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Abstract. Identifying PM2.5 chemical components is cru-
cial for formulating emission strategies, estimating radiative
forcing, and assessing human health effects. However, accu-
rately describing spatiotemporal variations in PM2.5 chemi-
cal components remains a challenge. In our earlier work, we5

developed an aerosol extinction coefficient data assimilation
(DA) system (Nested Air Quality Prediction Model System
with the Parallel Data Assimilation Framework (NAQPMS-
PDAF) v1.0) that was suboptimal for chemical components.
This paper introduces a novel hybrid nonlinear chemical10

DA system (NAQPMS-PDAF v2.0) to accurately interpret
key chemical components (SO2−

4 , NO−3 , NH+4 , OC, and
EC). NAQPMS-PDAF v2.0 improves upon v1.0 by effec-
tively handling and balancing stability and nonlinearity in
chemical DA, which is achieved by incorporating the non-15

Gaussian distribution ensemble perturbation and hybrid lo-
calized Kalman–nonlinear ensemble transform filter with an
adaptive forgetting factor for the first time. The dependence
tests demonstrate that NAQPMS-PDAF v2.0 provides excel-
lent DA results with a minimal ensemble size of 10, surpass-20

ing previous reports and v1.0. A 1-month DA experiment
shows that the analysis field generated by NAQPMS-PDAF
v2.0 is in good agreement with observations, especially in re-
ducing the underestimation of NH+4 and NO−3 and the over-
estimation of SO2−

4 , OC, and EC. In particular, the Pearson25

correlation coefficient (CORR) values for NO−3 , OC, and EC
are above 0.96, and the R2 values are above 0.93. NAQPMS-

PDAF v2.0 also demonstrates superior spatiotemporal in-
terpretation, with most DA sites showing improvements of
over 50 %–200 % in CORR and over 50 %–90 % in RMSE 30

for the five chemical components. Compared to the poor
performance in the global reanalysis dataset (CORR: 0.42–
0.55, RMSE: 4.51–12.27 µg m−3) and NAQPMS-PDAF v1.0
(CORR: 0.35–0.98, RMSE: 2.46–15.50 µg m−3), NAQPMS-
PDAF v2.0 has the highest CORR of 0.86–0.99 and the low- 35

est RMSE of 0.14–3.18 µg m−3. The uncertainties in ensem-
ble DA are also examined, further highlighting the poten-
tial of NAQPMS-PDAF v2.0 for advancing aerosol chemical
component studies.

1 Introduction 40

PM2.5 is a complex mixture of various chemical fractions,
mainly including sulfate (SO2−

4 ), nitrate (NO−3 ), ammo-
nium (NH+4 ), organic carbon (OC), and elemental carbon
(EC). These chemical components exert diverse influences
on the atmospheric environment (Khanna et al., 2018), hu- 45

man health (Bell et al., 2007; Schlesinger, 2007; J. Li et
al., 2022TS2 ; Alves et al., 2023), and climate change (Schult
et al., 1997; Park et al., 2014; Wilcox et al., 2016). How-
ever, current detection technologies, such as direct obser-
vation by sampling and chemical analysis (Zhang et al., 50

2015; Ming et al., 2017), ground-based remote sensing inver-
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sion (Nishizawa et al., 2008, 2011, 2017), and observation-
based machine learning (Lin et al., 2022; Lee et al., 2023;
Li et al., 2025), are insufficient in interpreting spatiotempo-
rally continuous information of PM2.5 chemical components
due to the limited number of observation sites or platforms.5

Although atmospheric chemistry transport models (CTMs)
(Wang et al., 2014, 2015; Jia et al., 2017; Yang et al., 2019;
Li et al., 2020; Lv et al., 2020) are widely used to characterize
the spatiotemporal distribution of multiple chemical species,
they are constrained by uncertainties in initial-boundary con-10

ditions, physiochemical mechanisms, emission inventories,
and meteorological fields (Sax and Isakov, 2003; Mallet and
Sportisse, 2006; Rodriguez et al., 2007; Chang et al., 2015;
Miao et al., 2020; Xie et al., 2022), resulting in notable dis-
crepancies between the model simulations and accurate ob-15

servations.
Data assimilation (DA) offers a solution to integrate the

multi-source observations, CTMs, and their uncertainties
effectively to enhance the simulation and forecasting ca-
pabilities of CTMs. Variational methods (3D-Var/4D-Var)20

(Talagrand and Courtier, 1987), an ensemble Kalman fil-
ter (EnKF) (Evensen, 1994, 2003), EnKF variants (EnKFs)
(Bishop et al., 2001; Tippett et al., 2003; Hunt et al., 2007;
Nerger et al., 2012), and hybrid EnKF–Var methods (Hamill
and Snyder, 2000; Schwartz et al., 2014) are most widely25

applied in DA. However, variational methods have a flow-
independent background error covariance (BEC) with the as-
sumption of isotropic, static, and uniform characteristics, and
they need to develop a tangent linear adjoint model, which
is difficult to practice for complex models. Although EnKFs30

and hybrid EnKF–Var methods have a flow-dependent BEC,
they are sensitive to inadequate ensemble sampling and have
high computational costs. Importantly, these methods cannot
address model nonlinearity and non-Gaussian error distribu-
tion, yielding suboptimal results for DA in highly nonlinear35

CTMs.
Currently, nonlinear filters, such as the particle filter (PF)

(Gordon et al., 1993) and nonlinear ensemble transform filter
(NETF) (Tödter and Ahrens, 2015), have been proposed to
approximate the complete posterior probability distribution40

of model states and provide a better representation of non-
Gaussian information based on Monte Carlo random sam-
pling and Bayesian theory. However, PF is unstable and sus-
ceptible to filter degeneration compared to EnKFs. In a recent
study, Nerger (2022) proposed the hybrid Kalman–nonlinear45

ensemble transform filter (KNETF) to achieve excellent DA
performance in the Lorenz-63 and Lorenz-96 models with
a smaller ensemble size, which combines the stability of
EnKFs and the nonlinearity of NETF (Nerger, 2022). How-
ever, to the authors’ knowledge, this algorithm has not been50

applied to the chemical DA of CTMs.
Studies on chemical DA involve the assimilation of aerosol

optical properties, such as aerosol optical depth (AOD) and
extinction coefficient (EXT), and particulate matter (PM),
such as the mass concentrations of PM2.5 and PM10. The55

common AOD observations for DA include the OMI AOD
(Ali et al., 2013), MODIS AOD (Zhang et al., 2008; Huneeus
et al., 2012, 2013; Rubin and Collins, 2014; Lynch et al.,
2016; Werner et al., 2019; Kumar et al., 2020), AERONET
AOD (Schutgens et al., 2010; Li et al., 2016), sun–sky pho- 60

tometer multiband AOD (Chang et al., 2021), GOCI AOD
(Saide et al., 2014; Luo et al., 2020; Kim et al., 2021), and
Fengyun/Himawari-8 AOD (Bao et al., 2019; Jin et al., 2019;
Xia et al., 2019, 2020). These studies indicated that AOD
observations can enhance the accuracy of aerosol simula- 65

tion and forecast. Compared to AOD, EXT DA effectively
improves the interpretation of aerosol vertical distribution
(Zhang et al., 2014; Cheng et al., 2019; Wang et al., 2022).
Additionally, the simultaneous DA of aerosol optical prop-
erties and PM is widely applied in aerosol studies (Tang et 70

al., 2015; Chai et al., 2017). According to our literature re-
view (Yang et al., 2023), there is currently no DA study on
aerosol chemical components due to the limited DA influ-
ence of PM and AOD on chemical compositions (Chang et
al., 2021) and the limited chemical observations with an ex- 75

tensive spatial range. Moreover, the aerosol chemical com-
ponents exhibit nonlinearity and a non-Gaussian distribution
(Ha, 2022), while current mainstream algorithms, such as
variational methods or EnKFs, are suboptimal for chemical
component DA. 80

In our previous work, we developed an aerosol verti-
cal DA system (NAQPMS-PDAF v1.0) based on EnKFs to
improve the simulation of the extinction coefficient verti-
cal profile (Wang et al., 2022). In this study, we present a
novel hybrid nonlinear DA system (NAQPMS-PDAF v2.0) 85

to interpret various PM2.5 chemical components through on-
line integration of the Parallel Data Assimilation Framework
(PDAF; version 2.1, released on 21 February 2023), Obser-
vation Module Infrastructure (OMI), and Nested Air Qual-
ity Prediction Model System (NAQPMS). We collected 1- 90

month hourly surface observations of five PM2.5 chemical
components (NH+4 , SO2−

4 , NO−3 , OC, and EC) over north-
ern China and the surrounding areas. We utilized the hy-
brid localized Kalman–nonlinear ensemble transform filter
(LKNETF) to generate a high-resolution and high-accuracy 95

reanalysis dataset of PM2.5 chemical components for the first
time. Notably, the ensemble members in NAQPMS-PDAF
v2.0 are generated by perturbing emission species based on
their uncertainties and non-Gaussian distribution assump-
tion. Section 2 briefly introduces NAQPMS and PDAF v2.1 100

with OMI and details the development of NAQPMS-PDAF
v2.0, including the system structure, configuration, ensem-
ble generation, and LKNETF algorithm. The data used in this
study and experimental settings are also described in Sect. 2.
Section 3 presents the DA results, including an evaluation 105

of dependencies, performance, and external comparisons, as
well as a discussion of the ensemble DA uncertainty. Sec-
tion 4 summarizes the conclusions and outlook.
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2 Method and data

2.1 NAQPMS

The Nested Air Quality Prediction Modeling Sys-
tem (NAQPMS), developed by the Institute of Atmospheric
Physics (IAP), Chinese Academy of Sciences (CAS), is5

used to provide background fields for key aerosol chem-
ical components in this study. NAQPMS is a multi-scale
gridded 3D Eulerian chemical transport model based on
continuity equations. The nested grids in the horizontal
direction enable data exchange between different domains.10

Applying terrain-following coordinates in the vertical
direction mitigates numerical calculation errors to enhance
model accuracy. NAQPMS comprises an input section,
a numerical computation section, and an output section.
The input section incorporates static terrain data, emission15

inventories, meteorological fields, and initial-boundary
conditions. The numerical computation section performs
multiple physicochemical process calculations, including
the advection process, eddy diffusion, dry deposition,
wet scavenging, gas-phase chemistry, aqueous chemistry,20

aerosol physicochemical processes (including heterogeneous
reactions at the aerosol surface), and other processes. The
schemes and features of the physicochemical processes are
summarized in Table S1 in the Supplement. The output
section is responsible for model post-processing, data25

diagnostics, and source identification.
NAQPMS is capable of characterizing the 3D spatiotem-

poral distribution of various atmospheric compositions at
global and regional scales and has been widely used in at-
mospheric pollution and chemistry research, such as O3 pol-30

lution (Wang et al., 2001), haze episodes (Wang et al., 2014;
Du et al., 2021), regional transport (Wang et al., 2017, 2019),
source identification (Y. Li et al., 2022), air quality simula-
tion at a global scale (Ye et al., 2021) and an urban-street
scale (Wang et al., 2023), and acid deposition (Ge et al.,35

2014).

2.2 PDAF v2.1 with OMI

The Parallel Data Assimilation Framework (PDAF; https:
//pdaf.awi.de/trac/wiki, last access: 8 March 2024) is an
open-source and high-expandability software developed by40

the Alfred Wegener Institute (AWI) in Germany to integrate
observations, numerical models, and assimilation systems
for DA tasks and is widely applied in numerical models of
meteorology, ocean, land surface, and atmospheric chem-
istry (Kurtz et al., 2016; Nerger et al., 2020; Mingari et45

al., 2022; Strebel et al., 2022; Wang et al., 2022; Yu et al.,
2022). The initial version of PDAF (PDAF v1.0) was re-
leased in 2004. It has undergone continuous improvements
and updates, with major updates including the introduction
of the ensemble transform Kalman filter (ETKF) and its lo-50

calized variant (LETKF) in version 1.6; the implementation

of PDAF-OMI (Observation Module Infrastructure) in ver-
sion 1.16; the integration of 3D-Var methods in version 2.0;
and the incorporation of the hybrid KNETF and its localized
variant (LKNETF) for the first time in version 2.1, which was 55

released in 2023 to handle complex DA situations, such as
nonlinearity of the system and non-Gaussian error distribu-
tion of the model state. Notably, the version of PDAF coupled
in NAQPMS-PDAF v1.0 is PDAF v1.15 (released in 2019),
implying that NAQPMS-PDAF v1.0 has more limited appli- 60

cability and functionality. In this work, PDAF v2.1 is coupled
in NAQPMS-PDAF v2.0.

PDAF has offline and online modes. For the offline mode,
PDAF and the model perform separately without coupling,
obviating the need to modify the model code. For the on- 65

line mode, PDAF is coupled with the model, and model cal-
culation and data assimilation are performed continuously.
Compared to the offline mode, the online coupling has sev-
eral advantages. Firstly, the initialization of PDAF and the
model is integrated, necessitating a single execution rather 70

than two separate executions. Secondly, the model integra-
tion result can be directly passed to PDAF for data assimila-
tion. Additionally, the assimilation result of PDAF can be di-
rectly passed to the model for the next model integration. The
online mode eliminates the need for intermediate steps and 75

improves efficiency. Thirdly, the online mode is controlled
by a main program, which allows for efficient use of several
processors in the high-performance computing cluster. Con-
versely, in the offline mode, PDAF and the model are man-
aged by distinct programs, often with fewer processors avail- 80

able for each program. Therefore, the online-mode PDAF is
used in this study.

PDAF-OMI, an extension of PDAF, provides I/O in-
terfaces for multi-type observations, simplifying user ob-
servation handling by offering generic PDAF-OMI core 85

routines and independent user-supplied routines for each
observational type. The user-supplied routines, namely
init_dim_obs, init_dim_obs_l, obs_op, and localize_covar,
are responsible for reading and writing multi-type obser-
vations, applying corresponding observation operators, and 90

performing covariance localization, respectively. The mod-
ules for all observation types are integrated into call-
back_obs_pdafomi, allowing free combinations between dif-
ferent observation types without interference and facilitating
collaborative DA for various aerosol chemical components. 95

PDAF-OMI was not applied in NAQPMS-PDAF v1.0. Con-
sequently, NAQPMS-PDAF v1.0 cannot switch between dif-
ferent observational type combinations, and users need to de-
fine complete routines for each observation type for the DA
process, resulting in more tedious code writing and higher 100

computational costs in NAQPMS-PDAF v1.0.

https://pdaf.awi.de/trac/wiki
https://pdaf.awi.de/trac/wiki
https://pdaf.awi.de/trac/wiki
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2.3 NAQPMS-PDAF v2.0

2.3.1 Structure of NAQPMS-PDAF v2.0

Figure 1 illustrates the structure (left portion) and main
workflow (right portion) of NAQPMS-PDAF v2.0. As de-
scribed in the left portion of Fig. 1, the observation part in-5

volves the integration of multi-type observations (the purple
cuboids) and the utilization of PDAF-OMI. PDAF-OMI en-
ables the simultaneous access and scheduling of multi-type
and multi-source observations by employing observational
indices, thereby facilitating flexible combinations of obser-10

vations. The ensemble initial fields (the dark blue cuboids)
are crucial inputs for the numerical simulation of NAQPMS.
The ensemble forecast/background fields (the dark yellow
cuboids) are generated by perturbing emission species based
on hypothesized distributions (see Sect. 2.3.3) and perform-15

ing physiochemical calculations in NAQPMS (the green rect-
angles). Then, chemical DA is performed by a novel hybrid
localized nonlinear DA algorithm (LKNETF; see Sect. 2.3.4)
with an adaptive hybrid weight and an adaptive forgetting
factor to generate analysis fields (the orange cuboids) for the20

next realization.
NAQPMS-PDAF v2.0 implements an online coupling be-

tween NAQPMS and PDAF v2.1 with OMI, utilizing a level-
2 parallel computational framework. The level-2 parallel im-
plementation has been described in our previous work (Wang25

et al., 2022). The online coupling ensures the continuous op-
eration of model forecasts and assimilation analysis at each
time step, achieved by directly integrating PDAF routines
into the prototype code of NAQPMS (the right portion of
Fig. 1; the blue represents NAQPMS main routines, while30

the yellow represents PDAF main routines). The level-2 par-
allel computational framework, which utilizes the message
passing interface (MPI) standard, facilitates concurrent pro-
cessing and data exchange among multiple ensemble mem-
bers and parallel computation among model state matrixes35

within each ensemble member, enhancing the efficiency of
ensemble analysis and numerical model computations. For
instance, the operation of 20 ensemble members necessitates
the execution of 20 model tasks, each of which performs
integral calculations on a large model grid. A total of 2040

model tasks can be executed simultaneously at 20 compu-
tational nodes with sufficient computational resources. Each
model task can then perform parallel computation with mul-
tiple processors by splitting the large model grid into multi-
ple sub-grids. As illustrated in the right portion of Fig. 1, the45

workflow of NAQPMS-PDAF v2.0 is outlined as follows:

– Step 1. The init_system module initializes NAQPMS by
defining all model state variables; allocating numerical
matrixes; and configuring parameters, the I/O of meteo-
rological fields, and emission input.50

– Step 2. The init_parallel module initializes MPI
(MPI_ COMM_WORLD) and the model communi-

cator (MPI_COMM_MODEL), their number of pro-
cesses, and the rank of a process, followed by
init_parallel_pdaf, which initializes MPI communica- 55

tors for the model tasks, the filter tasks, and the coupling
between model and filter tasks.

– Step 3. The initialize module initializes the parameters
of the target field, including spatiotemporal dimensions
(longitude, latitude, and time steps) and variable dimen- 60

sions.

– Step 4. The init_pdaf module initializes PDAF vari-
ables, such as the local state dimension, global state di-
mension, and settings for analysis steps.

– Step 5. In this step, the time loop of the forecast and 65

the analysis are performed. The convert_field module
is employed to match the matrix storage rule of the
target field between NAQPMS and PDAF to ensure
compatibility. The field2var module collects the anal-
ysis field/initial field and establishes a relationship be- 70

tween the initial field/analysis field and sub-variables in
NAQPMS. Subsequently, the analysis field values are
allocated to the corresponding NAQPMS sub-variables,
and then the NAQPMS_processes module performs the
forecast. Afterwards, the var2field module, the inverse 75

of the field2var module, assigns the NAQPMS sub-
variables to the forecast field/background field. Finally,
the assimilate_pdaf module assimilates the target field
with observations to generate an analysis field for the
next iteration. 80

– Step 6. The post-processing module is responsible for
finalizing NAQPMS-PDAF, data analysis, and DA eval-
uation.

2.3.2 Configurations

The meteorological field for NAQPMS is provided by 85

the Weather Research and Forecasting model version 4.0
(WRFv4.0; https://www.mmm.ucar.edu/models/wrf, last ac-
cess: 26 March 2023). The initial-boundary conditions for
WRF are obtained from the NCEP Global Data Assimilation
System (GDAS) Final analysis (https://rda.ucar.edu/datasets/ 90

ds083.3/, last access: 26 March 2023), with a horizontal reso-
lution of 0.25°× 0.25° and a temporal resolution of 6 h, pro-
duced by GDAS. The land use data for WRF were updated by
USGS’s MCD12Q1 v006 in 2019 (https://lpdaac.usgs.gov/
products/mcd12q1v006/, last access: 14 January 2022) with 95

20 categories. Three nested model domains are conducted
with horizontal resolutions of 45 km in the East Asia region
(domain 1), 15 km in most areas of China except for the west-
ern area (domain 2), and 5 km in the northern China region
(domain 3, target research region). WRF and NAQPMS have 100

40 vertical layers with 27 layers within 2 km. The parameter-
ization schemes for physical processes in WRF are shown
in Table S2. The boundary condition input for NAQPMS

https://www.mmm.ucar.edu/models/wrf
https://rda.ucar.edu/datasets/ds083.3/
https://rda.ucar.edu/datasets/ds083.3/
https://rda.ucar.edu/datasets/ds083.3/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
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Figure 1. The structure of NAQPMS-PDAF v2.0. (left) The purple cuboids represent the multi-type observations, the dark blue cuboids
represent the initial fields, the dark yellow cuboids represent the forecast or background fields, and the orange cuboids represent the analysis
fields. Ens.1st represents the first ensemble member, and Ens.Nth represents the N th ensemble member. (right) The main workflow in
NAQPMS-PDAF v2.0, where the blue rectangles represent the modules in NAQPMS, and the yellow rectangles represent the modules in
PDAF).

is provided by the Model for OZone And Related chemical
Tracers version 2.4 (MOZART v2.4) global chemistry trans-
port model (Horowitz et al., 2003). The anthropogenic emis-
sions for NAQPMS are from Tsinghua University’s 2016
Multi-resolution Emission Inventory for China (MEIC; http:5

//www.meicmodel.org/, last access: 11 March 2023) with
a spatial resolution of 0.25°× 0.25°, including residential
sources, transportation sources, agricultural sources, indus-
trial sources, and power plant sources. The computational
platform is the high-performance supercomputer subsystem10

cluster with 320 computation nodes, a total of 12 800 pro-
cessors, and about 153 TB memory on the Big Data Cloud
Service Infrastructure Platform (BDCSIP), which meets the
demand of NAQPMS-PDAF v2.0 for high-performance par-
allel computing.15

The model state variables include NH+4 , SO2−
4 , NO−3 , OC,

EC, Na+, brown carbon, soil PM2.5, soil PM10, sea salt, fine
dust, coarse dust, SO2, NO2, and RH. As shown in Fig. 2,
the model state has a 4D structure with a longitudinal dimen-
sion (ix TS3 , 300 grids), latitudinal dimension (iy TS4 , 24920

grids), variable dimension (ivarTS5 , 15), and vertical dimen-
sion (izTS6 , 40 layers), in that order. The 4D model state with
15 variables is converted to a 2D state matrix in PDAF; the

number of grids in the horizontal-axis direction is ix, and the
number of grids in the vertical-axis direction is iy× ivar×iz. 25

Notably, the 2D state matrix coordinate index contains 3D in-
formation for each variable to implement the horizontal and
vertical domain localization separately because the horizon-
tal and vertical resolutions are not uniform. This structure
has two advantages. First, the parallel cutting of the horizon- 30

tal axis enables the local domain to retain the full dimen-
sional information (ix_p× iy× ivar× iz, where ix_pTS7 is
the longitudinal dimension of the local domain). Second, the
localization in the local domain permits the analysis to be
executed only within a small domain (ix_p× iy) when the 35

length of the horizontal localization radius (Rs) is smaller
than iy, effectively reducing the influence of spurious cor-
relations between different state variables. In this study, we
set the horizontal and vertical domain localization radius to
200 km (40 grids) and one layer. Additionally, we further im- 40

plement the observation localization to consider the influence
of distance between the analysis grid and observational grid
(see Sect. 2.3.4). To minimize computational complexity, the
observation errors were assumed to be spatially isotropic,
with 0.40, 1.00, 0.50, 3.00, and 0.50 µg m−3 for NH+4 , SO2−

4 , 45

NO−3 , OC, and EC, respectively.

http://www.meicmodel.org/
http://www.meicmodel.org/
http://www.meicmodel.org/
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Figure 2. The structure of state variables in NAQPMS-PDAF v2.0.

2.3.3 Generation of ensemble members

In ensemble DA, ensemble members interpret the uncertainty
in the model or system, characterized by BEC, which sig-
nificantly impacts the DA performance (Dai et al., 2014).
For CTMs, emission input directly influences the chemical5

calculation and substantially contributes to the uncertainty.
Perturbing emission input can effectively represent the un-
certainty in aerosol emissions and enhance the consistency
of ensemble error spread, thereby improving aerosol DA
(Huang et al., 2023). CTMs are nonlinear, and model state er-10

rors are non-Gaussian distributions. To obtain non-Gaussian
error distributions, we followed the Kong et al. (2021)
method to assume that the emission errors are spatially cor-
related by an isotropic correlation model with a decorrela-
tion length of 150 km and to generate perturbation coefficient15

matrixes with the same Gaussian distribution as the emis-
sion species, which are subsequently transformed into non-
Gaussian distribution matrixes through non-Gaussian pro-
cess generation v1.2 (Cheynet, 2023).

The target PM2.5 chemical components are NH+4 , SO2−
4 ,20

NO−3 , OC, and EC. The perturbed emission species that
can directly or indirectly affect the component concentra-
tion calculations include SO2, NOx , VOCs , NH3, CO, PM10,
PM2.5, EC, and OC, with the corresponding uncertainties (δ)
listed in Table 1. As shown in Eq. (1), the original emis-25

sion input matrix (Ep TS8 ) is multiplied by the corresponding
perturbation coefficient matrix (TS9θ i) to generate the per-
turbed emission input matrix (Ei) for each emission species.
The calculation of the perturbation coefficient matrix (θ i)
is followed by Eqs. (2)–(3). Firstly, N TS10 2D pseudoran-30

dom perturbation fields (Pi) are created using Evensen’s
method (Evensen, 1994). The uncertainties (δ) in the emis-
sion species are incorporated into the 2D pseudorandom per-
turbation fields (Pi) to obtain the final perturbation coeffi-

cient matrixes (θ i). Finally, the Gaussian distribution pertur- 35

bation coefficient matrixes (θ i) were transformed into non-
Gaussian distribution coefficient matrixes with a given target
skewness (set to 1) and kurtosis (set to 6) by non-Gaussian
process generation v1.2, which employs the moment-based
Hermite transformation model and a cubic transformation. 40

Ei = Ep× θ i, i = 1,2, . . .,N (1)

lnθoi =
( (

Pi − 1
N
×
∑N
i=1Pi

)
√

1
N
×
∑N
i=1(Pi −

1
N
×
∑N
i=1Pi)2

−
1
2
× ln(1+ δ2)

)
×

√
ln(1+ δ2) (2)

θ i =

(
θoi −

1
N
×
∑N
i=1θoi

)
√

1
N
×
∑N
i=1

(
θoi −

1
N
×
∑N
i=1θoi

)2

×

(
1
N
×

∑N

i=1
θoi

)
× δ+

1
N
×

∑N

i=1
θoi (3)

Notably, all matrix operations involved are Schur products.
Here, Ei denotes the ith ensemble perturbed emission input 45

matrix, Ep indicates the original unperturbed emission input
matrix, and θ i represents the ith ensemble perturbation co-
efficient matrix. θoi is the ith ensemble original perturbation
coefficient matrix, which is obtained by mathematical trans-
formation of the ith ensemble pseudorandom perturbation 50

matrix Pi , including standardization and scaling by uncer-
tainty (δ), as well as a logarithm.
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Table 1. The uncertainties in emission species in NAQPMS-PDAF v2.0.

Species SO2 NOx VOCs NH3 CO PM10 PM2.5 EC OC

Uncertainty δ 2.00 0.31 0.68 0.53 0.70 1.32 1.30 2.08 2.58

2.3.4 Hybrid nonlinear DA algorithm with adaptive
forgetting factor

To thoroughly integrate the stability of EnKFs with the non-
linearity of nonlinear filters and be ideal for the nonlinear and
non-Gaussian distribution situations, the hybrid LKNETF is5

used in this study. This section reviews the algorithms of
LETKF, LNETF, and their combination (LKNETF).

ETKF, a deterministic filter in EnKFs, efficiently ob-
tains analysis samples using a transformation matrix and the
square root of the forecast error covariance (Bishop et al.,10

2001). In contrast to stochastic filters in EnKFs, ETKF pre-
vents underestimation of the analysis error covariance result-
ing from the random observation perturbations. And it is par-
ticularly applicable in situations with small ensemble sizes
(Lawson and Hansen, 2004). The realization of ETKF can be15

divided into the forecast and analysis steps.
In the forecast step, the forecast state vector (xf

t ) at t is
generated by numerical model (M) integration of the analy-
sis state vector (xa

t−1) at t − 1. The forecast error covariance
matrix (Pf

t ) can be calculated by the perturbation of the fore-20

cast ensemble (Xf′
t ):TS11

xf
t =M

(
xa
t−1
)
, Xf

t = [x
f
1t , x

f
2t , . . ., x

f
Kt
], (4)

Pf
t = Xf′

t Xf′
t

T
, (5)

where Xf
t is the forecast ensemble at t , and K is the number

of ensemble members. Xf′
t is the perturbation of the forecast25

ensemble at t , calculated by Xf
t , and the forecast ensemble

mean Xf
t at t .

In the analysis step, the forecast error covariance matrix
(Pf
t ) at t is transformed to the analysis error covariance matrix

(Pa
t ) at t by a transform matrix (T):30

Pa
t = Xf′

t TXf′
t

T
. (6)

The transform matrix (T) is defined as follows and can be
decomposed to a left singular vector matrix (U), a singu-
lar value matrix (S), and a right singular vector matrix (V)
through the singular value decomposition:35

T−1
= ρadaptive (K − 1)I+ (HXf′

t )
T(L ·R−1)HXf′

t = USV, (7)

ρadaptive =
σ 2

ens

σ 2
resid− σ

2
obs
, (8)

where ρadaptive is an adaptive forgetting factor used for the
inflation of error covariance estimation (the initial ρadaptive is

set to 0.9 in this study). σ 2
ens is the mean ensemble variance, 40

σ 2
resid is the mean of the observation-minus-forecast residual,

and σ 2
obs is the mean observation variance. I is the identity

matrix. H is the observation operator. L is the localization
matrix, a weight matrix calculated by the fifth-order polyno-
mial (Nerger, 2015), implemented in LETKF for observation 45

localization analysis to avoid observational spurious correla-
tion and filter divergence effectively (Hunt et al., 2007). R is
the observation error covariance matrix.

The analysis state vector (xa
t ) at t is calculated by the fore-

cast state vector (xf
t ) at t , the perturbation of the forecast en- 50

semble (Xf′
t ) at t , and a weight vector (w):

xa
t = x

f
t +Xf′

t w. (9)

The weight vector (w) is given by the following equation:

w = T(HXf′
t )

T(L ·R−1)(y−Hxf
t ), (10)

where y is observations. 55

The analysis ensemble (Xa
t ) at t can be obtained by the

analysis ensemble mean (Xf
t TS12 ) at t , the perturbation of the

forecast ensemble (Xf′
t ) at t , and a transform matrix (C) rep-

resented by the symmetric square root of T:TS13

Xa
t = Xf

t +
√
K − 1Xf′

t C. (11) 60

The transform matrix (C) is calculated as follows:

C= US−
1
2 UT. (12)

NETF is a second-order exact ensemble square root filter
effectively applied to the nonlinear and non-Gaussian DA
(Tödter and Ahrens, 2015). Like PF, NETF indirectly updates 65

the model state by using observations to affect the weights
of the prior ensemble. However, PF and NETF differ in the
sampling method. PF utilizes the Monte Carlo and Bayesian
approaches to calculate particle weights based on observa-
tions, which are then used to generate the analysis ensem- 70

ble by weighting the resampling forecast ensemble. In high-
dimensional systems, as the DA progresses, the weight dif-
ferences among particles increase, with most particles hav-
ing weights close to 0, leading to filter degeneration. In con-
trast, NETF generates the analysis ensemble through a de- 75

terministic matrix square root transformation of the fore-
cast ensemble, where the mean and covariance matrix of
the analysis ensemble match the weighted values in PF (as
shown in Eqs. 13–14). Due to the similarity between NETF
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and ETKF, the localization can be implemented in NETF
(LNETF) (Tödter et al., 2016).

xa
=

1
K

∑K

i=1
xa
i =

1
K

∑K

i=1
wix

f
i (13)

Here, xa is the analysis state vector mean, K is the number
of ensemble members, xa

i is the ith analysis state vector, wi5

is the ith particle weight in PF (which is calculated by the

Bayesian method wi =
p
(
y|xf

i

)
p(y) )TS14 , y is the observations,

and xf
i is the ith forecast state vector.

Pa
=

1
K − 1

∑K

i=1
(xa
i − x

a)(xa
i − x

a)T

=

∑K

i=K
wi(xf

i − x
f)(xf

i − x
f)T (14)

Here, Pa is the error covariance matrix of the analysis ensem-10

ble, calculated by the perturbation of the analysis ensemble.
In NETF, A acts as a transform matrix like the transform

matrix (T) in ETKF, which can be obtained from the weight
vector (w).TS15 TS16

Pa
= Xf′AXf′T (15)15

A
1
2 =

(
W−wwT) 1

2 = VD
1
2 VT (16)

Here, the matrix W≡ diag(w) is defined as a diagonal ma-
trix created from the weight vector (w). A can be decom-
posed (A= VDVT) by a singular value decomposition as it
is a real, symmetric, positive semidefinite matrix. V is the20

orthogonal matrix, and D is a diagonal matrix.
Then, the perturbation of the analysis ensemble (Xa′ ) and

the analysis ensemble (Xa) can be obtained by applying the
square root of A as a transform matrix:

Xa′
=
√
KXf′A

1
2 , (17)25

Xa
= Xf
+Xf′

(
W+
√
KA

1
2

)
. (18)

LKNETF combines LETKF and LNETF through a hybrid
weight γ to perform better in systems with different non-
linearity degrees and to be implemented in situations with
smaller ensemble sizes (Nerger, 2022). When γ approaches30

1, the analysis increment (1XLETKF) computed by LETKF
becomes more significant and appropriate for linear systems
with Gaussian distributions. Conversely, when γ approaches
0, the analysis increment (1XLNETF) computed by LNETF
becomes more significant and appropriate for nonlinear sys-35

tems with non-Gaussian distributions. The one-step update
scheme is used in this study.

Xa
HSync = Xf

+ (1− γ )1XLNETF+ γ1XLETKF (19)

2.4 Data

2.4.1 Observation 40

A total of 1 month’s (February 2022) hourly mass concentra-
tion observations of five PM2.5 chemical components (NH+4 ,
SO2−

4 , NO−3 , OC, and EC) from 33 ground-based sites in
northern China and the surrounding areas were collected for
this work (Fig. 3). Out of the 33 sites, 24 (DA sites) were 45

utilized for DA and internal validation, and the remaining
9 (VE sites) were used for independent verification to as-
sess the influence of DA sites on neighboring areas. These
sites were divided using the K-means clustering algorithm
(Lloyd, 1982; Arthur and Vassilvitskii, 2007). The Supple- 50

ment provides a detailed description (Sect. S1). PM2.5 hourly
observations from the China National Environmental Moni-
toring Centre (CNEMC; http://www.cnemc.cn/, last access:
1 November 2023) were employed to assess the overall mass
concentration of PM2.5 chemical components in NAQPMS- 55

PDAF v2.0. Due to incomplete spatial overlap between the
PM2.5 sites and the chemical component sites, the PM2.5
sites were selected based on the closest Euclidean distance
between PM2.5 sites and chemical component sites.

2.4.2 Global reanalysis dataset 60

The global reanalysis datasets of PM2.5 chemical compo-
nents in February 2022 were obtained from the Coperni-
cus Atmosphere Monitoring Service ReAnalysis (CAMSRA;
0.75°× 0.75°) (Inness et al., 2019) and the Modern-Era Ret-
rospective analysis for Research and Applications, Version 2 65

(MERRA-2; 0.5°× 0.625°) (Randles et al., 2017) to com-
pare with the reanalysis dataset generated by NAQPMS-
PDAF v2.0. For the data consistency, the global reanalysis
surface grid data located in the observation sites of the PM2.5
chemical component were extracted through the k-nearest- 70

neighbor search method (Friedman et al., 1977), which can
efficiently match grid points and observation sites based on
latitude and longitude data and Euclidean distances. Our
3-hourly NAQPMS-PDAF v2.0 output of NO−3 and NH+4
was extracted to compare with the CAMSRA dataset, and 75

hourly NAQPMS-PDAF v2.0 output of SO2−
4 , OC, and EC

was extracted to compare with the MERRA-2 M2T1NXAER
dataset.

2.5 Experimental setting and evaluation method

In our study, four tests were conducted to evaluate the per- 80

formance of NAQPMS-PDAF v2.0 with hourly observations
of five PM2.5 chemical components, including (1) the de-
pendence on ensemble size and assimilation frequency, (2)
the ability to interpret mass concentration and spatiotempo-
ral characteristics, (3) the quality of output data compared to 85

other reanalysis datasets, and (4) the uncertainty in ensem-
ble assimilation. In practice, the ratio of the ensemble size to
the number of processes – 1 : 50 – in high-performance com-

http://www.cnemc.cn/
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Figure 3. The model domains in the WRF simulation (a) and the location of the observations (b). Domain 3 in (a) is the target area of this
study. The 24 red sites in (b) represent the sites for data assimilation, and the 9 green sites in (b) represent the sites for independent spatial
validation. The topographic dataset is from the ETOPO1 1 arcmin global relief model, taken from the National Geophysical Data Center
(NOAA National Geophysical Data Center, 2009TS17 ).

puters was the optimal parallel scheme to balance computing
efficiency and computing resources (Wang et al., 2022).

All the tests were run in NAQPMS-PDAF v2.0 after a spin-
up experiment with 24 time steps from 00:00 to 23:00 (LST)
on 1 February 2022. (1) For the first test, we assimilated the5

hourly observations of five PM2.5 chemical components from
all sites with 48 time steps from 00:00 (LST) on 2 February
to 23:00 (LST) on 3 February 2022. In the first scenario, we
controlled a fixed assimilation frequency of 1 h and changed
the ensemble size to 2, 5, 10, 15, 20, 30, 40, and 50. In the10

second scenario, we controlled a fixed ensemble size of 20
and changed the assimilation frequency to 1, 2, 3, 4, 5, 6, 8,
and 12 h. (2) For the second test, we set an ensemble size of
20 and an assimilation frequency of 1 h and assimilated the
hourly observations of five PM2.5 chemical components from15

DA sites with 648 time steps from 00:00 (LST) on 2 Febru-
ary to 23:00 (LST) on 28 February 2022. We also conducted
a free-running (FR) experiment without assimilation in the
same period for comparison. (3) For the third test, we fol-
lowed the settings in the second test but assimilated the ob-20

servation from all sites to generate a high-quality reanalysis
dataset of five PM2.5 chemical components. (4) The final test
was analogous to the first test but with a distinct scenario de-
signed to examine the influence of ensemble perturbation on
ensemble assimilation. From Table 2, we fixed species un-25

certainty (M4TS18 setting) with five distribution types in the
first scenario and fixed distribution type (T2 setting) with five
SO2 uncertainties in the second.

We used the continuous ranked probability score (CRPS)
to evaluate ensemble size dependency, which measures the30

consistency between the ensemble forecast distribution and
corresponding observations (Jolliffe and Stephenson, 2012).
The calculation rules are referred to in Hersbach’s study
(Hersbach, 2000). Moreover, four common statistical indica-
tors, the Pearson correlation coefficient (CORR), root mean35

square error (RMSE), mean absolute error (MAE), and coef-
ficient of determination (R2), were used to assess the DA sys-
tem performance in interpreting PM2.5 chemical components

Table 2. The experiment settings for emission perturbation.

Experiment Distribution (fixed species uncertainty)

T1 Gaussian
T2 Non-Gaussian (m3= 1, m4=6)
T3 Non-Gaussian (m3=−1, m4= 6)
T4 Non-Gaussian (m3= 1, m4= 12)
T5 Non-Gaussian (m3=−1, m4= 12)

SO2 uncertainty (fixed distribution)

M1 12 %
M2 50 %
M3 100 %
M4 200 %
M5 300 %

(SO2−
4 , NO−3 , NH+4 , OC, and EC). The CORR measures the

correlation between the system outputs and corresponding 40

observations, the RMSE and MAE indicate the overall sys-
tem accuracy, and theR2 reflects the proportion of variability
in the observations explained by the assimilation system.

3 Results and discussion

3.1 The dependence on ensemble size and assimilation 45

frequency for five components

Ensemble size is a crucial parameter in ensemble assimi-
lation, determining the model state’s uncertainty range. A
larger ensemble size more accurately represents the error dis-
tribution of state variables but requires considerable comput- 50

ing resources and time, especially for high-dimensional sys-
tems. A smaller ensemble size can easily lead to underes-
timating the error covariance matrix, especially for the fine-
resolution model (Kong et al., 2021). Thus, identifying an ap-
propriate ensemble size to balance computational efficiency 55

and accuracy is the primary step in ensemble DA. Our prior
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study (NAQPMS-PDAF v1.0) only evaluated the correla-
tion between ensemble size and parallel efficiency and con-
cluded that the ratio of ensemble size to high-performance
computing processors was 1 : 50 (Wang et al., 2022), while
the impact of ensemble size on the accuracy and compu-5

tational efficiency was neglected. This study assesses the
NAQPMS-PDAF v2.0 dependency on ensemble size through
three statistical indicators (CRPS, RMSE, and CORR). Fig-
ure 4 shows the mean CRPS, RMSE, and CORR values and
the statistical averages of the elapsed time over 48 time steps10

with the ensemble sizes of 2, 5, 10, 15, 20, 30, 40, and 50.
From Fig. 4a, when the ensemble size is at its minimum

level of 2, the mean CRPS values of the five PM2.5 chem-
ical components are more significant, with NO−3 exhibit-
ing the most considerable difference between the simulation15

distribution and observations (more than 4). With each in-
crease in ensemble size, the mean CRPS values of the five
chemical components progressively reduce and eventually
reach convergence when the ensemble size is 10, implying
that a hybrid nonlinear filter can maintain high accuracy and20

reliability in ensemble assimilation with an ensemble size
that is smaller than the traditional minimum of 20 ensemble
members, as observed in prior ensemble assimilation studies
(Constantinescu et al., 2007; Miyazaki et al., 2012; Schwartz
et al., 2014; Rubin et al., 2017; Kong et al., 2021; Tsikerdekis25

et al., 2021; Wang et al., 2022), including NAQPMS-PDAF
v1.0. The mean CRPS value of EC is the lowest among
the five chemical components, indicating the highest accu-
racy and reliability of EC ensemble DA. The performance of
other components is similar. Like CRPS values, the values30

of RMSE and CORR decrease and increase, respectively, as
the ensemble size increases, and convergence begins to occur
when the ensemble size is 10 (Fig. 4b and c). Compared with
other chemical components, the CORR value of SO2−

4 is sig-
nificantly lower, less than 0.8, possibly due to its estimated35

background field error covariance driven by the inadequate
ensemble perturbations. Therefore, in the Discussion section,
we discuss the uncertainties in ensemble perturbations.

Figure 4d shows the time required for the four pro-
cesses of ensemble assimilation under different ensemble40

sizes, including initialization, model integration, assimila-
tion, and post-processing. The model integration process in
NAQPMS-PDAF v2.0 takes the longest, followed by post-
processing, initialization, and assimilation. The required time
for initialization and post-processing increases with increas-45

ing ensemble size, while for model integration and assim-
ilation, except for ensemble size 30, the required time is
the same under different ensemble sizes. Generally, the time
needed for ensemble sizes of 30–50 is considerably higher
than that for smaller ones. Although convergence occurs with50

an ensemble size of 10, our work illustrates a similar time
required between ensemble sizes 10 and 20. Consequently,
we selected an ensemble size of 20 to ensure optimal perfor-
mance of NAQPMS-PDAF v2.0, considering both assimila-
tion efficiency and accuracy.55

The assimilation frequency is the interval at which obser-
vational data are introduced into the DA system, directly af-
fecting the practical assimilation data volume and compu-
tation cost. High-frequency DA with high-quality observa-
tions is crucial for improving numerical simulations and fore- 60

casts (Liu et al., 2021). Figure 5 demonstrates that the MAE
values of the five chemical component analysis fields range
from 0.02 to 0.12 µg m−3, RMSE values range from 0.23 to
2.61 µg m−3, and CORR values range from 0.71 to 0.98 at
a 1 h assimilation time interval, which is significantly bet- 65

ter than the statistical indicators at lower assimilation fre-
quencies. Even at a 2 h assimilation frequency, the assimi-
lation effect drops sharply compared to the 1 h interval, es-
pecially for NO−3 , OC, and EC. The values of MAE and
RMSE increase by 2.6–5.82 and 4.72–9.57 µg m−3, respec- 70

tively, and the CORR values decrease by 0.27–0.81. Grad-
ual increasing trends in MAE and RMSE values and a slight
decreasing trend in CORR values are observed as the assim-
ilation frequency decreases from the 2 h interval. Therefore,
the fast-updating assimilation with a 1 h interval significantly 75

improves the NAQPMS simulation. For the forecasting field
(Fig. S2), the low sensitivity of state variables to assimila-
tion frequency suggests that NAQPMS-PDAF v2.0 can ap-
propriately reduce assimilation frequency during the actual
forecasting phase, lowering the demand for high-temporal- 80

resolution observations and computational resources.

3.2 Evaluation of NAQPMS-PDAF v2.0 performance

3.2.1 Overall validation of DA results

We conducted a control experiment (free-running (FR) field)
without any DA and with a DA experiment. This section ver- 85

ifies the forecast (FOR) field and analysis (ANA) field at 24
DA sites and 9 VE sites, respectively. Figure 6 shows the
scatter distribution of observations and simulations at DA
sites. For the FR field (Fig. 6a1–a5), five chemical compo-
nents have CORR values ranging from 0.32 to 0.56, and R2

90

values do not exceed 0.3, indicating poor consistency be-
tween observations and simulations. In detail, the simulated
mass concentrations of SO2−

4 , OC, and EC are significantly
overestimated, while the simulated concentrations of NH+4
and NO−3 are underestimated. OC has the most significant er- 95

ror, with an RMSE value of 25.84 µg m−3 and an MAE value
of 19.41 µg m−3. Moreover, the error distributions of SO2−

4 ,
NO−3 , and NH+4 are close to a symmetric distribution with a
mean value of 0, while the error distributions of OC and EC
are skewed to the left from the mean value of 0 (Fig. 7a1– 100

a5), showing the relatively better simulations in SO2−
4 , NO−3 ,

and NH+4 than in OC and EC. Overall, NAQPMS cannot in-
terpret the mass concentrations of the five chemical compo-
nents with significant errors, mainly due to the uncertainties
in chemical mechanisms (Miao et al., 2020). 105

After DA, FOR shows a slight improvement with a slight
increase in CORR and R2 and a decrease in RMSE and
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Figure 4. Assessment of ensemble size dependency based on mean continuous ranked probability score (CRPS) (a), root mean square error
(RMSE) (b), correlation coefficient (CORR) (c), and time (d).

Figure 5. Assessment of assimilation interval dependency based on mean absolute error (MAE) (a), root mean square error (RMSE) (b), and
correlation coefficient (CORR) (c) at the analysis step.

MAE, especially for NH+4 and NO−3 (Fig. 6b1–b5). Although
SO2−

4 , OC, and EC are significantly overestimated with a
slight decrease in CORR and R2, the RMSE and MAE val-
ues decrease. Additionally, the error distributions of the five
chemical components are concentrated at 0, and the overesti-5

mation of OC and EC has been improved compared to FR
(Fig. 7b1–b5). These results indicate that DA reduces the
overall FOR errors in NAQPMS due to improved forecast-
ing ability by obtaining optimal initial fields. However, fur-

ther improvements are necessary to address the NAQPMS 10

uncertainties in emission sources, meteorological input, and
imperfect physiochemical mechanisms. For ANA (Fig. 6c1–
c5), DA significantly improves the simulations of the five
chemical components, making the ANA consistent with the
observations. The CORR values are not less than 0.86; the 15

RMSE and MAE values do not exceed 3.23 and 1.49 µg m−3,
respectively; and the R2 values are not less than 0.74. Specif-
ically, the CORR values for NO−3 , OC, and EC are not less
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Figure 6. Scatterplots of the DA site simulations versus the DA site observations with probability density for the free-running (FR) field
(a1–a5), forecast (FOR) field (b1–b5), and analysis (ANA) field (c1–c5). The stippled gray lines represent the 2 : 1, 1 : 1, and 1 : 2 lines, and
the solid red line represents the fitting regression line.

Figure 7. Probability distributions of bias between DA site observations and DA site simulations for the free-running (FR) field (a1–a5),
forecast (FOR) field (b1–b5), and analysis (ANA) field (c1–c5).

than 0.96, and the R2 values are not less than 0.93. The er-
ror distributions of the five chemical components concen-
trate to 0, with the mean bias ranging from 0± 0.08 to
1.02± 3.07 µg m−3 (Fig. 7c1–c5). The results of VE sites
show similar characteristics to the DA sites (Figs. S3 and S4).5

Compared to FR, the overall errors of the FOR and ANA for
the five chemical components decrease with a significant im-
provement in ANA, showing that the CORR values of NH+4
and NO−3 increase by 0.15 and 0.45, respectively; the R2

values of NH+4 and NO−3 increase by 0.22 and 0.81, respec- 10
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tively; and the RMSE values of OC and EC decrease by 21.77
and 17.79 µg m−3, respectively. Overall, the FOR and ANA
errors decreased significantly. The ANA of the five chemical
components at DA sites is almost entirely consistent with the
observations, indicating excellent DA performance.5

3.2.2 Assessment of temporal variation in chemical
components

The ensemble DA employs a cyclic updating process wherein
the forecast and analysis steps are continuously completed
at each iteration (Evensen, 2003; Houtekamer and Zhang,10

2016). In the forecast step, the ANA at the current time step
serves as the optimal initial field to advance the model in-
tegration and obtain the FOR at the next step. In the analy-
sis step, the FOR at the next time step provides background
field information for the subsequent DA analysis to gener-15

ate the ANA at the next time step. The FOR and ANA in-
teract with each other in the temporal dimension. There-
fore, in this section, we assess the ability of NAQPMS-PDAF
v2.0 to interpret the temporal variations in the five chemical
components. Figure 8 illustrates the time series of the five20

chemical components at two representative sites, including
a DA site in Tianjin and a VE site in Heze. For the DA site
(Fig. 8a), the temporal variations in NH+4 and NO−3 in FR
and FOR exhibit better agreement with the observed tem-
poral variations (OBS) than those of SO2−

4 , OC, and EC.25

However, NH+4 and NO−3 mass concentrations are signif-
icantly lower than the high-value mass concentrations ob-
served on 25 February. The mass concentration of SO2−

4 in
FR is greatly overestimated during the periods of 8–11, 18–
19, and 24–25 FebruaryTS19 . The mass concentrations of OC30

and EC in FR are overestimated throughout February with
substantial temporal fluctuations. Although the time series of
SO2−

4 , OC, and EC in FOR show some improvement, no-
ticeable differences from the OBS are still apparent. After
DA, the ANA time series for the five chemical components35

align well with the OBS, indicating good consistency and
accurate representation of temporal characteristics, such as
the NH4NO3 pollution captured on 25 February. Notably, the
mass concentrations of SO2−

4 , NO−3 , and NH+4 peaked on 8–
11 and 25 FebruaryTS20 , indicating intensified atmospheric40

secondary chemical reactions, primarily due to neutralization
reactions of acidic pollutants capturing NH3. The temporal
variations in NH+4 and NO−3 are more similar because at-
mospheric NO−3 mainly exists as NH4NO3 rather than other
metal nitrates, and NH4NO3 can form before the complete45

neutralization of H2SO4 (Ge et al., 2017). The improvements
at the VE site (Fig. 8b) are like those at the DA site, with
the ANA time series of the five chemical components show-
ing closer agreement with the OBS, which suggests that the
localization analysis in DA effectively facilitates the prop-50

agation of observations within a specific spatial range and
mitigates the assimilation anomalies caused by spurious cor-
relations from the distant sites (Hunt et al., 2007).

NH+4 , SO2−
4 , NO−3 , OC, and EC are critical chemical com-

ponents of PM2.5, and the sum of their mass concentra- 55

tions can be approximated as the PM2.5 mass concentration.
We further assessed the simulation enhancement of PM2.5
time series based on ground-level PM2.5 observations. Six
representative sites were selected, including three DA sites
(Fig. 9a1–a3) and three VE sites (Fig. 9b1–b3). The FR and 60

FOR in DA and VE sites show significant overestimation and
poor consistency with the OBS, mainly due to the overesti-
mation of OC and EC mass concentrations. Conversely, the
PM2.5 time series in ANA closely matches that of the OBS,
accurately capturing the actual variation in PM2.5. In some 65

specific instances, such as on 26 February at 00:00 in Tian-
jin and Langfang, the peak value of ANA was lower than
that of the OBS, which could be attributed to the negligence
of other PM2.5 components (such as mineral dust and sea
salt) and the inconsistency in location between ground-level 70

PM2.5 observational sites and chemical component observa-
tional sites. Overall, the DA of chemical component obser-
vations significantly enhanced the simulation of PM2.5 time
series in NAQPMS. Compared to the CORR values of FR
and FOR, the CORR values of ANA at the six representative 75

sites increased by 13.64 %–89.58 % and 17.19 %–75.00 %,
while the RMSE values decreased by 56.03 %–83.13 % and
40.74 %–72.20 % (Table S3).

3.2.3 Assessment of spatial distribution in chemical
components 80

DA can improve the interpretation of model states in the anal-
ysis domain by using a limited number of observations. The
ability to represent spatial distribution accurately is a crucial
function for aerosol DA. Figure 10 displays the spatial dis-
tribution of the monthly average mass concentrations for the 85

five chemical components, including OBS, FR, FOR, ANA,
and analysis increment (INC). The spatial distributions of
bias and statistical indicators for FR, FOR, and ANA are
shown in Figs. 11 and 12, respectively.

The spatial characteristics of NH+4 and NO−3 are similar. 90

Compared to the OBS (Fig. 10a1 and c1), the FR (Fig. 10a2
and c2) and FOR (Fig. 10a3 and c3) have failed to cap-
ture the high-value mass concentrations in the border area
between Hebei Province, Shanxi Province, Henan Province,
and Shandong Province, especially in the northern region of 95

Henan Province. The primary reason is the uncertainties in
emission inventories in winter heating periods, which result
in insufficient emission statistics of gaseous precursors NOx
and NH3 (Aleksankina et al., 2018). After DA, this situa-
tion is significantly improved with the ANA (Fig. 10a4 and 100

c4). The INCs in the Beijing–Tianjin–Hebei region, Shanxi
Province, Henan Province, and Shandong Province are pos-
itive (Fig. 10a5 and c5), indicating varying degrees of im-
provement in correcting the underestimation of mass con-
centrations. Specifically, for NH+4 and NO−3 at DA sites, 105

the biases between the OBS and ANA are significantly re-
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Figure 8. Hourly variation in five PM2.5 chemical components in a representative DA site (a) and a representative VE site (b).

Figure 9. Hourly variation in PM2.5 in three representative DA sites (a1–a3) and three representative VE sites (b1–b3).

duced compared to the biases between the OBS and FR
(Fig. 11), with the mean absolute bias decreasing by 0.93
and 4.27 µg m−3, respectively. Moreover, the overall biases
at VE sites also decrease (Fig. S5). As for the spatial statis-
tical indicators of NH+4 (Fig. 12a1 and a2), the CORR val-5

ues in FOR and ANA range from 0.39 to 0.79 and 0.70 to
0.97, respectively, and the RMSE values range from 3.16 to
7.65 µg m−3 and 1.20 to 3.49 µg m−3, respectively. As for the
spatial statistical indicators of NO−3 (Fig. 12c1 and c2), the
CORR values in FOR and ANA range from 0.09 to 0.76 and10

0.89 to 0.99, respectively, and the RMSE values range from
4.88 to 15.69 µg m−3 and 1.34 to 5.39 µg m−3, respectively.
For the FOR, the improvement in accuracy for NO−3 is more
significant than that for NH+4 , with the CORR values of most

DA sites increasing by more than 10 % and the RMSE of 15

most DA sites decreasing by no less than 10 % (Fig. 12a3
and c3). For the ANA, NH+4 and NO−3 exhibit significant im-
provements in CORR and RMSE, as most DA sites show
over 150 % improvement in CORR and over 50 % improve-
ment in RMSE (Fig. 12a4 and c4). Improvements can also 20

be found in NH+4 and NO−3 at VE sites (Fig. S6). The spa-
tial consistency of NH+4 and NO−3 indicates that NH4NO3
is the primary aerosol chemical component, highlighting the
necessity of coordinated control of precursor NOx and NH3.

Unlike NH+4 and NO−3 , compared to the OBS (Fig. 10b1), 25

the mass concentrations of SO2−
4 in the FR and FOR

(Fig. 10b2 and b3) are significantly overestimated, especially
in Shandong Province. In contrast, the ANA has improved
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Figure 10. Spatial concentration distribution of the site observation (OBS) (a1–e1), free-running (FR) field (a2–e2), forecast (FOR) field
(a3–e3), analysis (ANA) field (a4–e4), and increment (INC) between ANA and FR (a5–e5) for five PM2.5 chemical components.

Figure 11. Spatial distribution of DA site bias for five PM2.5 chemical components from the observation (OBS) for the free-running (FR)
field (a1–e1), forecast (FOR) field (a2–e2), and analysis (ANA) field (a3–e3).
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Figure 12. Spatial distribution of DA site statistical indicators for five PM2.5 chemical components. Panels (a1)–(e1) represent the values
of RMSE and CORR for the forecast (FOR) field, (a2)–(e2) are the same as (a1)–(e1) but for the analysis (ANA) field, (a3)–(e3) represent
the improvement in RMSE and CORR for the forecast (FOR) field, and (a4)–(e4) are the same as (a3)–(e3) but for the analysis (ANA) field.
The size represents the value of RMSE in (a1)–(e2) and the improvement percentage compared to non-assimilation in (a3)–(e4).

dramatically (Fig. 10b4), with most areas showing negative
INCs (Fig. 10b5). The mean absolute biases in DA and VE
sites have decreased by 1.80 and 2.68 µg m−3, respectively
(Figs. 11 and S5). Specifically, after DA, the CORR values
of the FOR and ANA range from 0.22 to 0.71 and 0.58 to5

0.97, and the RMSE values range from 3.42 to 11.07 µg m−3

and 1.20 to 4.30 µg m−3, respectively (Fig. 12b1 and b2).
The CORR and RMSE values in FOR improved significantly
(Fig. 12b3) at DA sites around Beijing, while the CORR val-
ues in ANA increased by more than 13 %, with most DA10

sites showing an increase of over 50 %, and RMSE values
decreased by no less than 30 %, with most DA sites showing
a decrease of over 70 % (Fig. 12b4). Moreover, half of the VE
sites show significant improvement in the CORR and RMSE
in the FOR and ANA, mainly due to their proximity to more15

DA sites (Fig. S6). The OBS and ANA indicate a consid-

erable control in SO2−
4 pollution during the winter heating

period due to the emission reduction in gaseous precursors
(Zhai et al., 2019; Yan et al., 2021).

The spatial distributions of OC and EC exhibit similarities 20

(Fig. 10d1 and e1), consistent with the finding of a strong
correlation between OC and EC in winter (Cao et al., 2007).
The low temperature and weakened photochemical reactions
in winter reduced secondary OC (SOC) generation, and pri-
mary OC (POC) and EC mainly originate from direct anthro- 25

pogenic emissions, such as combustion (Guo, 2016). Com-
pared to the OBS, the mass concentrations in FR (Fig. 10d2–
d3) and FOR (Fig. 10e2–e3) are significantly overestimated
over a wide range. Similar overestimations have also been re-
ported in the global reanalysis datasets CAMS and MERRA- 30

2, likely attributed to the hygroscopic growth scheme of
carbonaceous aerosols in the models, poorly constrained
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semi-volatile species escaping from primary organic aerosols
(Soni et al., 2021), and aging mechanisms in the models
(Huang et al., 2013). After DA, the spatial distribution of the
ANA aligns entirely with that of the OBS (Fig. 10d4 and e4),
with improvements in all overestimations (Fig. 10d5 and e5),5

and the average biases of both OC and EC at DA sites sig-
nificantly decrease to 0.14 µg m−3 (Fig. 11d3 and e3). The
VE sites show similar results to the DA sites, with average
biases of less than 2 µg m−3 (Fig. S5d3 and e3). Specifically,
for OC (Fig. 12d1 and d2), the CORR values in FOR and10

ANA are 0.18–0.71 and 0.92–1.00, respectively, with RMSE
values of 7.91–26.27 µg m−3 and 0.16–1.45 µg m−3, respec-
tively. For EC (Fig. 12e1 and e2), the CORR values in FOR
and ANA are 0.01–0.66 and 0.97–1.00, respectively, with
RMSE values of 5.33–16.91 µg m−3 and 0.01–0.26 µg m−3,15

respectively. Although significant improvements are not ob-
served in FOR at some specific DA sites, the RMSE values at
all DA sites decrease by 10 %–50 % (Fig. 12d3 and e3). The
CORR values of OC and EC in ANA increase by more than
30 %, with most DA sites exceeding 200 %, and the RMSE20

values decrease by more than 90 % (Fig. 12d4 and e4). At
VE sites (Fig. S6), significant improvements in the CORR
are not observed, but the RMSE values in the FOR and ANA
decrease, which indicates that DA has limited benefits for
whole areas but can effectively reduce biases of entire re-25

gions.

3.3 Comparison to NAQPMS-PDAF v1.0 and global
reanalysis dataset

To comprehensively evaluate the competitiveness and supe-
riority of NAQPMS-PDAF v2.0 in generating the reanaly-30

sis datasets of the PM2.5 chemical compositions, we assim-
ilated the mass concentrations of the five PM2.5 chemical
components from all sites (sum of DA sites and VE sites)
in February 2022 to generate a reanalysis dataset. We com-
pared our reanalysis dataset with the global reanalysis (RA)35

datasets (CAMSRA and MERRA-2) and NAQPMS-PDAF
v1.0 output. Figure 13 illustrates the spatial distribution of
the monthly average mass concentrations for the five chem-
ical components. Compared to the OBS (Fig. 13a1 and c1),
CAMSRA underestimates the NH+4 and NO−3 concentrations40

and fails to capture the high-value concentration in the north-
ern part of Henan Province (Fig. 13a2 and c2). In contrast,
MERRA-2 overestimates the concentrations of SO2−

4 , OC,
and EC (Fig. 13b2, d2, and e2), particularly SO2−

4 , exhibiting
a large region with inaccurately high concentrations. More-45

over, CAMSRA (approximately 80× 80 km2) and MERRA-
2 (55× 70 km2) have significantly lower spatial resolutions
compared to NAQPMS-PDAF v2.0 (5× 5 km2). Therefore,
NAQPMS-PDAF v2.0 provides a more detailed description
of the pollution characteristics of chemical components in50

northern China and the surrounding areas compared to RA.
Although NAQPMS-PDAF v1.0 demonstrates a superior

spatial representation of the five chemical components when

compared to RA, it fails to capture the high-value concen-
trations of NH+4 in the northwest of Henan Province and 55

correct the high-value concentrations of NH+4 in the cen-
tral and western areas of Hebei Province (Fig. 13a3). More-
over, the scattered high-value concentrations of SO2−

4 in the
North China Plain do not align with the spatial characteris-
tics of the OBS (Fig. 13b3). Notably, NAQPMS-PDAF v1.0 60

exhibits poor performance in interpreting OC and EC, with
significant overestimations in a wide range (Fig. 13d3 and
e3), which indicates that NAQPMS-PDAF v1.0 is weaker
than NAQPMS-PDAF v2.0 in terms of DA performance on
chemical components, primarily due to insufficient propaga- 65

tion of observations. In NAQPMS-PDAF v2.0, the LKNETF
algorithm with an adaptive forgetting factor is more suitable
for the nonlinear and non-Gaussian situations compared to
EnKFs in NAQPMS-PDAF v1.0, and the ensemble perturba-
tion with a non-Gaussian distribution can better represent the 70

reasonable error distribution of model states.
Table 3 presents a quantitative comparison of three reanal-

ysis datasets. Compared to the CORR of NAQPMS-PDAF
v2.0 (0.86–0.99), the CORR of RA for the five chemical
components is significantly lower (0.42–0.55). Moreover, 75

NAQPMS-PDAF v1.0 exhibits significantly poorer consis-
tency in SO2−

4 , OC, and EC, with CORR values ranging
from 0.35 to 0.57. NAQPMS-PDAF v2.0 has lower over-
all RMSE values (0.14–3.18 µg m−3) compared to RA and
NAQPMS-PDAF v1.0, with RMSE values ranging from 4.51 80

to 12.27 µg m−3 and 2.46 to 15.50 µg m−3, respectively. The
characteristics of R2 are similar to those of CORR and
RMSE. For NH+4 and NO−3 , NAQPMS-PDAF v2.0 (0.85 and
0.93) and v1.0 (0.80 and 0.96) are much higher than RA
(0.09 and 0.13). Notably, for SO2−

4 , OC, and EC, NAQPMS- 85

PDAF v2.0 (0.74–0.98) is significantly higher than v1.0
(−0.16–0.25) and RA (−0.15–0.25). Overall, NAQPMS-
PDAF v2.0 more accurately and consistently interprets the
five chemical components, particularly for NH+4 , SO2−

4 , OC,
and EC. The reasons are summarized as follows. (1) The 90

DA frequency of CAMSRA is 12 h, which is lower than the
hourly DA frequency in NAQPMS-PDAF v2.0. (2) CAM-
SRA only assimilates satellite retrievals (Inness et al., 2019),
and MERRA-2 only assimilates aerosol optical depth (AOD)
from both ground-based and space-based remote sensing 95

platforms (Randles et al., 2017). The aerosol optical infor-
mation analysis increment cannot be allocated to each chem-
ical component accurately and reasonably due to the lack of
a deterministic relationship between aerosol optical informa-
tion and PM2.5 chemical components. (3) NAQPMS-PDAF 100

v1.0 has evident DA shortcomings for chemical components
due to the limited DA algorithm under the assumption of a
linear model or system, inappropriate ensemble perturbation
under the assumption of Gaussian distribution, and inade-
quate observational modules. (4) The state variable structure 105

in NAQPMS-PDAF v1.0 cannot effectively mitigate the im-
pact of spurious correlations between chemical component
variables, even when using analytical localization.
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Figure 13. Spatial distribution of the monthly averaged concentration of five PM2.5 chemical components for observations (OBS; a1–e1),
global reanalysis (RA) data (a2–e2), NAQPMS-PDAF v1.0 analysis data (a3–e3), and NAQPMS-PDAF v2.0 analysis data (a4–e4).

Table 3. Statistical indicators (CORR, RMSE, and R2) of five PM2.5 chemical components for global reanalysis (RA) data, NAQPMS-PDAF
v1.0 analysis data, and NAQPMS-PDAF v2.0 analysis data.

Components CORR RMSE (µg m−3) R2

RA v1.0 v2.0 RA v1.0 v2.0 RA v1.0 v2.0

NH+4 0.49 0.90 0.92 5.59 2.53 2.22 0.09 0.80 0.85
SO2−

4 0.55 0.57 0.86 12.27 5.45 2.61 0.25 0.25 0.74
NO−3 0.54 0.98 0.96 10.27 2.46 3.18 0.13 0.96 0.93
OC 0.50 0.42 0.97 4.51 12.92 0.93 0.15 −0.09 0.93
EC 0.42 0.35 0.99 7.59 15.50 0.14 −0.15 −0.16 0.98

3.4 The uncertainty in NAQPMS-PDAF v2.0

In ensemble DA, the ensemble members represent possible
values of the model states, and the ensemble sampling can
determine the uncertainties in the model states. Therefore,
the ensemble generation directly affects the propagation of5

observations and subsequently impacts the final DA perfor-
mance. Previous studies have generated ensemble members
based on the uncertainties in emission species and the Gaus-
sian distribution assumption to satisfy the requirements of
EnKF algorithms (Kong et al., 2021; Wang et al., 2022).10

However, the true error probability distribution of emission
species is not an ideal Gaussian distribution, and the assump-

tion will introduce errors. In this study, we coupled the hybrid
nonlinear DA algorithm (LKNETF) with NAQPMS to han-
dle the nonlinear and non-Gaussian situations, which com- 15

bines the stability of LETKF with the nonlinearity of LNETF.
Therefore, we evaluate the performance of ensemble mem-
bers with different uncertainties and error probability distri-
butions in NAQPMS-PDAF v2.0 through two groups of sen-
sitivity experiments. 20

The first group of experiments (T1–T5) involves control-
ling the SO2 uncertainty as a fixed value of 200 % and trans-
forming the distribution of the perturbation coefficient ma-
trix. The second group of experiments (M1–M5) focuses
on assessing the influence of SO2 uncertainty on NH+4 and 25
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Figure 14. Statistical indicators (mean CRPS a, RMSE b, and
CORR c) of five PM2.5 chemical components for five perturbation
experiments based on distribution.

SO2−
4 DA based on a fixed non-Gaussian distribution (m3=

1, m4= 6). Figure 14 shows the statistical indicators of the
five chemical components under different error probability
distributions, including a Gaussian distribution (T1) and four
non-Gaussian distributions (T2–T5). The mean CRPS and5

RMSE in T2 and T4 are lower than those in T1, T3, and
T5, and the CORR values in T2 and T4 are higher than those
in T1, T3, and T5, indicating that the DA performance of the
non-Gaussian distribution assumption is superior to that of
the Gaussian distribution assumption. Moreover, positively10

skewed non-Gaussian distribution performs better than nega-
tively skewed distribution. Except for SO2−

4 , the performance
in T2 outweighs that in T4 for other chemical components,
implying that higher kurtosis harms the chemical component
DA.15

SO2 is a crucial precursor of NH+4 and SO2−
4 , and per-

turbing SO2 affects the forecast and simulation of NH+4 and
SO2−

4 . Table 4 presents statistical indicators of NH+4 and
SO2−

4 analysis fields based on ensemble perturbations with
different SO2 uncertainties (12 %–300 %). Increasing the un-20

certainty in SO2 from 12 % to 200 % leads to a decrease in
the mean CRPS in the SO2−

4 analysis field from 2.67 to 1.40,
an increase in the CORR from 0.51 to 0.74, and a reduction
in the RMSE from 4.10 to 2.37 µg m−3. Similarly, the mean
CRPS in the NH+4 analysis field decreases from 0.98 to 0.77,25

the CORR increases from 0.88 to 0.91, and the RMSE de-
creases from 1.55 to 1.33 µg m−3. This indicates that increas-
ing the uncertainty in SO2 improves the DA performance on
NH+4 and SO2−

4 because the higher SO2 uncertainty makes
SO2 sufficiently perturbed, and the estimated error probabil-30

ity distribution is closer to the real distribution, resulting in a
sufficient spread of observations. However, when the uncer-
tainty in SO2 reaches 300 %, the statistical indicators do not
significantly improve and even worsen because excessively
high SO2 uncertainty causes the estimated error probability35

distribution to deviate from the true distribution. Thus, select-

ing appropriate uncertainties for emission species is crucial
in aerosol chemical component DA.

To summarize, the non-Gaussian distribution assump-
tion outperforms the Gaussian distribution assumption in 40

NAQPMS-PDAF v2.0. Positive skewness performs better
than negative skewness, and excessively high kurtosis should
be avoided. Additionally, appropriately increasing the uncer-
tainty in SO2 enhances the DA performance on NH+4 and
SO2−

4 . Future studies should conduct more sensitivity experi- 45

ments on emission species perturbation to determine suitable
schemes for different aerosol chemical components.

4 Conclusions

In this paper, we online coupled NAQPMS with PDAF-OMI
to develop a novel hybrid nonlinear DA system (NAQPMS- 50

PDAF v2.0) with level-2 parallelization based on a hy-
brid localized Kalman–nonlinear ensemble transform filter
(LKNETF) for the first time. Compared to NAQPMS-PDAF
v1.0, NAQPMS-PDAF v2.0 with OMI can be applied with
multiple component types and nonlinear/non-Gaussian situ- 55

ations in chemical analysis to effectively interpret five PM2.5
chemical components (NH+4 , SO2−

4 , NO−3 , OC, and EC),
which has not been achieved in previous studies. The back-
ground error covariance was calculated by ensemble pertur-
bation based on adaptive uncertainties and a non-Gaussian 60

distribution assumption of emission species. The DA exper-
iments were conducted based on 33 observational sites in
northern China and the surrounding areas.

NAQPMS-PDAF v2.0 with LKNETF can maintain high
accuracy and reliability in ensemble DA with an ensemble 65

size of 10, which is smaller than the traditional minimum of
20 ensemble members, as observed in prior ensemble assim-
ilation studies. The free-running (FR) fields without DA have
a poor consistency with the observations, with the CORR val-
ues ranging from 0.32–0.56 and theR2 values being less than 70

0.3, showing that SO2−
4 , OC, and EC are significantly overes-

timated, while NH+4 and NO−3 are underestimated. A signifi-
cant improvement was observed in the analysis (ANA) fields
at the DA sites. The CORR values are not less than 0.86; the
RMSE and MAE values do not exceed 3.23 and 1.49 µg m−3, 75

respectively; and R2 is not less than 0.74. Specifically, the
CORR values for NO−3 , OC, and EC are not less than 0.96,
and R2 is not less than 0.93. The error distributions of the
five chemical components concentrate to 0, with the mean
bias ranging from 0± 0.08 to 1.02± 3.07 µg m−3. These im- 80

provements are also found in the ANA fields at VE sites, in-
dicating an excellent DA performance of NAQPMS-PDAF
v2.0.

The ability of NAQPMS-PDAF v2.0 to interpret the spa-
tiotemporal characteristics of the five chemical components 85

was examined. For temporal variations, compared to the FR
and forecast (FOR) fields, the ANA closely aligned with
the observations (OBS) and accurately captured the peak
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Table 4. Statistical indicators (mean CRPS, CORR, and RMSE; µg m−3)CE1 of five PM2.5 chemical components for five perturbation
experiments based on SO2 emission uncertainty.

Experiment SO2−
4 NH+4

CRPS CORR RMSE CRPS CORR RMSE

M1 2.67 0.51 4.10 0.98 0.88 1.55
M2 2.07 0.59 3.24 0.92 0.89 1.48
M3 1.61 0.69 2.63 0.83 0.91 1.39
M4 1.40 0.74 2.37 0.77 0.91 1.33
M5 1.41 0.74 2.39 0.78 0.91 1.33

concentrations of SO2−
4 , NO−3 , and NH+4 in specific pe-

riods (such as 25 February), indicating good consistency
and accurate characterization. Specifically, the CORR of the
ANA at the six representative sites increased by 13.64 %–
89.58 % and 17.19 %–75.00 %, while the RMSE decreased5

by 56.03 %–83.13 % and 40.74 %–72.20 %. For spatial dis-
tributions, after DA, both NH+4 and NO−3 with positive anal-
ysis increments exhibited significant improvements in CORR
and RMSE, as most DA sites showed improvements of over
150 % in CORR and over 50 % in RMSE. SO2−

4 , OC, and10

EC with negative analysis increments were also improved.
For OC and EC in particular, the improvements in CORR
and RMSE at most DA sites were over 200 % and over 90 %,
respectively. The improvements at VE sites were also iden-
tified. Consequently, DA successfully aligned the spatiotem-15

poral characteristics of the ANA with OBS and significantly
reduced the biases of five chemical components.

Compared to the global reanalysis datasets (CORR: 0.42–
0.55, RMSE: 4.51–12.27 µg m−3) and NAQPMS-PDAF v1.0
(CORR: 0.35–0.98, RMSE: 2.46–15.50 µg m−3), NAQPMS-20

PDAF v2.0 (CORR: 0.86–0.99, RMSE: 0.14–3.18 µg m−3)
has significant superiority in generating the reanalysis
datasets of the PM2.5 chemical compositions with high
spatiotemporal resolution. Moreover, NAQPMS-PDAF v1.0
cannot capture the high-value concentrations and exhibits25

poor performance when interpreting SO2−
4 , OC, and EC

with CORR values ranging from 0.35 to 0.57. In contrast,
NAQPMS-PDAF v2.0 interprets the five chemical compo-
nents more accurately and consistently.

Finally, the uncertainties in NAQPMS-PDAF v2.0 are ex-30

amined by identifying the influence of ensemble generation
on ensemble DA performance. The non-Gaussian distribu-
tion assumption outperforms the Gaussian distribution as-
sumption in NAQPMS-PDAF v2.0. Positive skewness per-
forms better than negative skewness, and excessively high35

kurtosis should be avoided. Additionally, appropriately in-
creasing the uncertainty in SO2 enhances the DA perfor-
mance on NH+4 and SO2−

4 . Future studies should conduct
more sensitivity experiments on emission species perturba-
tion to determine the schemes that are suitable for different40

aerosol chemical components.

The novel hybrid nonlinear DA system (NAQPMS-PDAF
v2.0) can be effectively applied in the interpretation of chem-
ical components and outperforms the reanalysis datasets in
generating the five PM2.5 chemical components with high 45

accuracy and high consistency, thus providing a sufficient
channel to investigate spatiotemporal characteristics, identify
regional transport, and prevent and control aerosol composi-
tion pollution. In future work, we plan to research the verti-
cal DA of chemical components, introduce more vertical in- 50

formation from more observational platforms, and verify the
simultaneous DA performance of surface and vertical mass
concentrations.
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