581.1 707

O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameterize moist convection: 708

Potential for modeling of climate, climate change, and extreme events. Journal of Advances in 709

Modeling Earth Systems, 10(10), 2548–2563. https://doi.org/10.1029/2018ms001351 710

Randall, D. A. (2013). Beyond deadlock. Geophysical Research Letters, 40(22), 5970–5976. 711

https://doi.org/10.1002/2013GL057998 712

Randall, D., Khairoutdinov, M., Arakawa, A., & Grabowski, W. (2003). Breaking the Cloud 713

Parameterization Deadlock. Bulletin of the American Meteorological Society, 84(11), 1547–1564. 714

https://doi.org/10.1175/BAMS-84-11-1547 715

23

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate 716

models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689. 717

https://doi.org/10.1073/pnas.1810286115 718

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., 719

Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., 720

Schulthess, T. C., Sprenger, M., Ubbiali, S., & Wernli, H. (2020). Kilometer-Scale Climate 721

Models: Prospects and Challenges. Bulletin of the American Meteorological Society, 101(5), 722

E567–E587. https://doi.org/10.1175/BAMS-D-18-0167.1 723

Swann, H. (2001). Evaluation of the mass-flux approach to parametrizing deep convection. Quarterly 724

Journal of the Royal Meteorological Society, 127(574), 1239–1260. 725

https://doi.org/10.1002/qj.49712757406 726

Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, 727

N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., 728

Harris, C., Heming, J., Klingaman, N., … Xavier, P. (2017). The Met Office Unified Model 729

Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model 730

Development, 10(4), 1487–1520. https://doi.org/10.5194/gmd-10-1487-2017 731

Wang, X., Han, Y., Xue, W., Yang, G., & Zhang, G. J. (2022). Stable climate simulations using a realistic 732

general circulation model with neural network parameterizations for atmospheric moist physics 733

and radiation processes. Geoscientific Model Development, 15(9), 3923–3940. 734

https://doi.org/10.5194/gmd-15-3923-2022 735

Webster, S., Uddstrom, M., Oliver, H., & Vosper, S. (2008). A high-resolution modelling case study of a 736

severe weather event over New Zealand. Atmospheric Science Letters, 9(3), 119–128. 737

https://doi.org/10.1002/asl.172 738

Xu, K.-M., & Randall, D. A. (1996). A Semiempirical Cloudiness Parameterization for Use in Climate 739

Models. Journal of the Atmospheric Sciences, 53(21), 3084–3102. https://doi.org/10.1175/1520-740

0469(1996)053<3084:ASCPFU>2.0.CO;2 741

24

Zhang, T., Lin, W., Vogelmann, A. M., Zhang, M., Xie, S., Qin, Y., & Golaz, J.-C. (2021). Improving 742

Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine 743

Learning. Journal of Advances in Modeling Earth Systems, 13(5), e2020MS002365. 744

https://doi.org/10.1029/2020MS002365 745

Zhang, T., Morcrette, C., Zhang, M., Lin, W., Xie, S., Liu, Y., Weverberg, K. V., & Rodrigues, J. (2024). 746

tzhang-ccs/ML4ESM: ML4ESM_v1 (Version v1) [Computer software]. [object Object]. 747

https://doi.org/10.5281/ZENODO.11005103 748

 749

