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Abstract. PM2.5, a complex mixture with diverse chemical components, exerts significant impacts on the environment, human 13 

health, and climate change. However, precisely describing spatiotemporal variations of PM2.5 chemical components remains a 14 

difficulty. In our earlier work, we developed an aerosol extinction coefficient data assimilation (DA) system (NAQPMS-PDAF 15 

v1.0) that is suboptimal for chemical components. This paper introduces a novel hybrid nonlinear chemical DA system 16 

(NAQPMS-PDAF v2.0) to accurately interpret key chemical components (SO4
2-, NO3

-, NH4
+, OC, and EC). NAQPMS-PDAF 17 

v2.0 improves upon v1.0 by effectively handing and balancing stability and nonlinearity in chemical DA, which is achieved 18 

by incorporating the non-Gaussian-distribution ensemble perturbation and hybrid Localized Kalman-Nonlinear Ensemble 19 

Transform Filter with an adaptive forgetting factor for the first time. The dependence tests demonstrate that NAQPMS-PDAF 20 

v2.0 provides excellent DA results with a minimal ensemble size of 10, surpassing previous reports and v1.0. A one-month 21 

DA experiment shows that the analysis field generated by NAQPMS-PDAF v2.0 is in good agreement with observations, 22 

especially reducing the underestimation of NH4
+ and NO3

- and the overestimation of SO4
2-, OC, and EC. In particular, the 23 

CORR values for NO3
-, OC, and EC are above 0.96, and R2 values are above 0.93. NAQPMS-PDAF v2.0 also demonstrates 24 

superior spatiotemporal interpretation, with most DA sites showing improvements of over 50%-200% in CORR and over 50%-25 

90% in RMSE for the five chemical components. Compared to the poor performance in global reanalysis dataset (CORR: 26 

0.42-0.55, RMSE: 4.51-12.27 µg/m3) and NAQPMS-PDAF v1.0 (CORR: 0.35-0.98, RMSE: 2.46-15.50 µg/m3), NAQPMS-27 

PDAF v2.0 has the highest CORR of 0.86-0.99 and the lowest RMSE of 0.14-3.18 µg/m3. The uncertainties in ensemble DA 28 

are also examined, further highlighting the potential of NAQPMS-PDAF v2.0 for advancing aerosol chemical component 29 

studies. 30 
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1 Introduction  31 

PM2.5 is a complex mixture of various chemical fractions, mainly including sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), 32 

organic carbon (OC), and elemental carbon (EC), which diversely influences the atmospheric environment (Khanna et al., 33 

2018), human health (Bell et al., 2007; Schlesinger, 2007; Li et al., 2022a; Alves et al., 2023), and climate change (Schult et 34 

al., 1997; Park et al., 2014; Wilcox et al., 2016). However, current detection technologies, such as field observation with in-35 

situ sampling and chemical analysis (Zhang et al., 2015; Ming et al., 2017), remote-sensing inversion (Nishizawa et al., 2008; 36 

Nishizawa et al., 2011; Nishizawa et al., 2017), and machine learning (Lin et al., 2022; Su Lee et al., 2023) are insufficient in 37 

interpreting PM2.5 chemical components due to the spatiotemporal discontinuity and limited chemical species. Although 38 

atmospheric chemistry transport models (CTMs) (Wang et al., 2014; Wang et al., 2015; Jia et al., 2017; Yang et al., 2019; Li 39 

et al., 2020; Lv et al., 2020) are commonly used to characterize spatiotemporal distribution of multiple chemical species, CTMs 40 

are associated with uncertainties in initial-boundary conditions, physiochemical mechanisms, emission inventories, and 41 

meteorological fields (Sax and Isakov, 2003; Mallet and Sportisse, 2006; Rodriguez et al., 2007; Chang et al., 2015; Miao et 42 

al., 2020; Xie et al., 2022), resulting in biases relative to real situation. 43 

 44 

Data assimilation (DA) offers a solution to integrate the multi-source observations, CTMs, and their uncertainties effectively 45 

to enhance the simulation and forecasting capabilities of CTMs. Variational methods (3D-Var/4D-Var) (Talagrand and Courtier, 46 

1987), Ensemble Kalman Filter (EnKF) (Evensen, 1994; Evensen, 2003), EnKF-variants (EnKFs) (Bishop et al., 2001; Tippett 47 

et al., 2003; Hunt et al., 2007; Nerger et al., 2012), and hybrid EnKF-Var methods (Hamill and Snyder, 2000; Schwartz et al., 48 

2014) are most widely applied in DA. However, variational methods have a flow-independent Background Error Covariance 49 

(BEC) with the assumption of isotropic, static, and uniform characteristics, and they need to develop the tangent linear adjoint 50 

model, which is difficult to practice for complex models. Although EnKFs and hybrid EnKF-Var methods have a flow-51 

dependent BEC, they are sensitive to inadequate ensemble sampling and have high computational costs. Importantly, these 52 

methods cannot address model nonlinearity and non-Gaussian error distribution, yielding suboptimal results for DA in highly 53 

nonlinear CTMs. 54 

 55 

Currently, nonlinear filters, such as Particle Filter (PF) (Gordon et al., 1993) and Nonlinear Ensemble Transform Filter (NETF) 56 

(Tödter and Ahrens, 2015), have been proposed to approximate the complete posterior probability distribution of model states 57 

and provide a better representation of non-Gaussian information based on Monte Carlo random sampling and Bayesian theory. 58 

However, PF is unstable and susceptible to filter degeneration compared to EnKFs. In a recent study, Nerger (2022) proposed 59 

the hybrid Kalman-Nonlinear Ensemble Transform Filter (KNETF) to achieve excellent DA performance in the Lorenz-63 and 60 

Lorenz-96 model with a smaller ensemble size, which combines the stability of EnKFs and the nonlinearity of NETF (Nerger, 61 
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2022). However, to the author’s knowledge, this algorithm has not been applied to the chemical DA of CTMs. 62 

 63 

Studies on chemical DA involve the assimilation of aerosol optical properties, such as aerosol optical depth (AOD) and 64 

extinction coefficient (EXT), and the particulate matters (PMs), such as the mass concentrations of PM2.5 and PM10. The 65 

commonly AOD observations for DA include OMI-AOD (Ali et al., 2013), MODIS-AOD (Zhang et al., 2008; Huneeus et al., 66 

2012; Huneeus et al., 2013; Rubin and Collins, 2014; Lynch et al., 2016; Werner et al., 2019; Kumar et al., 2020), AERONET-67 

AOD (Schutgens et al., 2010; Li et al., 2016), Sun-Sky Photometer-Multiband AOD (Chang et al., 2021), GOCI-AOD (Saide 68 

et al., 2014; Luo et al., 2020; Kim et al., 2021), and Fengyun/Himawari8-AOD (Bao et al., 2019; Jin et al., 2019; Xia et al., 69 

2019; Xia et al., 2020). These studies indicated that AOD observations can enhance the accuracy of aerosol simulation and 70 

forecast. Compared to AOD, EXT DA effectively improves the interpretation of aerosol vertical distribution (Zhang et al., 71 

2014; Cheng et al., 2019; Wang et al., 2022). Additionally, the simultaneous DA of aerosol optical properties and PMs is widely 72 

applied in aerosol studies (Tang et al., 2015; Chai et al., 2017). According to our literature review (Yang et al., 2023), there is 73 

currently no DA study on aerosol chemical components due to the limited DA influence of PMs and AOD on chemical 74 

compositions (Chang et al., 2021) and the limited chemical observations with an extensive spatial range. Moreover, the aerosol 75 

chemical components exhibit nonlinearity and a non-Gaussian distribution (Ha, 2022), while current main-stream algorithms, 76 

such as variational methods or EnKFs, are suboptimal for chemical component DA. 77 

 78 

In our previous work, we developed an aerosol vertical DA system (NAQPMS-PDAF v1.0) based on EnKFs to improve the 79 

simulation of the extinction coefficient vertical profile (Wang et al., 2022). In this study, we present a novel hybrid nonlinear 80 

DA system (NAQPMS-PDAF v2.0) towards various PM2.5 chemical components through online integration of Parallel Data 81 

Assimilation Framework (PDAF, version 2.1, released on February 21st, 2023), Observation Module Infrastructure (OMI) and 82 

Nested Air Quality Prediction Model System (NAQPMS). We collected 1-month hourly surface observations of five PM2.5 83 

chemical components (NH4
+, SO4

2-, NO3
-, OC, and EC) over Northern China and surrounding areas. We utilized the hybrid 84 

Localized Kalman-Nonlinear Ensemble Transform Filter (LKNETF) to generate a high-resolution and high-accuracy 85 

reanalysis dataset of PM2.5 chemical components for the first time. Notably, the ensemble members in NAQPMS-PDAF v2.0 86 

are generated by perturbing emission species based on their uncertainties and non-Gaussian distribution assumption. Section 87 

2 briefly introduces NAQPMS and PDAF v2.1 with OMI, respectively, and details the development of NAQPMS-PDAF v2.0, 88 

including system structure, configuration, ensemble generation, and LKNETF algorithm. The data used in this study and 89 

experimental settings are also described in Section 2. Section 3 presents the DA results, including evaluating dependencies, 90 

performance, and external comparisons. Besides, Section 3 discusses the ensemble DA uncertainty. Section 4 summarizes the 91 

conclusions and outlook. 92 
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2 Method and data 93 

2.1 NAQPMS 94 

The Nested Air Quality Prediction Modeling System (NAQPMS), developed by the Institute of Atmospheric Physics 95 

(IAP), Chinese Academy of Sciences (CAS), is used to provide background fields of key aerosol chemical components in this 96 

study. NAQPMS is capable of characterizing the three-dimensional spatiotemporal distribution of various atmospheric 97 

compositions at global and regional scales through multiple physicochemical processes (shown in Table S1) and has been 98 

widely used in atmospheric pollution and chemistry research, such as O3 pollution, haze episodes (Wang et al., 2014; Du et al., 99 

2021), regional transport (Wang et al., 2017; Wang et al., 2019), source identification (Li et al., 2022b), air quality simulation 100 

at global scale (Ye et al., 2021) and at urban-street scale (Wang et al., 2023), and acid deposition (Ge et al., 2014).  101 

2.2 PDAF v2.1 with OMI 102 

The Parallel Data Assimilation Framework (PDAF, https://pdaf.awi.de/trac/wiki) is an open-source and high-expandability 103 

software developed by the Alfred Wegener Institute (AWI) in Germany to integrate observations, numerical models, and 104 

assimilation systems for DA tasks, widely applied in meteorology, oceanography, land surface and atmospheric chemistry 105 

(Kurtz et al., 2016; Nerger et al., 2020; Mingari et al., 2022; Strebel et al., 2022; Wang et al., 2022; Yu et al., 2022). The initial 106 

version of PDAF (PDAF v1.0) was released in 2004. It has undergone continuous improvements and updates, with major 107 

updates including the introduction of Ensemble Transform Kalman Filter (ETKF) and its localized variant (LETKF) in version 108 

1.6, the implementation of PDAF-OMI (Observation Module Infrastructure) in version 1.16, the integration of 3D-Var methods 109 

in version 2.0, and the incorporation of the hybrid KNETF and its localized variant (LKNETF) for the first time in version 2.1, 110 

which was released in 2023 to handle the complex DA situations, such as the nonlinearity of system and non-Gaussian error 111 

distribution of model state. Notably, the version of PDAF coupled in NAQPMS-PDAF v1.0 is PDAF v1.15 (released in 2019), 112 

implying that NAQPMS-PDAF v1.0 has more limited applicability and functionality. In this work, the PDAF v2.1 is coupled 113 

in NAQPMS-PDAF v2.0. 114 

 115 

PDAF has two modes, namely offline and online mode. For the offline mode, PDAF and the model perform separately without 116 

coupling, which is easy to write code. For the online mode, PDAF is coupled with the model, and model calculation and data 117 

assimilation perform continuously. Compared to the offline mode, the online coupling has several advantages. Firstly, the 118 

initialization process of PDAF and the model only needs to be executed once instead of twice independently. Secondly, the 119 

model integration result can be directly passed to PDAF for data assimilation. Additionally, the assimilation result of PDAF 120 

can be directly passed to the model for the next model integration. This eliminates the need for intermediate steps and improves 121 

efficiency. Thirdly, the online mode is controlled by a main program, which allows for efficient use of several processors in 122 
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the high-performance computing cluster. Conversely, in the offline mode, the PDAF and the model are managed by distinct 123 

programs, often with a reduced number of processors available for each program. Therefore, the online-mode PDAF is used 124 

in this study. 125 

 126 

PDAF-OMI, an extension of PDAF, provides I/O interfaces for multi-type observations, simplifying user observation handling 127 

by offering generic PDAF-OMI core routines and independent user-supplied routines for each observational type. The user-128 

supplied routines, namely init_dim_obs/init_dim_obs_l, obs_op, and localize_covar, are responsible for reading and writing 129 

multi-type observations, applying corresponding observation operators, and performing covariance localization, respectively. 130 

The modules for all observation types are integrated into the callback_obs_pdafomi, allowing free combinations between 131 

different observation types without interference and facilitating the collaborative DA for various aerosol chemical components. 132 

PDAF-OMI was not applied in NAQPMS-PDAF v1.0. Consequently, NAQPMS-PDAF v1.0 cannot switch between different 133 

observational type combinations, and users need to define complete routines for each observation type for the DA process, 134 

resulting in more tedious code writing and higher computational costs in NAQPMS-PDAF v1.0. 135 

2.3 NAQPMS-PDAF v2.0  136 

2.3.1 Structure of NAQPMS-PDAF v2.0 137 

Figure 1 illustrates the structure and main workflow of NAQPMS-PDAF v2.0. The observational part involves multi-type 138 

observations and PDAF-OMI. PDAF-OMI enables the simultaneous access and scheduling of multi-type and multi-source 139 

data through observational indices, which allows for flexible combination. The ensemble forecast/background fields are 140 

generated by perturbing emission species (see Sect. 2.3.3) and NAQPMS calculations (the green part in Fig. 1). Then chemical 141 

DA is performed by a novel hybrid localized nonlinear DA algorithm (LKNETF, see Sect. 2.3.4) with an adaptive hybrid 142 

weight and an adaptive forgetting factor to generate analysis/initial fields for the next realization. 143 
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 144 

Figure 1: The structure of NAQPMS-PDAF v2.0 145 

NAQPMS-PDAF v2.0 implements an online coupling between NAQPMS and PDAF v2.1 with OMI, utilizing a level-2 146 

parallel computational framework. The online coupling ensures the continuous operation of model forecasts and assimilation 147 

analysis at each time step, achieved by directly integrating PDAF routines into the prototype code of NAQPMS (In Fig. 1 right 148 

part, the blue represents NAQPMS main routines, while the yellow represents PDAF main routines). The level-2 parallel 149 

computational framework, which utilizes the Message Passing Interface standard (MPI), facilitates concurrent processing and 150 

data exchange among multiple ensemble members and parallel computation among model state matrixes within each ensemble 151 

member, enhancing the efficiency of ensemble analysis and numerical model computations. The description of level-2 parallel 152 

implementation was detailed in our previous work (Wang et al. 2022). The workflow of NAQPMS-PDAF v2.0 is outlined as 153 

follows: 154 

Step 1. init_system module initializes NAQPMS, such as defining all model state variables, allocating numerical matrixes, 155 

configuring parameters, I/O of meteorological fields, and emission input. 156 

Step 2. init_parallel module initializes MPI (MPI_COMM_WORLD) and model communicator (MPI_COMM_MODEL), 157 

their number of processes, and the rank of a process, followed by init_parallel_pdaf, which initializes MPI communicators for 158 

the model tasks, filter tasks and the coupling between model and filter tasks. 159 

Step 3. initialize module initializes the target field (such as PM2.5 chemical components), such as their spatiotemporal 160 

dimensions (longitude, latitude, and time steps) and variable dimensions. 161 

Step 4. init_pdaf module initializes PDAF variables, such as the local state dimension, global state dimension, and settings for 162 

analysis steps. 163 
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Step 5. Perform the time loop of forecast and analysis. The convert_field module is employed to match the matrix storage rule 164 

of the target field between NAQPMS and PDAF to ensure compatibility. The field2var module collects the analysis field/initial 165 

field and establishes a relationship between the initial field/analysis field and sub-variables in NAQPMS. Subsequently, the 166 

analysis field values are allocated to the corresponding NAQPMS sub-variables, and then the NAQPMS_processes module 167 

performs the forecast. After that, the var2field module, the inverse of the field2var module, assigns the NAQPMS sub-variables 168 

to the forecast field/background field. Finally, the assimilate_pdaf module assimilates the target field with observations to 169 

generate an analysis field for the next iteration. 170 

Step 6. post-processing is responsible for finalizing NAPQMS-PDAF, data analysis, and DA evaluation. 171 

2.3.2 Configures  172 

The meteorological field for NAQPMS is provided by the Weather Research and Forecasting model version 4.0 (WRFV4.0, 173 

https://www.mmm.ucar.edu/models/wrf). The initial-boundary conditions for WRF are obtained from NCEP GDAS Final 174 

Analysis (https://rda.ucar.edu/datasets/ds083.3/), with a horizontal resolution of 0.25°×0.25° and the temporal resolution of 6 175 

hours, produced by the Global Data Assimilation System (GDAS). The land use data for WRF was updated by USGS’s 176 

MCD12Q1 v006 in 2019 (https://lpdaac.usgs.gov/products/mcd12q1v006/) with 20 categories. Three nested model domains 177 

are conducted with the horizontal resolutions of 45 km in the East Asia region (domain1), 15 km in most areas of China except 178 

for the western area (domain2), and 5 km in the Northern China region (domain3, target research region). WRF and NAQPMS 179 

have 40 vertical layers with 27 layers within 2 km. The parameterization schemes for physical processes in WRF are shown 180 

in Table S2. The boundary condition input for NAQPMS is provided by the global chemistry transport Model for OZone And 181 

Related chemical Tracers version 2.4 (MOZART V2.4) (Horowitz et al., 2003). The anthropogenic emissions for NAQPMS 182 

are from Tsinghua University’s 2016 Multi-resolution Emissions Inventory for China (MEIC, http://www.meicmodel.org/) 183 

with a spatial resolution of 0.25°×0.25°, including residential sources, transportation sources, agricultural sources, industrial 184 

sources, and power plant sources. The computational platform is the high-performance supercomputer subsystem cluster with 185 

320 computation nodes, a total of 12,800 processors, and about 153 TB memory at the Big Data Cloud Service Infrastructure 186 

Platform (BDCSIP), which meets the demand for high-performance parallel computing of NAQPMS-PDAF v2.0.   187 

 188 

The model state variables include NH4
+, SO4

2-, NO3
-, OC, EC, Na+, Brown carbon, soil PM2.5, soil PM10, sea salt, fine dust, 189 

coarse dust, SO2, NO2 and RH. As shown in Fig. 2, the model state has a 4-dimensional (4-D) structure, with longitudinal 190 

dimension (ix, 300 grids), latitudinal dimension (iy, 249 grids), variable dimension (ivar, 15), and vertical dimension (iz, 40 191 

layers) in that order. The 4-D model state with 15 variables is converted to a 2-D state matrix in PDAF, the number of grids in 192 

the horizontal axis direction is ix, and the number of grids in the vertical axis direction is iy*ivar*iz. Notably, the coordinate 193 

index of the 2-D state matrix contains 3-D information for each variable to implement the horizontal and vertical domain 194 
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localization separately, because the horizontal and vertical resolutions are not uniform. This structure has two advantages. First, 195 

the parallel cutting of the horizontal axis enables the local domain to retain the full dimensional information (ix_p*iy*ivar*iz, 196 

where ix_p is the longitudinal dimension of the local domain). Secondly, the localization in local domain permits the analysis 197 

only executes within a small domain (ix_p*iy) when the length of horizontal localization radius (Rs) is smaller than iy, which 198 

effectively reduces the influence of spurious correlations between different state variables. In this study, we set the horizontal 199 

and vertical domain localization radius to 200 km (40 grids) and 1 layer. Besides, we further implemented the observation 200 

localization to consider the influence of distance between analysis grid and observational grid (see Sect. 2.3.4). To minimize 201 

computational complexity, the observation errors were assumed to be spatially isotropic, with 0.40 µg/m3, 1.00 µg/m3, 0.50 202 

µg/m3, 3.00 µg/m3, and 0.50 µg/m3 for NH4
+, SO4

2-, NO3
-, OC and EC, respectively. 203 

 204 

Figure 2: The structure of state variables in NAQPMS-PDAF v2.0. 205 

2.3.3 Generation of ensemble members 206 

In ensemble DA, ensemble members interpret the uncertainty of the model or system, characterized by BEC, which 207 

significantly impacts the DA performance (Dai et al., 2014). For CTMs, emission input directly influences the chemical 208 

calculation and substantially contributes to the uncertainty. Perturbing emission input can effectively represent the uncertainty 209 

in aerosol emissions and enhance the consistency of ensemble error spread, thereby improving aerosol DA (Huang et al., 2023). 210 

CTMs are nonlinear, and model state errors are non-Gaussian distributions. To obtain non-Gaussian error distributions, we 211 

followed Kong et al. (2021)’s method to assume that the emission errors are spatially correlated by an isotropic correlation 212 

model with the decorrelation length of 150 km and generate perturbation coefficient matrixes with the same Gaussian 213 

distribution as the emission species, which are subsequently transformed into non-Gaussian distribution matrixes through non-214 

Gaussian process generation v1.2 (https://github.com/ECheynet/Gaussian_to_nonGaussian/). 215 
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 216 

The target PM2.5 chemical components are NH4
+, SO4

2-, NO3
-, OC, and EC, and the perturbed emission species correspondingly 217 

include SO2, NOx, VOCs, NH3, CO, PM10, PM2.5, EC, and OC, with the corresponding uncertainties (𝛿) listed in Table 1. As 218 

shown in Eq. (1), the original emission input matrix (Ep) is multiplied by the corresponding perturbation coefficient matrix 219 

(θi ) to generate the perturbed emission input matrix (Ei ) for each emission species. The calculation of the perturbation 220 

coefficient matrix (θi) is followed by Eq. (2)-(3). Firstly, N two-dimensional pseudorandom perturbation fields (Pi) are created 221 

using Evensen’s method (Evensen, 1994). The uncertainties (𝛿 ) of the emission species are incorporated into the two-222 

dimensional pseudorandom perturbation fields (Pi ) to obtain the final perturbation coefficient matrixes (θi ). Finally, the 223 

Gaussian-distribution perturbation coefficient matrixes (θi ) were transformed into non-Gaussian distribution coefficient 224 

matrixes with a given target skewness (set to 1) and kurtosis (set to 6) by non-Gaussian process generation v1.2, which employs 225 

the Moment Based Hermite Transformation Model and a cubic transformation. 226 

Table 1: The uncertainties of emission species in NAQPMS-PDAF v2.0 227 

Species SO2 NOx VOCs NH3 CO PM10 PM2.5 EC OC 

Uncertainty 𝛿 2.00 0.31 0.68 0.53 0.70 1.32 1.30 2.08 2.58 

Ei = Ep × θi, i = 1,2, … , N , (1) 228 

ln θoi
= (

(Pi−
1

N
×∑ Pi

N
i=1 )

√
1

N
×∑ (Pi−

1

N
×∑ Pi

N
i=1 )2N

i=1

−
1

2
× ln(1 + δ2)) × √ln(1 + δ2) , (2) 229 

θi =
(θoi−

1

N
×∑ θoi

N
i=1 )

√1

N
×∑ (θoi−

1

N
×∑ θoi

N
i=1 )

2
N
i=1

× (
1

N
× ∑ θoi

N
i=1 ) × δ +

1

N
× ∑ θoi

N
i=1  , (3) 230 

Notably, all matrix operations involved are Schur Product. Where Ei denotes the ith ensemble perturbed emission input matrix, 231 

Ep denotes the original unperturbed emission input matrix and θi represents the ith ensemble perturbation coefficient matrix. 232 

θoi
 is the ith ensemble original perturbation coefficient matrix, which is obtained by mathematical transformation of the ith 233 

ensemble pseudorandom perturbation matrix Pi, including standardization, scaling by uncertainty (δ), and logarithm. 234 

2.3.4 Hybrid nonlinear DA algorithm with adaptive forgetting factor  235 

To thoroughly integrate the stability of EnKFs with the nonlinearity of nonlinear filters and be ideal for the nonlinear and non-236 

Gaussian-distribution situations, the hybrid LKNETF is used in this study. This section reviews the algorithms of LETKF, 237 

LNETF, and their combination (LKNETF). 238 

 239 

ETKF, a deterministic filter in EnKFs, efficiently obtains analysis samples using a transformation matrix and the square root 240 

of the forecast error covariance (Bishop et al., 2001). In contrast to stochastic filters in EnKFs, ETKF prevents underestimation 241 

of the analysis error covariance resulting from the random observation perturbations. And it is particularly applicable in 242 

situations with small ensemble sizes (Lawson and Hansen, 2004). The realization of ETKF can be divided into the forecast 243 
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and analysis steps. 244 

 245 

In the forecast step, the forecast state vector (𝐱t
f) at t is generated by numerical model (𝐌) integration of the analysis state 246 

vector (𝐱t−1
a ) at t-1. The forecast error covariance matrix (𝐏t

f) can be calculated by the perturbation of the forecast ensemble 247 

(𝐗t
f ′

).  248 

𝐱t
f = 𝐌(𝐱t−1

a ), 𝐗t
f = [𝐱1t

f , 𝐱2t
f , … , 𝐱Kt

f] , (4) 249 

𝐏t
f =  𝐗t

f ′
𝐗t

f ′T
 , (5) 250 

Where 𝐗t
f  is the forecast ensemble at t, and K is the number of ensemble members. 𝐗t

f ′
 is the perturbation of the forecast 251 

ensemble at t, calculated by 𝐗t
f  and the forecast ensemble mean 𝐗t

f̅̅ ̅ at t. 252 

 253 

In the analysis step, the forecast error covariance matrix (𝐏t
f) at t is transformed to the analysis error covariance matrix (𝐏t

a) at 254 

t by a transform matrix (𝐓). 255 

𝐏t
a =  𝐗t

f ′
𝐓𝐗t

f ′T
 , (6) 256 

The transform matrix (𝐓) is defined as follows and can be decomposed to a left singular vector matrix (𝐔), a singular value 257 

matrix (𝐒), and a right singular vector matrix (𝐕) through the singular value decomposition. 258 

𝐓−1 = 𝜌𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(K − 1)𝐈 + (𝐇𝐗t
f ′

)T(𝐋 ∙ 𝐑−1)𝐇𝐗t
f ′

= 𝐔𝐒𝐕 , (7) 259 

𝜌𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 =
𝜎𝑒𝑛𝑠

2

𝜎𝑟𝑒𝑠𝑖𝑑
2 −𝜎𝑜𝑏𝑠

2  , (8) 260 

Where 𝜌𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒  is an adaptive forgetting factor, used for the inflation of error covariance estimation (the initial 𝜌𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒  is 261 

set to 0.9 in this study). 𝜎𝑒𝑛𝑠
2  is the mean ensemble variance, 𝜎𝑟𝑒𝑠𝑖𝑑

2  is mean of observation-minus-forecast residual, 𝜎𝑜𝑏𝑠
2  is 262 

mean observation variance. 𝐈 is the identity matrix. 𝐇 is the observation operator. 𝐋 is the localization matrix, a weight 263 

matrix calculated by the 5th-order polynomial (Nerger, 2015), implemented in LETKF for observation localization analysis to 264 

avoid observational spurious correlation and filter divergence effectively (Hunt et al., 2007). 𝐑  is the observation error 265 

covariance matrix. 266 

 267 

The analysis state vector (𝐱t
a) at t is calculated by the forecast state vector (𝐱t

f) at t, the perturbation of the forecast ensemble 268 

(𝐗t
f ′

) at t and a weight vector (𝐰). 269 

𝐱t
a =  𝐱t

f + 𝐗t
f ′

𝐰 , (9) 270 

The weight vector (𝐰) is given by the following equation. 271 
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𝐰 = 𝐓(𝐇𝐗t
f ′

)T(𝐋 ∙ 𝐑−1)(𝐲 − 𝐇𝐱t
f) , (10) 272 

Where 𝐲 is observations. 273 

 274 

The analysis ensemble (𝐗t
a) at t can be obtained by forecast ensemble mean (𝐗t

f̅̅ ̅) at t, the perturbation of the forecast ensemble 275 

(𝐗t
f ′

) at t and a transform matrix (𝐂) represented by the symmetric square root of 𝐓. 276 

𝐗t
a = 𝐗t

f̅̅ ̅ + √K − 1𝐗t
f ′

𝐂 , (11) 277 

The transform matrix (𝐂) is calculated as follows. 278 

𝐂 = 𝐔𝐒−1/2𝐔T , (12) 279 

NETF is a 2nd-order exact ensemble square root filter effectively applied to the nonlinear and non-Gaussian DA (Tödter and 280 

Ahrens, 2015). Like PF, NETF indirectly updates the model state by using observations to affect the weights of the prior 281 

ensemble. However, PF and NETF differ in the sampling method. PF utilizes the Monte Carlo and Bayesian methods to 282 

calculate particle weights based on observations, which are then used to generate the analysis ensemble by weighting the 283 

resampling forecast ensemble. In high-dimensional systems, as the DA progresses, the weight differences of particles increase, 284 

with most particles having weights close to 0, leading to filter degeneration. In contrast, NETF generates the analysis ensemble 285 

through a deterministic matrix square root transformation of the forecast ensemble, where the mean and covariance matrix of 286 

the analysis ensemble match the weighted values in PF (as shown in Eq. (13)-(14)). Due to the similarity between NETF and 287 

ETKF, the localization can be implemented in NETF (LNETF) (Tödter et al., 2016). 288 

�̅�a =
1

K
∑ 𝐱i

aK
i=1 =

1

K
∑ wi𝐱i

fK
i=1  , (13) 289 

Where �̅�a is the analysis state vector mean, K is the number of ensemble members, 𝐱i
a is the ith analysis state vector, wi is 290 

the ith particle weight vector in PF, which is calculated by the Bayesian method wi = p(𝐲|𝐱i
f)/p(𝐲), 𝐲 is the observations, 291 

𝐱i
f is the ith forecast state vector. 292 

𝐏a =
1

K−1
∑ (𝐱i

a −K
i=1 �̅�a)(𝐱i

a − �̅�a)T =  ∑ wi(𝐱i
f −K

i=K �̅�f)(𝐱i
f − �̅�f)T , (14) 293 

Where 𝐏a is the error covariance matrix of the analysis ensemble, calculated by the perturbation of the analysis ensemble. 294 

In NETF, 𝐀 performs as a transform matrix like the transform matrix (𝐓) in ETKF, which can be obtained from the weight 295 

matrix (𝐰).  296 

𝐏a = 𝐗f′
𝐀𝐗f′T

 , (15) 297 

𝐀1/2 = (𝐖 − 𝐰𝐰T)1/2 = 𝐕𝐃1/2𝐕T , (16) 298 
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Where the matrix 𝐖 ≡ diag(𝐰) is defined as a diagonal matrix created from the weight matrix (𝐰). 𝐀 can be decomposed 299 

(𝐀 = 𝐕𝐃𝐕T) by a singular value decomposition as it is a real, symmetric, positive semidefinite matrix. 𝐕 is the orthogonal 300 

matrix, and 𝐃 is a diagonal matrix. 301 

 302 

Then, the perturbation of the analysis ensemble (𝐗a′
) and the analysis ensemble (𝐗a) can be obtained by applying the square 303 

root of 𝐀 as a transform matrix. 304 

𝐗a′ = √K𝐗f′
𝐀1/2 , (17) 305 

𝐗a = 𝐗f + 𝐗f′
(�̅� + √K𝐀1/2) , (18) 306 

LKNETF combines the LETKF and LNETF through a hybrid weight γ to perform better in systems with different non-307 

linearity degrees and implement in situations with smaller ensemble sizes (Nerger, 2022). When γ approaches 1, the analysis 308 

increment (∆𝐗LETKF ) computed by LETKF becomes more significant and appropriate for linear systems with Gaussian 309 

distributions. Conversely, when γ approaches 0, the analysis increment (∆𝐗LNETF ) computed by LNETF becomes more 310 

significant and appropriate for non-linear systems with non-Gaussian distributions. The one-step update scheme is used in this 311 

study. 312 

𝐗HSync
a = 𝐗f̅̅̅ + (1 − γ)∆𝐗LNETF + γ∆𝐗LETKF , (19) 313 

2.4 Data 314 

2.4.1 Observation  315 

The one-month (February 2022) hourly mass concentration observations of five PM2.5 chemical components (NH4
+, SO4

2-, 316 

NO3
-, OC, and EC) from 33 ground-based sites in Northern China and surrounding areas were collected for this work (Fig. 3). 317 

Out of the 33 sites, 24 (DA sites) were utilized for DA and internal validation, and the remaining 9 (VE sites) were used for 318 

independent verification to assess the influence of DA sites on neighboring areas. These sites were divided using the K-means 319 

clustering algorithm (Lloyd, 1982; Arthur and Vassilvitskii, 2007). The supplement provides a detailed description (Text S1). 320 

PM2.5 hourly observations from the China National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/) were 321 

employed to assess the overall mass concentration of PM2.5 chemical components in NAQPMS-PDAF v2.0. Due to incomplete 322 

spatial overlap between the PM2.5 sites and the chemical component sites, the PM2.5 sites were selected based on the closest 323 

coordinate Euclidean distance between PM2.5 sites and chemical component sites. 324 
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 325 

Figure 3: The model domains in WRF simulation (a) and the location of observations (b). The domain 3 in (a) is the target area in 326 

this study. Twenty-four red sites in (b) represent the sites for data assimilation, and nine green sites in (b) represent the sites for 327 

spatial independent validation. The topographic dataset is from the ETOPO1 1 arc-minute Global Relief Model, taken from the 328 

National Geophysical Data Center (Amante and Eakins, 2009). 329 

2.4.2 Global reanalysis dataset  330 

The global reanalysis datasets of PM2.5 chemical components in February 2022 were obtained from the Copernicus Atmosphere 331 

Monitoring Service ReAnalysis (CAMSRA, 0.75°×0.75°) (Inness et al., 2019) and the Modern-Era Retrospective analysis for 332 

Research and Applications, Version 2 (MERRA-2, 0.5°×0.625°) (Randles et al., 2017) to compare with reanalysis dataset 333 

generated by NAQPMS-PDAF v2.0. For the consistency of data comparison, the global reanalysis surface grid data located in 334 

the observation sites of PM2.5 chemical component were extracted through the k-nearest neighbor search method (Friedman et 335 

al., 1977), which can efficiently match grid points and observation sites based on longitude and latitude data and Euclidean 336 

distances. Our 3-hourly NAQPMS-PDAF v2.0 output of NO3
- and NH4

+ were extracted to compare with the CAMSRA dataset, 337 

and hourly NAQPMS-PDAF v2.0 output of SO4
2-, OC, and EC were extracted to compare with MERRA-2 M2T1NXAER 338 

dataset.  339 

2.5 Experimental setting and evaluation method 340 

In our study, four tests were conducted to evaluate the performance of NAQPMS-PDAF v2.0 with hourly observations of five 341 

PM2.5 chemical components, including (1) the dependence on ensemble size and assimilation frequency, (2) the interpretation 342 

ability on mass concentration and spatiotemporal characteristics, (3) the superiority compared to other reanalysis dataset, and 343 

(4) the uncertainty in ensemble assimilation. In practice, the ratio of ensemble size to the number of processes with 1:50 in 344 

high-performance computers was the best parallel scheme to balance computing efficiency and computing resources (Wang et 345 

al., 2022). 346 

 347 

All the tests were run in NAQPMS-PDAF v2.0 after a spin-up experiment with 24 timesteps from 00:00 to 23:00 (LST) on 348 

February 1st, 2022. (1) For the first test, we assimilated the hourly observations of five PM2.5 chemical components from all 349 

sites with 48 timesteps from 00:00 (LST) on February 2nd to 23:00 (LST) on February 3rd, 2022. In the first situation, we 350 
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controlled a fixed assimilation frequency of 1 hour and changed the ensemble size to 2, 5, 10, 15, 20, 30, 40, and 50. In the 351 

second situation, we controlled a fixed ensemble size of 20 and changed the assimilation frequency to 1 hour, 2 hours, 3 hours, 352 

4 hours, 5 hours, 6 hours, 8 hours, and 12 hours. (2) For the second test, we set an ensemble size of 20 and an assimilation 353 

frequency of 1 h and assimilated the hourly observations of five PM2.5 chemical components from DA sites with 648 timesteps 354 

from 00:00 (LST) on February 2nd to 23:00 (LST) on February 28th, 2022. We also conducted a free running (FR) experiment 355 

without assimilation in the same period for comparison. (3) For the third test, we followed the settings in the second test but 356 

assimilated the observation from all sites to generate a high-quality reanalysis dataset of five PM2.5 chemical components. (4) 357 

The last test was like the first but with a different situation to investigate the impact of ensemble perturbation on ensemble 358 

assimilation. From Table 2, we fixed species uncertainty (M4 setting) with five distribution types in the first situation and fixed 359 

distribution type (T2 setting) with five SO2 uncertainties in the second.  360 

Table 2: The experiment settings for emission perturbation 361 

Experiment Distribution (Fixed species uncertainty) 

T1 Gaussian  

T2 Non-Gaussian (m3=1, m4=6) 

T3 Non-Gaussian (m3=-1, m4=6) 

T4 Non-Gaussian (m3=1, m4=12) 

T5 Non-Gaussian (m3=-1, m4=12) 

 SO2 uncertainty (Fixed distribution) 

M1 12% 

M2 50% 

M3 100% 

M4 200% 

M5 300% 

 362 

We used the Continuous Ranked Probability Score (CRPS) to evaluate ensemble size dependency, which measures the 363 

consistency between ensemble forecast distribution and corresponding observations (Jolliffe and Stephenson, 2012). The 364 

calculation rules are referred to in Hersbach’s study (Hersbach, 2000). Besides, four common statistical indicators, the Pearson 365 

correlation coefficient (CORR), root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination 366 

(R2), were used to assess the DA system performance in interpreting PM2.5 chemical components (SO4
2-, NO3

-, NH4
+, OC, and 367 

EC). The CORR measures the correlation between the system outputs and corresponding observations, the RMSE and MAE 368 

indicates the overall system accuracy, and the R2 reflects the proportion of variability in the observations explained by the 369 

assimilation system.  370 
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3 Results and discussion 371 

3.1 The Dependence on Ensemble Size and Assimilation Frequency for Five Components 372 

Ensemble size is a crucial parameter in ensemble assimilation, determining the model state’s uncertainty range. A larger 373 

ensemble size more accurately represents the error distribution of state variables but requires considerable computing resources 374 

and time, especially for high-dimension systems. A smaller ensemble size can easily lead to underestimating the error 375 

covariance matrix, especially for the fine-resolution model (Kong et al., 2021). Thus, identifying an appropriate ensemble size 376 

to balance computational efficiency and accuracy is the primary step in ensemble DA. A prior study (NAQPMS-PDAF v1.0) 377 

only evaluated the correlation between ensemble size and parallel efficiency and concluded that the ratio of ensemble size to 378 

high-performance computing processors was 1:50 (Wang et al., 2022), while the impact of ensemble size on the accuracy and 379 

computational efficiency was neglected. In this study, we assessed the NAQPMS-PDAF v2.0 dependency on ensemble size 380 

through three statistical indicators (CRPS, RMSE, and CORR).  381 

 382 

From Fig. 4a, when the ensemble size is at its minimum level of 2, the mean CRPS values of the five PM2.5 chemical 383 

components are more significant, with NO3
- exhibiting the most considerable difference between the simulation distribution 384 

and observations (more than 4). With each increase in ensemble size, the mean CRPS values of the five chemical components 385 

progressively reduce and eventually reach convergence when the ensemble size is 10, implying that a hybrid nonlinear filter 386 

can maintain high accuracy and reliability in ensemble assimilation with an ensemble size that is smaller than the traditional 387 

minimum of 20 ensemble members, as observed in prior ensemble assimilation studies (Constantinescu et al., 2007; Miyazaki 388 

et al., 2012; Schwartz et al., 2014; Rubin et al., 2017; Kong et al., 2021; Tsikerdekis et al., 2021; Wang et al., 2022), including 389 

NAQPMS-PDAF v1.0. The mean CRPS value of EC is the lowest among the five chemical components, indicating the highest 390 

accuracy and reliability of EC ensemble DA. The performance of other components is similar. Like CRPS values, the values 391 

of RMSE and CORR decrease and increase, respectively, as the ensemble size increases, and convergence begins to occur 392 

when the ensemble size is 10 (Fig. 4b and c). Compared with other chemical components, the CORR value of SO4
2- is 393 

significantly lower, less than 0.8, possibly due to its estimated background field error covariance driven by the inadequate 394 

ensemble perturbations. Therefore, in the Discussion section, we deeply discuss the uncertainties of ensemble perturbations.  395 
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 396 

Figure 4: Assessment of ensemble size dependency based on mean continuous ranked probability score (CRPS) (a), root mean square 397 

error (RMSE) (b), correlation coefficient (CORR) (c), and time (d). 398 

Figure 4d shows the time required for the four processes of ensemble assimilation under different ensemble sizes, including 399 

initialization, model integration, assimilation, and post-processing. The model integration process in NAQPMS-PDAF v2.0 400 

takes the longest, followed by post-processing, initialization, and assimilation. The required time for initialization and post-401 

processing increases with increasing ensemble size, while for model integration and assimilation, except for ensemble size 30, 402 

the required time is the same under different ensemble sizes. Generally, the time needed for ensemble sizes of 30-50 is 403 

considerably higher than that for smaller ones. Although convergence occurs with an ensemble size of 10, our work illustrates 404 

a similar time required between ensemble sizes 10 and 20. Consequently, we selected an ensemble size of 20 to ensure optimal 405 

performance of NAQPMS-PDAF v2.0, considering both assimilation efficiency and accuracy. 406 

 407 

The assimilation frequency is the interval at which observational data is introduced into the DA system, directly affecting the 408 

practical assimilation data volume and computation cost. High-frequency DA with high-quality observations is crucial for 409 

improving numerical simulations and forecasts (Liu et al., 2021). Figure 5 demonstrates that the MAE values of the five 410 

chemical components analysis fields range from 0.02 to 0.12 µg/m3, RMSE values range from 0.23 to 2.61 µg/m3, and CORR 411 

values range from 0.71 to 0.98 at a 1-hour assimilation time interval, which is significantly better than the statistical indicators 412 

at lower assimilation frequencies. Even at a 2-hour assimilation frequency, the assimilation effect drops sharply compared to 413 

the 1-hour interval, especially for NO3
-, OC, and EC. The values of MAE and RMSE increase by 2.6-5.82 µg/m3 and 4.72-414 

https://doi.org/10.5194/gmd-2024-78
Preprint. Discussion started: 15 May 2024
c© Author(s) 2024. CC BY 4.0 License.



17 

 

9.57 µg/m3, respectively, and the CORR values decrease by 0.27-0.81. Gradual increasing trends in MAE and RMSE values 415 

and a slight decreasing trend in CORR values are observed as assimilation frequency decreases from the 2-hour interval. 416 

Therefore, the fast-updating assimilation with a 1-hour interval significantly improves the NAQPMS simulation. For the 417 

forecasting field (Fig. S2), the low sensitivity of state variables to assimilation frequency suggests that NAQPMS-PDAF v2.0 418 

can appropriately reduce assimilation frequency during the actual forecasting phase, lowering the demand for high temporal 419 

resolution observations and computational resources. 420 

 421 
Figure 5: Assessment of assimilation interval dependency based on mean absolute error (MAE) (a), root mean square error (RMSE) 422 

(b), and correlation coefficient (CORR) (c) at the analysis step. 423 

3.2 Evaluation of NAQPMS-PDAF v2.0 performance 424 

3.2.1 Overall validation of DA results 425 

We conducted a control experiment (free-running field, FR) without any DA and a DA experiment. This section verified the 426 

forecast filed (FOR) and analysis field (ANA) at 24 DA sites and 9 VE sites, respectively. Figure 6 shows the scatter distribution 427 

of observations and simulations at DA sites. For FR (Fig. 6a1-a5), five chemical components have CORR values ranging from 428 

0.32 to 0.56, and R2 values do not exceed 0.3, indicating poor consistency between observations and simulations. In detail, the 429 

simulated mass concentrations of SO4
2-, OC, and EC are significantly overestimated, while the simulated concentrations of 430 

NH4
+ and NO3

- are underestimated. OC has the most significant error, with an RMSE value of 25.84 µg/m3 and an MAE value 431 

of 19.41 µg/m3. Besides, the error distributions of SO4
2-, NO3

- and NH4
+ are close to a symmetric distribution with a mean 432 

value of 0, while the error distributions of OC and EC are skewed to the left from the mean value of 0 (Fig. 7a1-a5), showing 433 

the relatively better simulations in SO4
2-, NO3

- and NH4
+ than in OC and EC. Overall, NAQPMS cannot interpret the mass 434 

concentrations of the five chemical components with significant errors, mainly due to the uncertainties in chemical mechanisms 435 

(Miao et al., 2020).  436 
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 437 

Figure 6: Scatterplots of the DA-site simulations versus the DA-site observations with probability density for the free-running field 438 

(FR, a1-a5), forecast field (FOR, b1-b5), and analysis field (ANA, c1-c5). The dotted gray lines represent the 2:1, 1:1, and 1:2 lines, 439 

and the solid red line represents the fitting regression line. 440 

 441 
Figure 7: Probability distributions of bias between DA-site observations and DA-site simulations for the free-running field (FR, a1-442 

a5), forecast field (FOR, b1-b5), and analysis field (ANA, c1-c5). 443 

After DA, FOR shows a slight improvement with a slight increase in CORR and R2 and a decrease in RMSE and MAE, 444 

especially for NH4
+ and NO3

- (Fig. 6b1-b5). Although SO4
2-, OC, and EC are significantly overestimated with a slight decrease 445 

in CORR and R2, the RMSE and MAE values decrease. Besides, the error distributions of the five chemical components are 446 

concentrated at 0, and the overestimation of OC and EC has been improved compared to FR (Fig. 7b1-b5). These results 447 

indicate that DA reduces the overall FOR errors in NAQPMS due to improved forecasting ability by obtaining optimal initial 448 
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fields. However, further improvements are necessary to address the NAQPMS uncertainties in emission sources, 449 

meteorological input, and imperfect physiochemical mechanisms. For ANA (Fig. 6c1-c5), DA significantly improves the 450 

simulations of the five chemical components, making the ANA consistent with the observations. The CORR values are not 451 

less than 0.86, the RMSE and MAE values do not exceed 3.23 µg/m3 and 1.49 µg/m3, respectively, and the R2 values are not 452 

less than 0.74. Specifically, the CORR values for NO3
-, OC, and EC are not less than 0.96, and the R2 values are not less than 453 

0.93. The error distributions of the five chemical components concentrate to 0 with the mean bias ranging from 0±0.08 µg/m3 454 

to 1.02±3.07 µg/m3 (Fig. 7c1-c5). The results of VE sites show similar characteristics to the DA sites (Fig. S3 and S4). 455 

Compared to FR, the overall errors of the FOR and ANA for the five chemical components decrease with a significant 456 

improvement in ANA, showing that the CORR values of NH4
+ and NO3

- increase by 0.15 and 0.45, respectively, the R2 values 457 

of NH4
+ and NO3

- increase by 0.22 and 0.81, respectively, the RMSE values of OC and EC decrease by 21.77 µg/m3 and 17.79 458 

µg/m3, respectively. Overall, the FOR and ANA errors decreased significantly. The ANA of the five chemical components at 459 

DA sites is almost entirely consistent with the observations, indicating excellent DA performance. 460 

3.2.2 Assessment of temporal variation in chemical components 461 

The ensemble DA employs a cyclic updating process wherein the forecast and analysis steps are continuously completed at 462 

each iteration (Evensen, 2003; Houtekamer and Zhang, 2016). In the forecast step, the ANA at the current time step serves as 463 

the optimal initial field to advance the model integration and obtain the FOR at the next step. In the analysis step, the FOR at 464 

the next time step provides background field information for the subsequent DA analysis to generate the ANA at the next time 465 

step. The FOR and ANA interact with each other in the temporal dimension. Therefore, in this section, we assess the ability of 466 

NAQPMS-PDAF v2.0 to interpret the temporal variations of the five chemical components. Figure 8 illustrates the time series 467 

of the five chemical components at two representative sites, including a DA site in Tianjin City and a VE site in Heze City. For 468 

the DA site (Fig. 8a), the temporal variations of NH4
+ and NO3

- in FR and FOR exhibit better agreement with the observed 469 

temporal variations (OBS) than those of SO4
2-, OC, and EC. However, NH4

+ and NO3
- mass concentrations are significantly 470 

lower than the high-value mass concentrations observed on February 25th. The mass concentration of SO4
2- in FR is greatly 471 

overestimated during the periods of Feb. 8th-11th, Feb. 18th-19th, and Feb. 24th-25th. The mass concentrations of OC and EC in 472 

FR are overestimated throughout February with substantial temporal fluctuations. Although the time series of SO4
2-, OC, and 473 

EC in FOR show some improvement, noticeable differences from the OBS are still apparent. After DA, the ANA time series 474 

for the five chemical components align well with the OBS, indicating good consistency and accurate representation of temporal 475 

characteristics, such as the NH4NO3 pollution captured on February 25th. Notably, the mass concentrations of SO4
2-, NO3

-, and 476 

NH4
+ peaked on Feb. 8th-11th and February 25th, indicating intensified atmospheric secondary chemical reactions primarily due 477 

to neutralization reactions of acidic pollutants capturing NH3. The temporal variations of NH4
+ and NO3

- are more similar 478 

because atmospheric NO3
- primarily exists as NH4NO3 rather than other metal nitrates, and NH4NO3 can form before the 479 
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complete neutralization of H2SO4 (Ge et al., 2017). The improvements at the VE site (Fig. 8b) are like those at the DA site, 480 

with the ANA time series of the five chemical components showing closer agreement with the OBS, which suggests that the 481 

localization analysis in DA effectively facilitates the propagation of observations within a specific spatial range and mitigates 482 

the assimilation anomalies caused by spurious correlations from the distant sites (Hunt et al., 2007). 483 

 484 

Figure 8: Hourly variation of five PM2.5 chemical components in a representative DA site (a) and a representative VE site (b). 485 

NH4
+, SO4

2-, NO3
-, OC, and EC are critical chemical components of PM2.5, and the sum of their mass concentrations can be 486 

approximated as the PM2.5 mass concentration. We further assessed the simulation enhancement of PM2.5 time series based on 487 

ground-level PM2.5 observations. Six representative sites were selected, including 3 DA sites (Fig. 9a1-a3) and 3 VE sites (Fig. 488 

9b1-b3). The FR and FOR in DA and VE sites show significant overestimation and poor consistency with the OBS, mainly 489 

due to the overestimation of OC and EC mass concentrations. Conversely, the PM2.5 time series in ANA closely matches that 490 

of the OBS, accurately capturing the actual variation of PM2.5. In some specific instances, such as on February 26th at 00:00 in 491 

Tianjin City and Langfang City, the peak value of ANA was lower than that of OBS, which could be attributed to the negligence 492 

of other PM2.5 components (such as mineral dust and sea salt) and the inconsistency in location between ground-level PM2.5 493 

observational sites and chemical components observational sites. Overall, the DA of chemical component observations 494 

significantly enhanced the simulation of PM2.5 time series in NAQPMS. Compared to the CORR values of FR and FOR, the 495 

CORR values of ANA at the six representative sites increased by 13.64%-89.58% and 17.19%-75.00%, respectively, while the 496 

RMSE values decreased by 56.03%-83.13% and 40.74%-72.20% (Table S3). 497 
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 498 

Figure 9: Hourly variation of PM2.5 in three representative DA sites (a1-a3) and three representative VE sites (b1-b3). 499 

3.2.3 Assessment of spatial distribution in chemical components 500 

DA can improve the interpretation of model states in the analysis domain by using a limited number of observations. The 501 

ability to represent spatial distribution accurately is a crucial performance for aerosol DA. Figure 10 displays the spatial 502 

distribution of the monthly average mass concentrations for the five chemical components, including OBS, FR, FOR, ANA, 503 

and analysis increment (INC). The spatial distributions of bias and statistical indicators for FR, FOR, and ANA are shown in 504 

Fig. 11 and Fig. 12, respectively. 505 

 506 
Figure 10: Spatial concentration distribution of site observation (OBS, a1-e1), free-run field (FR, a2-e2), forecast field (FOR, a3-e3), 507 

analysis field (ANA, a4-e4), and increment (INC) between ANA and FR (a5-e5) for five PM2.5 chemical components. 508 
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 509 

Figure 11: Spatial distribution of DA-site bias for five PM2.5 chemical components from observation (OBS) for the free-running field 510 

(FR, a1-e1), forecast field (FOR, a2-e2) and analysis field (ANA, a3-e3). 511 

 512 

Figure 12: Spatial distribution of DA-site statistical indictors for five PM2.5 chemical components. (a1-e1) represents the values of 513 

RMSE and CORR for the forecast field (FOR), (a2-e2) same as (a1-e1) but for analysis field (ANA), (a3-e3) represents the 514 

improvement of RMSE and CORR for the forecast field (FOR), (a4-e4) same as (a3-e3) but for analysis field (ANA). The size 515 

represents the value of RMSE in (a1-e2) and the improvement percentage compared to non-assimilation in (a3-e4), respectively.  516 

The spatial characteristics of NH4
+ and NO3

- are similar. Compared to the OBS (Fig. 10a1 and c1), the FR (Fig. 10a2 and c2) 517 

and FOR (Fig. 10a3 and c3) have failed to capture the high-value mass concentrations in the border area between Hebei 518 

province, Shanxi province, Henan province, and Shandong province, especially in the northern region of Henan province. The 519 

primary reason is the uncertainties in emission inventories in winter heating periods, which results in insufficient emission 520 

statistics of gaseous precursors NOx and NH3 (Aleksankina et al., 2018). After DA, this situation is significantly improved 521 
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with the ANA (Fig. 10a4 and c4). The INCs in the Beijing-Tianjin-Hebei region, Shanxi province, Henan province, and 522 

Shandong province are positive (Fig. 10a5 and c5), indicating varying degrees of improvement in correcting the 523 

underestimation of mass concentrations. Specifically, for NH4
+ and NO3

- at DA sites, the biases between the OBS and ANA 524 

are significantly reduced compared to the biases between the OBS and FR (Fig. 11), with the mean absolute bias decreasing 525 

by 0.93 µg/m3 and 4.27 µg/m3, respectively. Moreover, the overall biases at VE sites also decrease (Fig. S5). As for the spatial 526 

statistical indicators of NH4
+ (Fig. 12a1 and a2), the CORR values in FOR and ANA range from 0.39 to 0.79 and 0.70 to 0.97, 527 

respectively, and the RMSE values range from 3.16 µg/m3 to 7.65 µg/m3 and 1.20 µg/m3 to 3.49 µg/m3, respectively. As for 528 

the spatial statistical indicators of NO3
- (Fig. 12c1 and c2), the CORR values in FOR and ANA range from 0.09 to 0.76 and 529 

0.89 to 0.99, respectively, and the RMSE values range from 4.88 µg/m3 to 15.69 µg/m3 and 1.34 µg/m3 to 5.39 µg/m3, 530 

respectively. For the FOR, the improvement in accuracy for NO3
- is more significant than that for NH4

+, with the CORR values 531 

of most DA sites increasing by more than 10% and the RMSE of most DA sites decreasing by not less than 10% (Fig. 12a3 532 

and c3). For the ANA, NH4
+, and NO3

- exhibit significant improvements in CORR and RMSE, as most DA sites show over 533 

150% in CORR and over 50% in RMSE (Fig. 12a4 and c4). The improvements can also be found for NH4
+ and NO3

- at VE 534 

sites (Fig. S6). The spatial consistency of NH4
+ and NO3

- indicates that NH4NO3 is the primary aerosol chemical component, 535 

highlighting the necessity of coordinated control of precursor NOx and NH3. 536 

 537 

Unlike NH4
+ and NO3

-, compared to the OBS (Fig. 10b1), the mass concentrations of SO4
2- in the FR and FOR (Fig. 10b2 and 538 

b3) are significantly overestimated, especially in Shandong province. In contrast, the ANA has dramatically improved (Fig. 539 

10b4), with most areas showing negative INCs (Fig. 10b5). The mean absolute biases in DA and VE sites have decreased by 540 

1.80 µg/m3 and 2.68 µg/m3, respectively (Fig. 11 and Fig. S5). Specifically, after DA, the CORR values of the FOR and ANA 541 

range from 0.22 to 0.71 and 0.58-0.97, and the RMSE values range from 3.42 µg/m3 to 11.07 µg/m3 and 1.20 µg/m3 to 4.30 542 

µg/m3, respectively (Fig. 12b1 and b2). The CORR and RMSE values in FOR have significantly improved (Fig. 12b3) at DA 543 

sites around Beijing. While the CORR values in ANA have increased by more than 13%, with most DA sites showing an 544 

increase of over 50%, and RMSE values have decreased by no less than 30%, with most DA sites showing a decrease of over 545 

70% (Fig. 12b4). Besides, half of the VE sites show significant improvement in the CORR and RMSE in the FOR and ANA, 546 

mainly due to their proximity to more DA sites (Fig. S6). The OBS and ANA indicate a considerable control in SO4
2- pollution 547 

during the winter heating period due to the emission reduction of gaseous precursors (Zhai et al., 2019; Yan et al., 2021). 548 

 549 

The spatial distributions of OC and EC exhibit similarities (Fig. 10d1 and e1), consistent with the finding of a strong correlation 550 

between OC and EC in winter (Cao et al., 2007). Since the low temperature and weakened photochemical reactions in winter 551 

reduced secondary OC (SOC) generation, and primary OC (POC) and EC mainly originate from direct anthropogenic 552 

emissions, such as combustion (Guo, 2016). Compared to the OBS, the mass concentrations in FR (Fig. 10d2-d3) and FOR 553 
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(Fig. 10e2-e3) are significantly overestimated over a wide range. Similar overestimations have also been reported in the global 554 

reanalysis datasets of CAMS and MERRA-2, likely attributed to the hygroscopic growth scheme of carbonaceous aerosols in 555 

the models, poorly constrained semi-volatile species escaping from primary organic aerosols (Soni et al., 2021), and aging 556 

mechanisms in the models (Huang et al., 2013). After DA, the spatial distribution of the ANA aligns entirely with that of the 557 

OBS (Fig. 10d4 and e4), with the improvements in all overestimations (Fig. 10d5 and e5) and the average biases of OC and 558 

EC at DA sites both significantly decreasing to 0.14 µg/m³ (Fig. 11d3 and e3). The VE sites show similar results to the DA 559 

sites, with the average biases of less than 2 µg/m³ (Fig. S5d3 and e3). Specifically, for OC (Fig. 12d1 and d2), the CORR 560 

values in FOR and ANA are 0.18-0.71 and 0.92-1.00, respectively, with RMSE values of 7.91 µg/m³-26.27 µg/m³ and 0.16 561 

µg/m³-1.45 µg/m³, respectively. For EC (Fig. 12e1 and e2), the CORR values in FOR and ANA are 0.01-0.66 and 0.97-1.00, 562 

respectively, with RMSE values of 5.33 µg/m³-16.91 µg/m³ and 0.01 µg/m³-0.26 µg/m³, respectively. Although significant 563 

improvements are not observed in FOR at some specific DA sites, the RMSE values at all DA sites decrease by 10%-50% (Fig. 564 

12d3 and e3). The CORR values of OC and EC in ANA increase by more than 30%, with most DA sites exceeding 200%, and 565 

the RMSE values decrease by more than 90% (Fig. 12d4 and e4). At VE sites (Fig. S6), significant improvements in the CORR 566 

are not observed, but the RMSE values in the FOR and ANA decrease, which indicates that DA has limited benefits for whole 567 

areas but can effectively reduce biases of whole areas. 568 

3.3 Compared to NAQPMS-PDAF v1.0 and global reanalysis dataset 569 

To comprehensively evaluate the competitiveness and superiority of NAQPMS-PDAF v2.0 in generating the reanalysis 570 

datasets of the PM2.5 chemical compositions, we assimilated the mass concentrations of the five PM2.5 chemical components 571 

from all sites (sum of DA sites and VE sites) in February 2022 to generate a reanalysis dataset. We compared our reanalysis 572 

dataset with the global reanalysis (RA) datasets (CAMSRA and MERRA-2) and NAQPMS-PDAF v1.0 output. Figure 13 573 

illustrates the spatial distribution of the monthly average mass concentrations for the five chemical components. Compared to 574 

the OBS (Fig. 13a1 and c1), CAMSRA underestimates the NH4
+ and NO3

- concentrations and fails to capture the high-value 575 

concentration in northern Henan Province (Fig. 13a2 and c2). Meanwhile, MERRA-2 overestimates the concentrations of 576 

SO4
2-, OC, and EC (Fig. 13b2, d2 and e2), particularly SO4

2-, exhibiting a large region with inaccurately high concentrations. 577 

Besides, CAMSRA (approximately 80*80 km2) and MERRA-2 (55*70 km2) have significantly lower spatial resolutions 578 

compared to NAQPMS-PDAF v2.0 (5*5 km2). Therefore, NAQPMS-PDAF v2.0 provides a more detailed description of the 579 

pollution characteristics of chemical components in Northern China and surrounding areas compared to RA.  580 
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 581 

Figure 13: Spatial distribution of the monthly averaged concentration of five PM2.5 chemical components for observations (OBS, a1-582 

e1), global reanalysis data (RA, a2-e2), NAQPMS-PDAF v1.0 analysis data (a3-e3) and NAQPMS-PDAF v2.0 analysis data (a4-e4). 583 

Although NAQPMS-PDAF v1.0 demonstrates a superior spatial representation of the five chemical components when 584 

compared to RA, it fails to capture the high-value concentrations of NH4
+ in the northwest of Henan Province and correct the 585 

high-value concentrations of NH4
+ in the central and western areas of Hebei Province (Fig. 13a3). Moreover, the scattered 586 

high-value concentrations of SO4
2- in the North China Plain do not align with the spatial characteristics of the OBS (Fig. 13b3). 587 

Notably, NAQPMS-PDAF v1.0 exhibits poor performance in interpreting OC and EC with significant overestimations in a 588 

wide range (Fig. 13d3 and e3), which indicates that NAQPMS-PDAF v1.0 is weaker than NAQPMS-PDAF v2.0 in terms of 589 

DA performance on chemical components, primarily due to insufficient propagation of observations. In NAQPMS-PDAF v2.0, 590 

the LKNETF algorithm with an adaptive forgetting factor is more suitable for the nonlinear and non-Gaussian situations 591 

compared to EnKFs in NAQPMS-PDAF v1.0, and the ensemble perturbation with non-Gaussian distribution can better 592 

represent the reasonable error distribution of model states. 593 

 594 

Table 3 presents a quantitative comparison of three reanalysis datasets. Compared to the CORR of NAQPMS-PDAF v2.0 595 

(0.86-0.99), the CORR of RA for the five chemical components is significantly lower (0.42-0.55). Moreover, NAQPMS-PDAF 596 

v1.0 exhibits significantly poorer consistency in SO4
2-, OC, and EC, with CORR values ranging from 0.35 to 0.57. NAQPMS-597 

PDAF v2.0 has lower overall RMSE values (0.14 µg/m3-3.18 µg/m3) compared to RA and NAQPMS-PDAF v1.0, with RMSE 598 

values ranging from 4.51 µg/m3 to 12.27 µg/m3 and 2.46 µg/m3 to 15.50 µg/m3, respectively. The characteristics of the R2 are 599 

like those of the CORR and RMSE. For NH4
+ and NO3

-, NAQPMS-PDAF v2.0 (0.85 and 0.93) and v1.0 (0.80 and 0.96) are 600 

much higher than RA (0.09 and 0.13). Notably, for SO4
2-, OC, and EC, NAQPMS-PDAF v2.0 (0.74-0.98) is significantly 601 

higher than v1.0 (-0.16-0.25) and RA (-0.15-0.25). Overall, NAQPMS-PDAF v2.0 more accurately and consistently interprets 602 
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the five chemical components, particularly for NH4
+, SO4

2-, OC, and EC. The reasons are summarized as follows. (1) The DA 603 

frequency of CAMSRA is 12 hours, which is lower than the hourly DA frequency in NAQPMS-PDAF v2.0. (2) CAMSRA 604 

only assimilates satellite retrievals (Inness et al., 2019), and MERRA-2 only assimilates aerosol optical depth (AOD) from 605 

both ground-based and space-based remote sensing platforms (Randles et al., 2017). The aerosol optical information analysis 606 

increment cannot be allocated to each chemical component accurately and reasonably due to the lack of a deterministic 607 

relationship between aerosol optical information and PM2.5 chemical components. (3) NAQPMS-PDAF v1.0 has evident DA 608 

shortcomings for chemical components due to the limited DA algorithm under the assumption of linear model or system, 609 

inappropriate ensemble perturbation under the assumption of Gaussian distribution, and inadequate observational modules. (4) 610 

The state variable structure in NAQPMS-PDAF v1.0 lacks the capacity to effectively mitigate the impact of spurious 611 

correlations between chemical component variables, even when using analytical localization. 612 

Table 3: Statistical indicators (CORR, RMSE, R2) of five PM2.5 chemical components for global reanalysis data (RA), NAQPMS-613 

PDAF v1.0 analysis data and NAQPMS-PDAF v2.0 analysis data. 614 

Components 
CORR RMSE (µg/m3) R2 

RA v1.0 v2.0 RA v1.0 v2.0 RA v1.0 v2.0 

NH4
+ 0.49 0.90 0.92 5.59 2.53 2.22 0.09 0.80 0.85 

SO4
2- 0.55 0.57 0.86 12.27 5.45 2.61 0.25 0.25 0.74 

NO3
- 0.54 0.98 0.96 10.27 2.46 3.18 0.13 0.96 0.93 

OC 0.50 0.42 0.97 4.51 12.92 0.93 0.15 -0.09 0.93 

EC 0.42 0.35 0.99 7.59 15.50 0.14 -0.15 -0.16 0.98 

3.4 The uncertainty in NAQPMS-PDAF v2.0 615 

In ensemble DA, the ensemble members represent possible values of the model states, and the ensemble sampling can 616 

determine the uncertainties of the model states. Therefore, the ensemble generation directly affects the propagation of 617 

observations and subsequently impacts the final DA performance. Previous studies generated ensemble members based on the 618 

uncertainties of emission species and the Gaussian-distribution assumption to satisfy the requirements of EnKFs algorithms 619 

(Kong et al., 2021; Wang et al., 2022). However, the true error probability distribution of emission species is not an ideal 620 

Gaussian distribution, and the assumption will introduce errors. In this study, we coupled the hybrid nonlinear DA algorithm 621 

(LKNETF) with NAQPMS to handle the nonlinear and non-Gaussian situations, which combines the stability of LETKF with 622 

the nonlinearity of LNETF. Therefore, we evaluate the performance of ensemble members with different uncertainties and 623 

error probability distributions in NAQPMS-PDAF v2.0 through two groups of sensitivity experiments.  624 

 625 

The first group of experiments (T1-T5) involves controlling the SO2 uncertainty as a fixed value of 200% and transforming 626 

the distribution of the perturbation coefficient matrix. The second group of experiments (M1-M5) focuses on assessing the 627 

influence of SO2 uncertainty on NH4
+ and SO4

2- DA based on a fixed non-Gaussian distribution (m3=1, m4=6). Figure 14 628 
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shows the statistical indicators of the five chemical components under different error probability distributions, including a 629 

Gaussian distribution (T1) and four non-Gaussian distributions (T2-T5). The mean CRPS and RMSE in T2 and T4 are lower 630 

than those in T1, T3, and T5, and the CORR values in T2 and T4 are higher than those in T1, T3, and T5, indicating that the 631 

DA performance of non-Gaussian-distribution assumption is superior to that of Gaussian-distribution assumption. Moreover, 632 

positively skewed non-Gaussian distribution performs better than negatively skewed distribution. Except for SO4
2-, the 633 

performance in T2 outweighs that in T4 for other chemical components, implying that higher kurtosis harms the chemical 634 

components DA. 635 

 636 
Figure 14: Statistical indicators (mean CRPS (a), RMSE (b), and CORR (c)) of five PM2.5 chemical components for five perturb 637 

experiments based on distribution. 638 

SO2 is a crucial precursor of NH4
+ and SO4

2-, and perturbing SO2 affects the forecast and simulation of NH4
+ and SO4

2-. Table 639 

4 presents statistical indicators of NH4
+ and SO4

2- analysis fields based on ensemble perturbations with different SO2 640 

uncertainties (12%-300%). Increasing the uncertainty of SO2 from 12% to 200% leads to a decrease in the mean CRPS in the 641 

SO4
2- analysis field from 2.67 to 1.40, an increase in the CORR from 0.51 to 0.74, and a reduction in the RMSE from 4.10 642 

µg/m3 to 2.37 µg/m3. Similarly, the mean CRPS in the NH4
+ analysis field decreases from 0.98 to 0.77, the CORR increases 643 

from 0.88 to 0.91, and the RMSE decreases from 1.55 µg/m3 to 1.33 µg/m3. It indicates that increasing the uncertainty of SO2 644 

improves the DA performance on NH4
+ and SO4

2- because the higher SO2 uncertainty makes SO2 perturbed sufficiently, and 645 

the estimated error probability distribution is closer to the real distribution, resulting in a sufficient spread of observations. 646 

However, when the uncertainty of SO2 reaches 300%, the statistical indicators do not significantly improve and even worsen 647 

because excessively high SO2 uncertainty causes the estimated error probability distribution to deviate from the true 648 

distribution. Thus, selecting appropriate uncertainties for emission species is crucial in aerosol chemical component DA.  649 
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 650 

To summarize, the non-Gaussian-distribution assumption outperforms the Gaussian-distribution assumption in NAQPMS-651 

PDAF v2.0. Positive skewness performs better than negative skewness, and excessively high kurtosis should be avoided. 652 

Additionally, appropriately increasing the uncertainty of SO2 enhances the DA performance of NH4
+ and SO4

2-. Future studies 653 

should conduct more sensitivity experiments on emission species perturbation to determine the suitable schemes for different 654 

aerosol chemical components. 655 

Table 4: Statistical indicators (mean CRPS (a), RMSE (b), and CORR (c)) of five PM2.5 chemical components for five perturb 656 

experiments based on SO2 emission uncertainty. 657 

Experiment 
SO4

2- NH4
+ 

CRPS CORR RMSE CRPS CORR RMSE 

M1 2.67 0.51 4.10 0.98 0.88 1.55 

M2 2.07 0.59 3.24 0.92 0.89 1.48 

M3 1.61 0.69 2.63 0.83 0.91 1.39 

M4 1.40 0.74 2.37 0.77 0.91 1.33 

M5 1.41 0.74 2.39 0.78 0.91 1.33 

4 Conclusions 658 

In this paper, we online coupled NAQPMS with PDAF-OMI to develop a novel hybrid nonlinear DA system (NAQPMS-659 

PDAF v2.0) with level-2 parallelization based on a hybrid Kalman-Nonlinear Ensemble Transform Filter (LKNETF) for the 660 

first time. Compared to NAQPMS-PDAF v1.0, NAQPMS-PDAF v2.0 with OMI can be applied with multiple component 661 

types and nonlinear/non-Gaussian situations in chemical analysis to effectively interpret five PM2.5 chemical components 662 

(NH4
+, SO4

2-, NO3
-, OC and EC), which is not achieved in previous studies. The background error covariance was calculated 663 

by ensemble perturbation based on adaptive uncertainties and non-Gaussian-distribution assumption of emission species. The 664 

DA experiments were conducted based on 33 observational sites in Northern China and surrounding areas. 665 

 666 

NAQPMS-PDAF v2.0 with LKNETF can maintain high accuracy and reliability in ensemble DA with an ensemble size of 10, 667 

smaller than the traditional minimum of 20 ensemble members, as observed in prior ensemble assimilation studies. The FR 668 

(free-run fields without DA) have a poor consistency with the observations, with the CORR values ranging from 0.32-0.56 669 

and the R2 values less than 0.3, showing that SO4
2-, OC and EC are significantly overestimated, while NH4

+ and NO3
- are 670 

underestimated. A significant improvement was observed in the ANA (analysis fields) of the DA sites. The CORR values are 671 

not less than 0.86, the RMSE and MAE values do not exceed 3.23 µg/m3 and 1.49 µg/m3, respectively, and R2 is not less than 672 

0.74. Specifically, the CORR values for NO3
-, OC, and EC are not less than 0.96, and R2 is not less than 0.93. The error 673 

distributions of the five chemical components concentrate to 0 with the mean bias ranging from 0±0.08 µg/m3 to 1.02±3.07 674 

µg/m3. These improvements are also found in the ANA at VE sites, indicating an excellent DA performance of NAQPMS-675 
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PDAF v2.0. 676 

 677 

The ability of NAQPMS-PDAF v2.0 to interpret the spatiotemporal characteristics of the five chemical components was 678 

examined. For temporal variations, compared to the FR and FOR (forecast fields), the ANA closely aligned with the OBS 679 

(observations) and accurately captured the peak concentrations of SO4
2-, NO3

-, and NH4
+ on specific periods (such as February 680 

25th), indicating good consistency and accurate characterization. Specifically, the CORR of the ANA at the six representative 681 

sites increased by 13.64%-89.58% and 17.19%-75.00%, respectively, while the RMSE decreased by 56.03%-83.13% and 682 

40.74%-72.20%. For spatial distributions, after DA, both NH4
+ and NO3

- with positive analysis increments exhibit significant 683 

improvements in CORR and RMSE, as most DA sites show improvements of over 150% in CORR and over 50% in RMSE. 684 

SO4
2-, OC, and EC with negative analysis increments were also improved. Especially for OC and EC, the improvements of 685 

CORR and RMSE at most DA sites were over 200% and over 90%, respectively. The improvements at VE sites were also 686 

identified. Consequently, DA successfully aligned the spatiotemporal characteristics of the ANA with OBS and significantly 687 

reduced the biases of five chemical components.  688 

 689 

Compared to the global reanalysis datasets (CORR: 0.42-0.55, RMSE: 4.51-12.27 µg/m3) and NAQPMS-PDAF v1.0 (CORR: 690 

0.35-0.98, RMSE: 2.46-15.50 µg/m3), the NAQPMS-PDAF v2.0 (CORR: 0.86-0.99, RMSE: 0.14-3.18 µg/m3) has significant 691 

superiority in generating the reanalysis datasets of the PM2.5 chemical compositions with high spatiotemporal resolution. 692 

Besides, NAQPMS-PDAF v1.0 cannot capture the high-value concentrations and exhibits poor performance when interpreting 693 

SO4
2-, OC, and EC with CORR values ranging from 0.35 to 0.57. In contrast, NAQPMS-PDAF v2.0 interprets the five chemical 694 

components more accurately and consistently. 695 

 696 

Finally, the uncertainties of NAQPMS-PDAF v2.0 are examined by identifying the influence of ensemble generation on 697 

ensemble DA performance. The non-Gaussian-distribution assumption outperforms the Gaussian-distribution assumption in 698 

NAQPMS-PDAF v2.0. Positive skewness performs better than negative skewness, and excessively high kurtosis should be 699 

avoided. Additionally, appropriately increasing the uncertainty of SO2 enhances the DA performance of NH4
+ and SO4

2-. Future 700 

studies should conduct more sensitivity experiments on emission species perturbation to determine the suitable schemes for 701 

different aerosol chemical components.  702 

 703 

The novel hybrid nonlinear DA system (NAQPMS-PDAF v2.0) can be effectively applied in the interpretation of chemical 704 

components and outperform in generating the reanalysis dataset of the five PM2.5 chemical components with high accuracy 705 

and high consistency, thus providing the sufficient channel to investigate the spatiotemporal characteristics, identify the 706 

regional transport and prevent and control aerosol composition pollution. In future work, we plan to research the vertical DA 707 
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of chemical components, introduce more vertical information from more observational platforms, and verify the simultaneous 708 

DA performance of surface and vertical mass concentrations. 709 

 710 
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