
Summary

My understanding is that this paper's main purpose is to introduce and describe a general
approach for coupling Python-based software components to primarily Fortran-based Earth
System Models. This is a problem that has become of increasing interest in recent years,
with the advent of machine-learning based parameterizations, which are often most
convenient to write, train, and evaluate with various different Python frameworks. As the
authors note, multiple strategies have been employed for coupling these ML models to
ESMs in previous studies. The main contribution of the authors here is to describe an
approach which involves writing Cythonized Python functions to carry out initialization and
execution of an ML model, C functions which call those Cythonized Python functions as a
bridge, and ultimately Fortran functions which bind to those C functions, which can be called
from anywhere in the Fortran model. They document the approach some, and then they
describe using this framework in real-world scientific applications involving coupling ML
parameterizations for a convective trigger function or fire burned area to E3SM, as well as
some benchmarking test cases.

I have to admit that I found the scope of this paper to be somewhat sprawling.
Documenting this approach for coupling ML models to Fortran models seems valuable, but I
think more space and detail could have been devoted to that, with less space devoted to the
details of the scientific applications, which the authors note will be described elsewhere. In
terms of benchmarks, the direct comparison to the CFFI coupling approach seemed quite
relevant, but other aspects like the impact of ML model type and complexity on performance
seemed somewhat orthogonal to the choice of coupling method. For example, it does not
seem surprising that more complex ML models will be more computationally expensive,
regardless of the coupling approach. Maybe there is something I am missing about the
motivation that the authors could describe more clearly, but as it stands now, I would like to
see improvements to the focus of the manuscript before condsidering recommending
publishing.

Reply: We thank the reviewer for their time in reviewing our paper and useful suggestions,
which help to significantly improve our paper! In summary, we enhance the description of
interface usage, compare it with existing packages like CFFI to highlight improvements,
conduct a systematic evaluation of overheads for ANN, CNN, and ResNet, as these
methods are commonly applied in ML parameterizations. Additionally, we reduce the
scientific use case descriptions to focus only on inputs, outputs, and ML algorithms based
on your suggestion.

General comments

1. I found Table 1 to be somewhat vague. I feel like a simplified toy code example
would go a long way toward illustrating what is required and how everything fits
together. To me, for this paper, this is more important than the scientific details of

the case studies, which the authors note will be described more fully in forthcoming
papers. There is value in noting that this coupling approach has been successfully
used in each of these real-world applications, but I do not think much more needs to
be said beyond the general idea of each project, what kind of ML model is used in
each, and maybe what the inputs and outputs are. In other words, Figures 4-7,
illustrating the structure of these models and skill when they are coupled online, and
much of the paragraphs that go along with them, feel outside the scope of this paper.

Reply: We include toy codes to demonstrate how Fortran calls the Python ML
function, passing parameters through memory references and returning results to
Fortran, as shown in the following figure. Additionally, we provide a description of
how the interface is coupled with the real model.

“When coupling the Python ML module with the real model using the interface,
additional steps should be considered: 1. The ML module should remain active
throughout the model simulations, without any Python finalization calls, ensuring it is
continuously available. 2. The Python module should load the trained ML model
and any required global data only once, rather than at each simulation step. This
one-time initialization process improves efficiency and prevents unnecessary
repetition. On the Fortran ESM side, the init_ml() function is called within the
atm_init_mct module to load the ML model and global data. Then, similar to the toy
code, we call the wrapper function, pass input variables to Python for ML predictions,
and return the results to the Fortran side. 3. When compiling the complex system,
which includes Python, C, Cython, and Fortran code, the Python path should be
specified in the CFLAGS and LDFLAGS. It is important to note that without the
position-independent compiling flag (-fPIC) compiling flag, the hybrid system will only
work on a single node and may cause segmentation faults on multiple nodes.
Including it can resolve this issue, allowing multi-node compatibility.”

The Table 1 has been removed. The description of the two scientific use cases has
been condensed, only providing a brief background, input, output, machine learning
algorithm, and key results. Two figures related to the background of the use cases
have been removed, only leaving the results.

Figure R1. Toy code illustrating the Fortran-Python interface.

2. What is the intended takeaway of the performance experiments with different types
of ML models in Section 3.3? Is this not something that could be learned by profiling
the computational performance of the ML models in isolation? There maybe is some
value in documenting the relative cost of a typical ML model to a typical climate
model simulation, but to some extent one can already get the sense for this through
Figure 8(a) or previous ML parameterization papers. In practice the tradeoff will
always need to be assessed on a case-by-case basis regarding whether the
improvement in hybrid model skill justifies the additional computational cost of the
ML model (i.e. this kind of discussion seems better suited for an application-specific
paper).

Reply: Sorry for the confusion. Each bar in Figure 10 represents the performance
for the hybrid system that couples the ML methods into the ESM, not just the ML
module alone. We have clarified this in the revised text. We selected these three ML
algorithms because they are commonly used in previous ML parameterization
approaches, (Brenowitz & Bretherton, 2019; Han et al., 2020; Wang et al., 2022).
Systematically evaluating the hybrid system with these ML methods using our
interface can help identify bottlenecks and improve the system computational
performance. Specially, in term of the memory overhead, when we use 128 MPI
processes per node, it could bring the total memory requirement to approximately
460 GB per node. If the available hardware memory is less than this, the process
layout must be adjusted accordingly. In terms of computational performance, we
compare our result with the preivous work. In our work, the performance decrease is
not substantial. The simple ANN model reduces performance by only about 10%

compared to the CNTL run, while even the more complex ResNet model results in a
35% decrease. In contrast, Wang et al. (2022) reported a 100% overhead in their
interface, which transfers parameters via files.

In addition, we develop a performance model to estimate computational performance
for the hybrid model using different ML model sizes and complexities. This
performance model, based on linear regression, predicts the computational ratio
relative to the CNTL run by taking the number of ML parameters as input, shown in
Figure 9b. It provides a simple yet effective way to capture this relationship and
serves as a valuable tool for performance prediction when incorporating more
complicated ML models. We have included these texts into the revised version.

Figure R2. Comparison of CNTL and the hybrid model using various ML algorithms in
terms of memory and computation. CNTL is the default run without ML parameterizations.
In (b), the left y-axis represents the actual number of simulated years per day, while the
right y-axis shows the relative performance compared to the CNTL run (orange line). The
gray line illustrates the regression between the number of ML parameters (x) and the
relative performance of the hybrid system (y).

Specific comments

Lines 79-84: I am not sure I follow the discussion in these lines. As I understand it, the key
advance of Kochkov et al. (2023) is that their entire model—both the physics-based
dynamics and ML-based physics—is differentiable, enabling feedbacks between the two to
be felt and accounted for in training. This is more significant than merely enabling greater
flexibility in the ML model one can couple to a Fortran-based GCM. So long as the GCM is
still written in legacy Fortran I do not think there is anything that can be done to easily
enable differentiation through the entire hybrid model. In other words, you will still need to

train the ML model in a purely "offline" sense. A software interface between the ML model
and the GCM—however hard-coded or flexible it is—merely enables online testing, which is
no doubt important, but not the same as enabling coupling during training.

Reply: Thanks for the comment. We agree with your point and remove this sentence.

Lines 115-117: I think it is fair to say that this approach offers access to calling any Python
code from Fortran, of which the ML frameworks listed are obviously just a subset. The
phrasing of this line makes it sound as though there is some flexibility, but some
frameworks might not be supported.

Reply: Thanks for the suggestion. We have revised the text by “This integration offers
access to any Python codes from Fortran, including a diverse range of ML frameworks,
such as PyTorch, TensorFlow, and Scikit-learn, which can effectively be utilized for
parameterizing intricate atmospheric and other climate system processes.”

Line 131: "[...] without disrupting the Fortran infrastructure." This feels maybe a bit
overstated—beyond calling the ML code itself within Fortran—which is maybe self-
evident—the build system of the now hybrid Fortran/Python model needs to be updated to
support these changes, which is not always trivial (e.g. it might be a little easier to build in a
bespoke Fortran implementation of an ML model even though that is obviously much less
flexible).

Reply: Your concern is indeed the focus of our work. We aim to minimize the extra effort
needed to connect Fortran and Python within the complex GCM software system. Based on
your suggestion, we have added example codes to demonstrate the interface and describe
how it can be applied to a real GCM system. This allows users to solely focus on the
physics and ML methods, without worrying about the interface details.

Addressing specific scientific questions often requires exploring various ML methods, as it is
unlikely that a single ML model will suit all needs. Additionally, a well-performing offline ML
method does not guarantee stable performance in online simulations. Frequent adjustments
and improvements to the ML method are necessary. Therefore, it is essential to have a tool
to support this flexibility.

To avoid overstatement, 'without' has been changed to 'with only minimal'.

Lines 338-339: if it is to be included here, I think it should be noted that XGBoost is a totally
different type of ML model than the CNNs implemented in PyTorch or TensorFlow, so it is

not really an apples-to-apples comparison for computational performance. This is sort of
alluded to in Line 350, but I think it could be made more explicit.

Reply: Thanks for the suggestion. We have revised the text by “It should be noted that
XGBoost, a boosting tree-based model, is a completely different type of ML model
compared to the CNNs, which are the type of deep neural network.”

Lines 334-336: as I am sure you are aware, for pure Python, this is true, but most packages
designed for numerical computation wrap C/C++ or Fortran. This is something that is also
somewhat orthogonal to the framework one uses for coupling—if the Python code is a
bottleneck, it will be a bottleneck no matter how it is coupled. To truly test the degree to
which implementation language was a bottleneck one would need a baseline where the
identical ML model was evaluated directly in Fortran (like in Rasp et al., 2018).

Reply: We agree with your points. If the Python code is the bottleneck, some overhead
could be inevitable. However, we could minimize the overhead. In this work, we provide the
flexible interface and reduce the overhead by memory reference. In the future work, we will
effectively utilize GPUs and leverage specialized Pytorch compilers to reduce the overhead.

Lines 358-359: do you know if is this a deep fundamental issue with TensorFlow (i.e. hard
to fix)?

Reply: We tested several methods to manually free TensorFlow memory after calling the
predict function, including tf.keras.backend.clear_session() and gc.collect(), but they didn’t
resolve the issue. According to a discussion on TensorFlow’s GitHub page, memory usage
persists until the Python process is terminated
(https://github.com/tensorflow/tensorflow/issues/1727). Since the Python ML module needs
to remain active for the hybrid model, memory cannot be freed and will continue to
accumulate over time.

Lines 373-383: for provenance it could be useful to see the code used to perform these
tests. As far as I can tell it is not included in the Zenodo archive.

Reply: Thanks for the suggestion. We have included the code at https://github.com/tzhang-
ccs/ML4ESM/tree/main/cffi2cython.

Figure 11: it is sort of surprising that the single column model is slower than the ne4
configuration. Is there not a way to get it to run faster than ne4?

Reply: This is because NE4 uses 128 cores for parallel computation, whereas SCM only
uses a single core.

Data Availability Statement: I understand the long-term value of storing the code in a
Zenodo archive, but could you also include a link to the code on GitHub? This makes it
easier for people to quickly read and review, rather than downloading and unpacking the
code from Zenodo.

Reply: Thanks for the suggestion. The codes are available at https://github.com/tzhang-
ccs/ML4ESM.

Technical corrections

Line 217: "applied it two" -> "applied it in two"

Reply: revised

Line 218: "CAPE-based trigger function in deep convection" -> "CAPE-based trigger
function in a deep convection"

Reply: revised

Line 219: "machine-learnt" -> "machine-learned"

Reply: revised

Line 404: "A same" -> "The same"

Reply: revised

Line 427: "Compassion CNTL" -> "Comparison of CNTL"

Reply: revised

References

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Klöwer, M.,
Lottes, J., Rasp, S., Düben, P., Hatfield, S., Battaglia, P., Sanchez-Gonzalez, A., Willson,
M., Brenner, M. P., & Hoyer, S. (2024). Neural general circulation models for weather and
climate. Nature, 632(8027), 1060–1066. https://doi.org/10.1038/s41586-024-07744-y.

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid
processes in climate models. Proceedings of the National Academy of Sciences, 115(39),
9684–9689. https://doi.org/10.1073/pnas.1810286115.

https://github.com/tzhang-ccs/ML4ESM
https://github.com/tzhang-ccs/ML4ESM

