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Abstract. Identifying PMa s;—a—ecemplex—mixture—with—diverse chemical components;—exerts—significant—impaets—on—the

environment; is crucial for formulating emission strategies, estimating radiative forcing, and assessing human health;—and

ehimate—change:_cffects. However, preeiselyaccurately describing spatiotemporal variations of PMzs chemical components
remains a €t challenge. In our earlier work, we developed an aerosol extinction coefficient data assimilation (DA) system
(NAQPMS-PDAF v1.0) thatis-suboptimal for chemical components. This paper introduces a novel hybrid nonlinear chemical
DA system (NAQPMS-PDAF v2.0) to accurately interpret key chemical components (SO42, NOs,, NH4", OC, and EC).
NAQPMS-PDAF v2.0 improves upon v1.0 by effectively handirnghandling and balancing stability and nonlinearity in chemical
DA, which is achieved by incorporating the non-Gaussian-distribution ensemble perturbation and hybrid Localized Kalman-
Nonlinear Ensemble Transform Filter with an adaptive forgetting factor for the first time. The dependence tests demonstrate
that NAQPMS-PDAF v2.0 provides excellent DA results with a minimal ensemble size of 10, surpassing previous reports and
v1.0. A one-month DA experiment shows that the analysis field generated by NAQPMS-PDAF v2.0 is in good agreement with
observations, especially in reducing the underestimation of NH4" and NO3" and the overestimation of SO4*, OC, and EC. In
particular, the CORR values for NO3", OC, and EC are above 0.96, and R? values are above 0.93. NAQPMS-PDAF v2.0 also
demonstrates superior spatiotemporal interpretation, with most DA sites showing improvements of over 50%-200% in CORR
and over 50%-90% in RMSE for the five chemical components. Compared to the poor performance in global reanalysis dataset
(CORR: 0.42-0.55, RMSE: 4.51-12.27 pg/m*) and NAQPMS-PDAF v1.0 (CORR: 0.35-0.98, RMSE: 2.46-15.50 ug/m?®),
NAQPMS-PDAF v2.0 has the highest CORR of 0.86-0.99 and the lowest RMSE of 0.14-3.18 nug/m®. The uncertainties in
ensemble DA are also examined, further highlighting the potential of NAQPMS-PDAF v2.0 for advancing aerosol chemical

component studies.
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1 Introduction

PM2 5 is a complex mixture of various chemical fractions, mainly including sulfate (SO4%), nitrate (NOs3"), ammonium (NH4"),

organic carbon (OC), and elemental carbon (EC)—whieh-diversely). These chemical components exert diverse influences_on

the atmospheric environment (Khanna et al., 2018), human health (Bell et al., 2007; Schlesinger, 2007; Li et al., 2022a; Alves
et al., 2023), and climate change (Schult et al., 1997; Park et al., 2014; Wilcox et al., 2016). However, current detection
technologies, such as fielddirect observation with-n-situby sampling and chemical analysis (Zhang et al., 2015; Ming et al.,
2017), ground-based remote-sensing inversion (Nishizawa et al., 2008; Nishizawa et al., 2011; Nishizawa et al., 2017), and

observation-based machine learning (Lin et al., 2022; Su Lee et al., 2023); Li et al., 2025), are insufficient in interpreting

spatiotemporally continuous information of PMa.s chemical components due to the spatietemperal-discontinnityand-limited

chemieal-speetesnumber of observation sites or platforms. Although atmospheric chemistry transport models (CTMs) (Wang

et al., 2014; Wang et al., 2015; Jia et al., 2017; Yang et al., 2019; Li et al., 2020; Lv et al., 2020) are eemmontywidely used to
characterize the spatiotemporal distribution of multiple chemical species, CTMs are asseciated—withconstrained by
uncertainties in initial-boundary conditions, physiochemical mechanisms, emission inventories, and meteorological fields (Sax
and Isakov, 2003; Mallet and Sportisse, 2006; Rodriguez et al., 2007; Chang et al., 2015; Miao et al., 2020; Xie et al., 2022),

resulting in biasesrelativetorealsituationnotable discrepancies between the model simulations and accurate observations.

Data assimilation (DA) offers a solution to integrate the multi-source observations, CTMs, and their uncertainties effectively
to enhance the simulation and forecasting capabilities of CTMs. Variational methods (3D-Var/4D-Var) (Talagrand and Courtier,
1987), Ensemble Kalman Filter (EnKF) (Evensen, 1994; Evensen, 2003), EnKF-variants (EnKFs) (Bishop et al., 2001; Tippett
et al., 2003; Hunt et al., 2007; Nerger et al., 2012), and hybrid EnKF-Var methods (Hamill and Snyder, 2000; Schwartz et al.,
2014) are most widely applied in DA. However, variational methods have a flow-independent Background Error Covariance
(BEC) with the assumption of isotropic, static, and uniform characteristics, and they need to develop the tangent linear adjoint
model, which is difficult to practice for complex models. Although EnKFs and hybrid EnKF-Var methods have a flow-
dependent BEC, they are sensitive to inadequate ensemble sampling and have high computational costs. Importantly, these
methods cannot address model nonlinearity and non-Gaussian error distribution, yielding suboptimal results for DA in highly

nonlinear CTMs.

Currently, nonlinear filters, such as Particle Filter (PF) (Gordon et al., 1993) and Nonlinear Ensemble Transform Filter (NETF)
(Todter and Ahrens, 2015), have been proposed to approximate the complete posterior probability distribution of model states

and provide a better representation of non-Gaussian information based on Monte Carlo random sampling and Bayesian theory.
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However, PF is unstable and susceptible to filter degeneration compared to EnKFs. In a recent study, Nerger (2022) proposed
the hybrid Kalman-Nonlinear Ensemble Transform Filter (KNETF) to achieve excellent DA performance in the Lorenz-63 and
Lorenz-96 model with a smaller ensemble size, which combines the stability of EnKFs and the nonlinearity of NETF (Nerger,

2022). However, to the author’s knowledge, this algorithm has not been applied to the chemical DA of CTMs.

Studies on chemical DA involve the assimilation of aerosol optical properties, such as aerosol optical depth (AOD) and
extinction coefficient (EXT), and the particulate matters (PMs), such as the mass concentrations of PM2s and PMio. The
commonly AOD observations for DA include OMI-AOD (Ali et al., 2013), MODIS-AOD (Zhang et al., 2008; Huneeus et al.,
2012; Huneeus et al., 2013; Rubin and Collins, 2014; Lynch et al., 2016; Werner et al., 2019; Kumar et al., 2020), AERONET-
AOD (Schutgens et al., 2010; Li et al., 2016), Sun-Sky Photometer-Multiband AOD (Chang et al., 2021), GOCI-AOD (Saide
et al., 2014; Luo et al., 2020; Kim et al., 2021), and Fengyun/Himawari8-AOD (Bao et al., 2019; Jin et al., 2019; Xia et al.,
2019; Xia et al., 2020). These studies indicated that AOD observations can enhance the accuracy of aerosol simulation and
forecast. Compared to AOD, EXT DA effectively improves the interpretation of aerosol vertical distribution (Zhang et al.,
2014; Cheng et al., 2019; Wang et al., 2022). Additionally, the simultaneous DA of aerosol optical properties and PMs is widely
applied in aerosol studies (Tang et al., 2015; Chai et al., 2017). According to our literature review (Yang et al., 2023), there is
currently no DA study on aerosol chemical components due to the limited DA influence of PMs and AOD on chemical
compositions (Chang et al., 2021) and the limited chemical observations with an extensive spatial range. Moreover, the aerosol
chemical components exhibit nonlinearity and a non-Gaussian distribution (Ha, 2022), while current main-stream algorithms,

such as variational methods or EnKFs, are suboptimal for chemical component DA.

In our previous work, we developed an aerosol vertical DA system (NAQPMS-PDAF v1.0) based on EnKFs to improve the
simulation of the extinction coefficient vertical profile (Wang et al., 2022). In this study, we present a novel hybrid nonlinear
DA system (NAQPMS-PDAF v2.0) towards various PMa.s chemical components through online integration of Parallel Data
Assimilation Framework (PDAF, version 2.1, released on February 21%, 2023), Observation Module Infrastructure (OMI) and
Nested Air Quality Prediction Model System (NAQPMS). We collected 1-month hourly surface observations of five PMa.s
chemical components (NH4*, SO4*, NO3~, OC, and EC) over Northern China and surrounding areas. We utilized the hybrid
Localized Kalman-Nonlinear Ensemble Transform Filter (LKNETF) to generate a high-resolution and high-accuracy
reanalysis dataset of PM2.s chemical components for the first time. Notably, the ensemble members in NAQPMS-PDAF v2.0
are generated by perturbing emission species based on their uncertainties and non-Gaussian distribution assumption. Section

2 briefly introduces NAQPMS and PDAF v2.1 with OMI, respectively, and details the development of NAQPMS-PDAF v2.0,
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including system structure, configuration, ensemble generation, and LKNETF algorithm. The data used in this study and
experimental settings are also described in Section 2. Section 3 presents the DA results, including evalsatingan evaluation of

dependencies, performance, and external comparisons—Besides-Seetion3-disensses, as well as a discussion of the ensemble

DA uncertainty. Section 4 summarizes the conclusions and outlook.

2 Method and data

2.1 NAQPMS

The Nested Air Quality Prediction Modeling System (NAQPMS), developed by the Institute of Atmospheric Physics

(IAP), Chinese Academy of Sciences (CAS), is used to provide background fields efkeyaeroselchemical- componentsinthis

study—for key aerosol chemical components in this study. NAQPMS is a multi-scale gridded 3-dimensional Eulerian chemical

transport model based on continuity equations. The nested grids in the horizontal direction enable data exchange between

different domains. Applying terrain-following coordinates in the vertical direction mitigates numerical calculation errors to

enhance model accuracy. The NAQPMS comprises an input section, a numerical computation section, and an output section.

The input section incorporates static terrain data, emission inventories, meteorological fields, and initial-boundary conditions.

The numerical computation section performs multiple physicochemical process calculations, including the advection process,

eddy diffusion, dry deposition, wet scavenging, gas-phase chemistry, aqueous chemistry, aerosol physicochemical processes

(including heterogeneous reactions at the aerosol surface), and other processes. The schemes and features of the

physicochemical processes are summarized in Table S1. The output section is responsible for model post-processing, data

diagnostics, and source identification.

NAQPMS is capable of characterizing the three-dimensional spatiotemporal distribution of various atmospheric compositions

at global and regional scales threugh-multiple physicochemieal processes{showninTFable-SH-and has been widely used in

atmospheric pollution and chemistry research, such as Os pollution; (Wang et al.. 2001), haze episodes (Wang et al., 2014; Du

et al., 2021), regional transport (Wang et al., 2017; Wang et al., 2019), source identification (Li et al., 2022b), air quality

simulation at global scale (Ye et al., 2021) and at urban-street scale (Wang et al., 2023), and acid deposition (Ge et al., 2014).

2.2 PDAF v2.1 with OMI

The Parallel Data Assimilation Framework (PDAF, https://pdaf.awi.de/trac/wiki) is an open-source and high-expandability

software developed by the Alfred Wegener Institute (AWI) in Germany to integrate observations, numerical models, and

assimilation systems for DA tasks, widely applied in meteorology, oceanography, land surface and atmospheric chemistry
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(Kurtz et al., 2016; Nerger et al., 2020; Mingari et al., 2022; Strebel et al., 2022; Wang et al., 2022; Yu et al., 2022). The initial
version of PDAF (PDAF v1.0) was released in 2004. It has undergone continuous improvements and updates, with major
updates including the introduction of Ensemble Transform Kalman Filter (ETKF) and its localized variant (LETKF) in version
1.6, the implementation of PDAF-OMI (Observation Module Infrastructure) in version 1.16, the integration of 3D-Var methods
in version 2.0, and the incorporation of the hybrid KNETF and its localized variant (LKNETF) for the first time in version 2.1,
which was released in 2023 to handle the complex DA situations, such as the nonlinearity of system and non-Gaussian error
distribution of model state. Notably, the version of PDAF coupled in NAQPMS-PDAF v1.0 is PDAF v1.15 (released in 2019),
implying that NAQPMS-PDAF v1.0 has more limited applicability and functionality. In this work, the PDAF v2.1 is coupled

in NAQPMS-PDAF v2.0.

PDAF has twe-medes;namelyoffline and online saedemodes. For the offline mode, PDAF and the model perform separately

without coupling, whichis-easyobviating the need to switemodify the model code. For the online mode, PDAF is coupled with

the model, and model calculation and data assimilation perfermare performed continuously. Compared to the offline mode,

the online coupling has several advantages. Firstly, the initialization preeess-of the PDAF and the model enlyneedsto-be

executed-oneeinstead-ef tvice-independenthyis integrated, necessitating a single execution rather than two separate executions.

Secondly, the model integration result can be directly passed to PDAF for data assimilation. Additionally, the assimilation
result of PDAF can be directly passed to the model for the next model integration. FhisThe online mode eliminates the need
for intermediate steps and improves efficiency. Thirdly, the online mode is controlled by a main program, which allows for
efficient use of several processors in the high-performance computing cluster. Conversely, in the offline mode, the PDAF and
the model are managed by distinct programs, often with a—+edueed-numbereffewer processors available for each program.

Therefore, the online-mode PDAF is used in this study.

PDAF-OM], an extension of PDAF, provides I/O interfaces for multi-type observations, simplifying user observation handling
by offering generic PDAF-OMI core routines and independent user-supplied routines for each observational type. The user-
supplied routines, namely init_dim_obs/init_dim_obs 1, obs_op, and localize_covar, are responsible for reading and writing
multi-type observations, applying corresponding observation operators, and performing covariance localization, respectively.
The modules for all observation types are integrated into the callback obs pdafomi, allowing free combinations between
different observation types without interference and facilitating the collaborative DA for various aerosol chemical components.
PDAF-OMI was not applied in NAQPMS-PDAF v1.0. Consequently, NAQPMS-PDAF v1.0 cannot switch between different

observational type combinations, and users need to define complete routines for each observation type for the DA process,
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resulting in more tedious code writing and higher computational costs in NAQPMS-PDAF v1.0.

2.3 NAQPMS-PDAF v2.0

2.3.1 Structure of NAQPMS-PDAF v2.0

Figure 1 illustrates the structure (left portion) and main workflow (right portion) of NAQPMS-PDAF v2.0. Fhe

observationalAs described in the left portion of Fig. 1, the observation part involves the integration of multi-type observations

(the purple cuboid patterns) and the utilization of PDAF-OMI. PDAF-OMI enables the simultaneous access and scheduling of

multi-type and multi-source data—threughobservations by employing observational indices, which—aleows—for—thereby

facilitating flexible eembination-combinations of observations. The ensemble initial fields (the deep blue cuboid patterns) are

crucial inputs for the numerical simulation of NAQPMS. The ensemble forecast/background fields (the deep vellow cuboid

patterns) are generated by perturbing emission species based on hypothesized distributions (see Sect. 2.3.3) and

NAQPMSperforming physiochemical calculations in NAQPMS (the green partinFig—H-rectangular patterns). Then, chemical

DA is performed by a novel hybrid localized nonlinear DA algorithm (LKNETF, see Sect. 2.3.4) with an adaptive hybrid

weight and an adaptive forgetting factor to generate analysisAnitial fields (the orange cuboid patterns) for the next realization.

/— NAQPMS-PDAF v2.0 Structure Main Workflow —\
Observations Ens.1st Ens.2n Ens.Nth
f d 1 ‘_‘ | init_system |
ey oo ey e
ini llel
$ 3 $ init_paral
A— . i
Type By Emission disturbance | Advection Turbulence | init_parallel_pdaf |
- Dry deposition {
* Non-Gaussian Gravity deposition | mm:hze |
A_‘ Gas chemistry Wet deposition | init_ pdaf ‘
Tvee X py Aqueous and heterogeneous chemistry _ !
Do i=1, nsteps
¥ ¥ ¥ B
I t ‘ Forecast ‘ J
orecas orecast L] .
Field V4 Field % Field V4 | ‘°“"eit—f'°'d |
e A & | field2var |
PDAF v2.1 ]
. . . | NAQPMS_processes |
LKNETF Adaptive hybrid weight i
| var2field |
Localization Adaptive forgetting factor 1
| assimilate_pdaf ‘
¥ ¥ ¥ S —
f f ‘ (L7 |
Analysis ‘ Analysis e Analysis N
Field % Field | post-processing |

S /

Figure 1: The structure of NAQPMS-PDAF v2.0 (Left: the purple cuboid patterns represent the multi-type observations, the deep

blue cuboid patterns represent the initial fields, the deep yellow cuboid patterns represent the forecast or background fields, and the

orange cuboid patterns represent the analysis fields. Ens.1% represents the first ensemble member, and Ens.N'" represents the N

ensemble member. Right: the main workflow in NAQPMS-PDAF v2.0, blue rectangular patterns represent the modules in NAQPMS,

6
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and vellow rectangular patterns represent the modules in PDAF).

NAQPMS-PDAF v2.0 implements an online coupling between NAQPMS and PDAF v2.1 with OMI, utilizing a level-2

parallel computational framework. The description of level-2 parallel implementation was detailed in our previous work (Wang

et al., 2022). The online coupling ensures the continuous operation of model forecasts and assimilation analysis at each time
step, achieved by directly integrating PDAF routines into the prototype code of NAQPMS (InFig—tthe right partportion of
Fig. 1, the blue represents NAQPMS main routines, while the yellow represents PDAF main routines). The level-2 parallel
computational framework, which utilizes the Message Passing Interface standard (MPI), facilitates concurrent processing and
data exchange among multiple ensemble members and parallel computation among model state matrixes within each ensemble
member, enhancing the efficiency of ensemble analysis and numerical model computations. Fhe-deseription-oflevel 2 paratiel

al-For instance, the operation of twenty ensemble members

necessitates the execution of twenty model tasks, each of which performs integral calculations on a large model grid. Twenty

model tasks can be executed simultaneously at twenty computational nodes with sufficient computational resources. Each

model task can then perform parallel computation with multiple processors by splitting the laree model grid into multiple sub-

grids. As illustrated in the right portion of Fig. 1, the26223-TFhe workflow of NAQPMS-PDAF v2.0 is outlined as follows:

Step 1. init_system module initializes NAQPMS;-sueh-as by defining all model state variables, allocating numerical matrixes,
configuring parameters, I/O of meteorological fields, and emission input.

Step 2. init_parallel module initializes MPI (MPI COMM_ WORLD) and model communicator (MPI COMM MODEL),
their number of processes, and the rank of a process, followed by init_parallel pdaf, which initializes MPI communicators for
the model tasks, filter tasks and the coupling between model and filter tasks.

Step 3. initialize module initializes the target field (such as PMas chemical components), such as their spatiotemporal
dimensions (longitude, latitude, and time steps) and variable dimensions.

Step 4. init_pdaf module initializes PDAF variables, such as the local state dimension, global state dimension, and settings for
analysis steps.

Step 5. Perform the time loop of forecast and analysis. The convert_field module is employed to match the matrix storage rule
of the target field between NAQPMS and PDAF to ensure compatibility. The field2var module collects the analysis field/initial
field and establishes a relationship between the initial field/analysis field and sub-variables in NAQPMS. Subsequently, the
analysis field values are allocated to the corresponding NAQPMS sub-variables, and then the NAQPMS processes module
performs the forecast. After that, the var2field module, the inverse of the field2var module, assigns the NAQPMS sub-variables
to the forecast field/background field. Finally, the assimilate pdaf module assimilates the target field with observations to

generate an analysis field for the next iteration.
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Step 6. The post-processing module is responsible for finalizing NAPQMS-PDAF, data analysis, and DA evaluation.

2.3.2 CenfiguresConfigurations

The meteorological field for NAQPMS is provided by the Weather Research and Forecasting model version 4.0 (WRFV4.0,

https://www.mmm.ucar.edu/models/wrf). The initial-boundary conditions for WRF are obtained from NCEP GDAS Final

Analysis (https://rda.ucar.edu/datasets/ds083.3/), with a horizontal resolution of 0.25°x0.25° and the temporal resolution of 6

hours, produced by the Global Data Assimilation System (GDAS). The land use data for WRF was updated by USGS’s

MCD12Q1 v006 in 2019 (https://Ipdaac.usgs.gov/products/mcd12q1v006/) with 20 categories. Three nested model domains

are conducted with the horizontal resolutions of 45 km in the East Asia region (domainl), 15 km in most areas of China except
for the western area (domain2), and 5 km in the Northern China region (domain3, target research region). WRF and NAQPMS
have 40 vertical layers with 27 layers within 2 km. The parameterization schemes for physical processes in WRF are shown
in Table S2. The boundary condition input for NAQPMS is provided by the global chemistry transport Model for OZone And
Related chemical Tracers version 2.4 (MOZART V2.4) (Horowitz et al., 2003). The anthropogenic emissions for NAQPMS

are from Tsinghua University’s 2016 Multi-resolution Emissions Inventory for China (MEIC, http://www.meicmodel.org/)

with a spatial resolution of 0.25°x0.25°, including residential sources, transportation sources, agricultural sources, industrial
sources, and power plant sources. The computational platform is the high-performance supercomputer subsystem cluster with
320 computation nodes, a total of 12,800 processors, and about 153 TB memory at the Big Data Cloud Service Infrastructure

Platform (BDCSIP), which meets the demand for high-performance parallel computing of NAQPMS-PDAF v2.0.

The model state variables include NH4*, SO4%, NOs, OC, EC, Na*, Brown carbon, soil PMas, soil PMo, sea salt, fine dust,
coarse dust, SO2, NO2 and RH. As shown in Fig. 2, the model state has a 4-dimensional (4-D) structure; with longitudinal
dimension (ix, 300 grids), latitudinal dimension (iy, 249 grids), variable dimension (ivar, 15), and vertical dimension (iz, 40
layers) in that order. The 4-D model state with 15 variables is converted to a 2-D state matrix in PDAF, the number of grids in
the horizontal axis direction is ix, and the number of grids in the vertical axis direction is iy*ivar*iz. Notably, the 2-D state
matrix coordinate index-efthe-2-D-state-matrix contains 3-D information for each variable to implement the horizontal and
vertical domain localization separately; because the horizontal and vertical resolutions are not uniform. This structure has two
advantages. First, the parallel cutting of the horizontal axis enables the local domain to retain the full dimensional information
(ix_p*iy*ivar*iz, where ix_p is the longitudinal dimension of the local domain). Secondly, the localization in the local domain
permits the analysis to execute only exeeutes-within a small domain (ix_p*iy) when the length of the horizontal localization
radius (Rs) is smaller than iy, whieh-effectively redueesreducing the influence of spurious correlations between different state

variables. In this study, we set the horizontal and vertical domain localization radius to 200 km (40 grids) and 1 layer. Besides,
8
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we further implemented the observation localization to consider the influence of distance between analysis grid and
observational grid (see Sect. 2.3.4). To minimize computational complexity, the observation errors were assumed to be spatially

isotropic, with 0.40 pg/m?, 1.00 ng/m?, 0.50 pg/m?, 3.00 ng/m?, and 0.50 pg/m? for NHa4*, SO4>, NOs~, OC and EC, respectively.
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Figure 2: The structure of state variables in NAQPMS-PDAF v2.0.

2.3.3 Generation of ensemble members

In ensemble DA, ensemble members interpret the uncertainty of the model or system, characterized by BEC, which
significantly impacts the DA performance (Dai et al., 2014). For CTMs, emission input directly influences the chemical
calculation and substantially contributes to the uncertainty. Perturbing emission input can effectively represent the uncertainty
in aerosol emissions and enhance the consistency of ensemble error spread, thereby improving aerosol DA (Huang et al., 2023).
CTMs are nonlinear, and model state errors are non-Gaussian distributions. To obtain non-Gaussian error distributions, we
followed the Kong et al. (2021)’s method to assume that the emission errors are spatially correlated by an isotropic correlation
model with thea decorrelation length of 150 km and generate perturbation coefficient matrixes with the same Gaussian

distribution as the emission species, which are subsequently transformed into non-Gaussian distribution matrixes through non-

Gaussian process generation v1.2 thttps:/eithub-coem/ECheynet/Gaussian—to—nenGaussiand)-(Cheynet, 2024).

The target PM2s chemical components are NH4*, SO4>, NOs", OC, and EC;-and-the. The perturbed emission species

eorrespondinglythat can directly or indirectly affect the component concentration calculations include SO2, NOx, VOCs, NHs,

CO, PMio, PM25, EC, and OC, with the corresponding uncertainties (§) listed in Table 1. As shown in Eq. (1), the original
emission input matrix (E,) is multiplied by the corresponding perturbation coefficient matrix (8;) to generate the perturbed

9
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emission input matrix (E;) for each emission species. The calculation of the perturbation coefficient matrix (6;) is followed by
Eq. (2)-(3). Firstly, N two-dimensional pseudorandom perturbation fields (P;) are created using Evensen’s method (Evensen,
1994). The uncertainties (&) of the emission species are incorporated into the two-dimensional pseudorandom perturbation
fields (P;) to obtain the final perturbation coefficient matrixes (6;). Finally, the Gaussian-distribution perturbation coefficient
matrixes (0;) were transformed into non-Gaussian distribution coefficient matrixes with a given target skewness (set to 1) and
kurtosis (set to 6) by non-Gaussian process generation v1.2, which employs the Moment Based Hermite Transformation Model

and a cubic transformation.

Table 1: The uncertainties of emission species in NAQPMS-PDAF v2.0
Species SO2 NOx VOCs NH; CO PMiw PMxs EC OC
Uncertainty § 2.00 031 0.68 053 0.70 132 130 2.08 258

E =E,x6;,i=12,.,N, (1)

_LyyN p.
Ing,, = ( Pi—gxZim P % x In(1 + 6%)) x /In(1 + 82) , )

1 1
e 2N P2

1
(eoi_ﬁxzyn eOi)

0, = —
ﬁxzi:1( 0i N XZi=1 oi)

1 1
X (5 X ZN100;) X 8+ x I, 0, 3)

Notably, all matrix operations involved are Schur ProduetProducts. Where E; denotes the i ensemble perturbed emission
input matrix, E; denetesindicates the original unperturbed emission input matrix and 6; represents the i ensemble
perturbation coefficient matrix. 6,; is the i ensemble original perturbation coefficient matrix, which is obtained by
mathematical transformation of the i" ensemble pseudorandom perturbation matrix P, including standardization, scaling by

uncertainty (8), and logarithm.
2.3.4 Hybrid nonlinear DA algorithm with adaptive forgetting factor

To thoroughly integrate the stability of EnKFs with the nonlinearity of nonlinear filters and be ideal for the nonlinear and non-
Gaussian-distribution situations, the hybrid LKNETF is used in this study. This section reviews the algorithms of LETKF,

LNETEF, and their combination (LKNETF).

ETKEF, a deterministic filter in EnKFs, efficiently obtains analysis samples using a transformation matrix and the square root
of the forecast error covariance (Bishop et al., 2001). In contrast to stochastic filters in EnKFs, ETKF prevents underestimation
of the analysis error covariance resulting from the random observation perturbations. And it is particularly applicable in
situations with small ensemble sizes (Lawson and Hansen, 2004). The realization of ETKF can be divided into the forecast

and analysis steps.
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In the forecast step, the forecast state vector (xf) at t is generated by numerical model (M) integration of the analysis state

vector (x?_,) at t-1. The forecast error covariance matrix (Pf) can be calculated by the perturbation of the forecast ensemble

(X0).

xf = M), XE = [%,5,%,, ., %] “)
! ’T

P{= X{X{ ., (5)

Where X! is the forecast ensemble at t, and K is the number of ensemble members. X{I is the perturbation of the forecast

ensemble at t, calculated by X! and the forecast ensemble mean X_E att.

In the analysis step, the forecast error covariance matrix (Pf) at t is transformed to the analysis error covariance matrix (P?) at

t by a transform matrix (T).

P —
P =X TX; , (6)

The transform matrix (T) is defined as follows and can be decomposed to a left singular vector matrix (U), a singular value

matrix (S), and a right singular vector matrix (V) through the singular value decomposition.

T = pagapeive (K — DI+ (HX{)T(L- R™HHX{ = USV (7

2
Oens
Padaptive = 2 2 > (8)
P Oresid~%0bs

Where pagaprive 1 an adaptive forgetting factor; used for the inflation of error covariance estimation (the initial pgqqptive 18
set to 0.9 in this study). 62,s is the mean ensemble variance, 0%, is mean of observation-minus-forecast residual, 62, is
mean observation variance. I is the identity matrix. H is the observation operator. L is the localization matrix, a weight
matrix calculated by the 5%-order polynomial (Nerger, 2015), implemented in LETKF for observation localization analysis to
avoid observational spurious correlation and filter divergence effectively (Hunt et al., 2007). R is the observation error

covariance matrix.

The analysis state vector (x3) at t is calculated by the forecast state vector (x{) at t, the perturbation of the forecast ensemble

(X{I) at t and a weight vector (w).

A — of £/
X = X +Xiw, )
The weight vector (w) is given by the following equation.

w=THX)T(L-R™)(y — Hx)) , (10)
11



03
04
05
06

07

08

09

10
11
12
13
14
15
16
17
18

19

20
21
22

23

24

25

26

27

28

29

Where y is observations.

The analysis ensemble (X{) at t can be obtained by forecast ensemble mean (x_{) at t, the perturbation of the forecast ensemble

(X{l) at t and a transform matrix (C) represented by the symmetric square root of T.

x2 =X +VvK—1xf'c, (11)
The transform matrix (C) is calculated as follows.

C=Uus/2yT | (12)

NETF is a 2™-order exact ensemble square root filter effectively applied to the nonlinear and non-Gaussian DA (Tédter and
Ahrens, 2015). Like PF, NETF indirectly updates the model state by using observations to affect the weights of the prior
ensemble. However, PF and NETF differ in the sampling method. PF utilizes the Monte Carlo and Bayesian
methedsapproaches to calculate particle weights based on observations, which are then used to generate the analysis ensemble
by weighting the resampling forecast ensemble. In high-dimensional systems, as the DA progresses, the weight differences of
particles increase, with most particles having weights close to 0, leading to filter degeneration. In contrast, NETF generates
the analysis ensemble through a deterministic matrix square root transformation of the forecast ensemble, where the mean and
covariance matrix of the analysis ensemble match the weighted values in PF (as shown in Eq. (13)-(14)). Due to the similarity

between NETF and ETKF, the localization can be implemented in NETF (LNETF) (Todter et al., 2016).
- 1 1
Xt = ;2(:1 X = §Z§(=1 wix;", (13)

Where X2 is the analysis state vector mean, K is the number of ensemble members, x;? is the i
2 1

analysis state vector, w; is
the i" particle weight vector in PF, which is calculated by the Bayesian method w; = p(y|xif) /p(y), y is the observations,

x;" is the it forecast state vector.
1 — — — —
p? = Eﬂ(ﬂ(xia -2 (x* )T = Tewi(x' -xN(x" - xNT, (14)

Where P? is the error covariance matrix of the analysis ensemble, calculated by the perturbation of the analysis ensemble.

In NETF, A performs as a transform matrix like the transform matrix (T) in ETKF, which can be obtained from the weight

matrix (w).

! IT
P2 = XFAXP | (15)
AY?2 = (W —wwh)/2 = yD/2yT | (16)

Where the matrix W = diag(w) is defined as a diagonal matrix created from the weight matrix (w). A can be decomposed
12
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(A = VDVT) by a singular value decomposition as it is a real, symmetric, positive semidefinite matrix. V is the orthogonal

matrix, and D is a diagonal matrix.

Then, the perturbation of the analysis ensemble (X2') and the analysis ensemble (X?) can be obtained by applying the square

root of A as a transform matrix.
Xa/ — \/_KXf'Al/z , (17)
X2 = Xf + XF (W + VKAY2) | (18)

LKNETF combines the LETKF and LNETF through a hybrid weight y to perform better in systems with different non-
linearity degrees and implement in situations with smaller ensemble sizes (Nerger, 2022). When y approaches 1, the analysis
increment (AX;grxr) computed by LETKF becomes more significant and appropriate for linear systems with Gaussian
distributions. Conversely, when y approaches 0, the analysis increment (AX;ygrr) computed by LNETF becomes more
significant and appropriate for non-linear systems with non-Gaussian distributions. The one-step update scheme is used in this

study.
Hisync = X + (1 = Y)AX ngre + YAX Lerkr (19)

2.4 Data

2.4.1 Observation

The one-month (February 2022) hourly mass concentration observations of five PMz.s chemical components (NHs", SO4%,
NOs7, OC, and EC) from 33 ground-based sites in Northern China and surrounding areas were collected for this work (Fig. 3).
Out of the 33 sites, 24 (DA sites) were utilized for DA and internal validation, and the remaining 9 (VE sites) were used for
independent verification to assess the influence of DA sites on neighboring areas. These sites were divided using the K-means
clustering algorithm (Lloyd, 1982; Arthur and Vassilvitskii, 2007). The supplement provides a detailed description (Text S1).

PMaz5 hourly observations from the China National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/) were

employed to assess the overall mass concentration of PMa2.s chemical components in NAQPMS-PDAF v2.0. Due to incomplete
spatial overlap between the PMas sites and the chemical component sites, the PMz s sites were selected based on the closest

eoordinate-Euclidean distance between PMa s sites and chemical component sites.
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Figure 3: The model domains in WRF simulation (a) and the location of observations (b). The-demainDomain 3 in (a) is the target
area inof this study. Twenty-four red sites in (b) represent the sites for data assimilation, and nine green sites in (b) represent the
sites for spatial independent validation. The topographic dataset is from the ETOPOL1 1 arc-minute Global Relief Model, taken from
the National Geophysical Data Center (Amante and Eakins, 2009).

2.4.2 Global reanalysis dataset

The global reanalysis datasets of PM2.s chemical components in February 2022 were obtained from the Copernicus Atmosphere
Monitoring Service ReAnalysis (CAMSRA, 0.75°x0.75°) (Inness et al., 2019) and the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2, 0.5°%0.625°) (Randles et al., 2017) to compare with reanalysis dataset
generated by NAQPMS-PDAF v2.0. For the data consistency-ef-data—eomparisen, the global reanalysis surface grid data
located in the observation sites of PMa2.s chemical component were extracted through the k-nearest neighbor search method
(Friedman et al., 1977), which can efficiently match grid points and observation sites based on longitude and latitude data and
Euclidean distances. Our 3-hourly NAQPMS-PDAF v2.0 output of NOs™ and NHs" were extracted to compare with the
CAMSRA dataset, and hourly NAQPMS-PDAF v2.0 output of SO4*, OC, and EC were extracted to compare with MERRA-

2 M2TINXAER dataset.

2.5 Experimental setting and evaluation method

In our study, four tests were conducted to evaluate the performance of NAQPMS-PDAF v2.0 with hourly observations of five
14
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PM: s chemical components, including (1) the dependence on ensemble size and assimilation frequency, (2) the interpretation

ability on mass concentration and spatiotemporal characteristics, (3) the saperiorityquality of output data compared to other

reanalysis datasetdatasets, and (4) the uncertainty in ensemble assimilation. In practice, the ratio of ensemble size to the number
of processes with 1:50 in high-performance computers was the bestoptimal parallel scheme to balance computing efficiency

and computing resources (Wang et al., 2022).

All the tests were run in NAQPMS-PDAF v2.0 after a spin-up experiment with 24 timesteps from 00:00 to 23:00 (LST) on
February 1%, 2022. (1) For the first test, we assimilated the hourly observations of five PMa2.s chemical components from all
sites with 48 timesteps from 00:00 (LST) on February 2" to 23:00 (LST) on February 3™, 2022. In the first situationscenario,
we controlled a fixed assimilation frequency of 1 hour and changed the ensemble size to 2, 5, 10, 15, 20, 30, 40, and 50. In the
second situatienscenario, we controlled a fixed ensemble size of 20 and changed the assimilation frequency to 1 hour, 2 hours,
3 hours, 4 hours, 5 hours, 6 hours, 8 hours, and 12 hours. (2) For the second test, we set an ensemble size of 20 and an
assimilation frequency of 1 h and assimilated the hourly observations of five PMz.s chemical components from DA sites with
648 timesteps from 00:00 (LST) on February 2™ to 23:00 (LST) on February 28", 2022. We also conducted a free running
(FR) experiment without assimilation in the same period for comparison. (3) For the third test, we followed the settings in the
second test but assimilated the observation from all sites to generate a high-quality reanalysis dataset of five PM2.s chemical
components. (4) The lastfinal test was likeanalogous to the first test but with a differentsituation-te-investigatedistinct scenario

designed to examine the #mpaetinfluence of ensemble perturbation on ensemble assimilation. From Table 2, we fixed species

uncertainty (M4 setting) with five distribution types in the first situatienscenario and fixed distribution type (T2 setting) with

five SOz uncertainties in the second.

Table 2: The experiment settings for emission perturbation

Experiment Distribution (Fixed species uncertainty)

Tl Gaussian

T2 Non-Gaussian (m3=1, m4=6)

T3 Non-Gaussian (m3=-1, m4=6)

T4 Non-Gaussian (m3=1, m4=12)

T5 Non-Gaussian (m3=-1, m4=12)
SOz uncertainty (Fixed distribution)

M1 12%

M2 50%

M3 100%

M4 200%

M5 300%

We used the Continuous Ranked Probability Score (CRPS) to evaluate ensemble size dependency, which measures the
15
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consistency between ensemble forecast distribution and corresponding observations (Jolliffe and Stephenson, 2012). The
calculation rules are referred to in Hersbach’s study (Hersbach, 2000). Besides, four common statistical indicators, the Pearson
correlation coefficient (CORR), root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination
(R?), were used to assess the DA system performance in interpreting PM2.s chemical components (SO4*, NO3", NH4*, OC, and
EC). The CORR measures the correlation between the system outputs and corresponding observations, the RMSE and MAE
indicatesindicate the overall system accuracy, and the R? reflects the proportion of variability in the observations explained by

the assimilation system.

3 Results and discussion

3.1 The Dependence on Ensemble Size and Assimilation Frequency for Five Components

Ensemble size is a crucial parameter in ensemble assimilation, determining the model state’s uncertainty range. A larger
ensemble size more accurately represents the error distribution of state variables but requires considerable computing resources
and time, especially for high-dimension systems. A smaller ensemble size can easily lead to underestimating the error
covariance matrix, especially for the fine-resolution model (Kong et al., 2021). Thus, identifying an appropriate ensemble size
to balance computational efficiency and accuracy is the primary step in ensemble DA. A prior study (NAQPMS-PDAF v1.0)
only evaluated the correlation between ensemble size and parallel efficiency and concluded that the ratio of ensemble size to
high-performance computing processors was 1:50 (Wang et al., 2022), while the impact of ensemble size on the accuracy and
computational efficiency was neglected. fn-thisThis study;—we assessed the NAQPMS-PDAF v2.0 dependency on ensemble

size through three statistical indicators (CRPS, RMSE, and CORR). Figure 4 shows the mean CRPS, RMSE, and CORR values

and the statistical averages of the elapsed time over 48 timesteps with the ensemble sizes of 2. 5. 10, 15, 20, 30. 40. and 50.

From Fig. 4a, when the ensemble size is at its minimum level of 2, the mean CRPS values of the five PM2s chemical
components are more significant, with NOj3™ exhibiting the most considerable difference between the simulation distribution
and observations (more than 4). With each increase in ensemble size, the mean CRPS values of the five chemical components
progressively reduce and eventually reach convergence when the ensemble size is 10, implying that a hybrid nonlinear filter
can maintain high accuracy and reliability in ensemble assimilation with an ensemble size that is smaller than the traditional
minimum of 20 ensemble members, as observed in prior ensemble assimilation studies (Constantinescu et al., 2007; Miyazaki
et al., 2012; Schwartz et al., 2014; Rubin et al., 2017; Kong et al., 2021; Tsikerdekis et al., 2021; Wang et al., 2022), including
NAQPMS-PDAF v1.0. The mean CRPS value of EC is the lowest among the five chemical components, indicating the highest

accuracy and reliability of EC ensemble DA. The performance of other components is similar. Like CRPS values, the values
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of RMSE and CORR decrease and increase, respectively, as the ensemble size increases, and convergence begins to occur
when the ensemble size is 10 (Fig. 4b and c). Compared with other chemical components, the CORR value of SO4* is
significantly lower, less than 0.8, possibly due to its estimated background field error covariance driven by the inadequate

ensemble perturbations. Therefore, in the Discussion section, we-deeply discuss the uncertainties of ensemble perturbations.

Ensemble size dependence
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Figure 4: Assessment of ensemble size dependency based on mean continuous ranked probability score (CRPS) (a), root mean square
error (RMSE) (b), correlation coefficient (CORR) (c), and time (d).

Figure 4d shows the time required for the four processes of ensemble assimilation under different ensemble sizes, including
initialization, model integration, assimilation, and post-processing. The model integration process in NAQPMS-PDAF v2.0
takes the longest, followed by post-processing, initialization, and assimilation. The required time for initialization and post-
processing increases with increasing ensemble size, while for model integration and assimilation, except for ensemble size 30,
the required time is the same under different ensemble sizes. Generally, the time needed for ensemble sizes of 30-50 is
considerably higher than that for smaller ones. Although convergence occurs with an ensemble size of 10, our work illustrates
a similar time required between ensemble sizes 10 and 20. Consequently, we selected an ensemble size of 20 to ensure optimal

performance of NAQPMS-PDAF v2.0, considering both assimilation efficiency and accuracy.

The assimilation frequency is the interval at which observational data is introduced into the DA system, directly affecting the

practical assimilation data volume and computation cost. High-frequency DA with high-quality observations is crucial for
17
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improving numerical simulations and forecasts (Liu et al., 2021). Figure 5 demonstrates that the MAE values of the five
chemical components analysis fields range from 0.02 to 0.12 pg/m*, RMSE values range from 0.23 to 2.61 pg/m?, and CORR
values range from 0.71 to 0.98 at a 1-hour assimilation time interval, which is significantly better than the statistical indicators
at lower assimilation frequencies. Even at a 2-hour assimilation frequency, the assimilation effect drops sharply compared to
the 1-hour interval, especially for NOs, OC, and EC. The values of MAE and RMSE increase by 2.6-5.82 pg/m?® and 4.72-
9.57 ng/m’, respectively, and the CORR values decrease by 0.27-0.81. Gradual increasing trends in MAE and RMSE values
and a slight decreasing trend in CORR values are observed as assimilation frequency decreases from the 2-hour interval.
Therefore, the fast-updating assimilation with a 1-hour interval significantly improves the NAQPMS simulation. For the
forecasting field (Fig. S2), the low sensitivity of state variables to assimilation frequency suggests that NAQPMS-PDAF v2.0
can appropriately reduce assimilation frequency during the actual forecasting phase, lowering the demand for high temporal

resolution observations and computational resources.
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Figure 5: Assessment of assimilation interval dependency based on mean absolute error (MAE) (a), root mean square error (RMSE)

(b), and correlation coefficient (CORR) (c) at the analysis step.
3.2 Evaluation of NAQPMS-PDAF v2.0 performance

3.2.1 Overall validation of DA results

We conducted a control experiment (free-running field, FR) without any DA and a DA experiment. This section verified the
forecast filedficld (FOR) and analysis field (ANA) at 24 DA sites and 9 VE sites, respectively. Figure 6 shows the scatter
distribution of observations and simulations at DA sites. For FR (Fig. 6al-a5), five chemical components have CORR values
ranging from 0.32 to 0.56, and R? values do not exceed 0.3, indicating poor consistency between observations and simulations.
In detail, the simulated mass concentrations of SO4*, OC, and EC are significantly overestimated, while the simulated
concentrations of NH4" and NOs™ are underestimated. OC has the most significant error, with an RMSE value of 25.84 pg/m?

and an MAE value of 19.41 pg/m®. Besides, the error distributions of SO4*, NO3  and NH4" are close to a symmetric distribution
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with a mean value of 0, while the error distributions of OC and EC are skewed to the left from the mean value of 0 (Fig. 7al-

a5), showing the relatively better simulations in SO42", NO3” and NH4" than in OC and EC. Overall, NAQPMS cannot interpret

the mass concentrations of the five chemical components with significant errors, mainly due to the uncertainties in chemical

mechanisms (Miao et al., 2020).
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Figure 6: Scatterplots of the DA-site simulations versus the DA-site observations with probability density for the free-running field

(FR, al-a5), forecast field (FOR, b1-b5), and analysis field (ANA, c1-c5). The dotted gray lines represent the 2:1, 1:1, and 1:2 lines,

and the solid red line represents the fitting regression line.
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Figure 7: Probability distributions of bias between DA-site observations and DA-site simulations for the free-running field (FR, al-
a5), forecast field (FOR, b1-b5), and analysis field (ANA, c1-c5).

After DA, FOR shows a slight improvement with a slight increase in CORR and R? and a decrease in RMSE and MAE,
especially for NH4" and NOs™ (Fig. 6b1-b5). Although SO4>, OC, and EC are significantly overestimated with a slight decrease
in CORR and R?, the RMSE and MAE values decrease. Besides, the error distributions of the five chemical components are
concentrated at 0, and the overestimation of OC and EC has been improved compared to FR (Fig. 7b1-b5). These results

indicate that DA reduces the overall FOR errors in NAQPMS due to improved forecasting ability by obtaining optimal initial
20
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fields. However, further improvements are necessary to address the NAQPMS uncertainties in emission sources,
meteorological input, and imperfect physiochemical mechanisms. For ANA (Fig. 6c1-c5), DA significantly improves the
simulations of the five chemical components, making the ANA consistent with the observations. The CORR values are not
less than 0.86, the RMSE and MAE values do not exceed 3.23 pg/m® and 1.49 pg/m?, respectively, and the R? values are not
less than 0.74. Specifically, the CORR values for NOs~, OC, and EC are not less than 0.96, and the R? values are not less than
0.93. The error distributions of the five chemical components concentrate to 0 with the mean bias ranging from 0+0.08 pg/m?
to 1.02+3.07 pg/m® (Fig. 7c1-c5). The results of VE sites show similar characteristics to the DA sites (Fig. S3 and S4).
Compared to FR, the overall errors of the FOR and ANA for the five chemical components decrease with a significant
improvement in ANA, showing that the CORR values of NH4" and NOs™ increase by 0.15 and 0.45, respectively, the R? values
of NH4" and NOs™ increase by 0.22 and 0.81, respectively, the RMSE values of OC and EC decrease by 21.77 pug/m® and 17.79
pg/m?, respectively. Overall, the FOR and ANA errors decreased significantly. The ANA of the five chemical components at

DA sites is almost entirely consistent with the observations, indicating excellent DA performance.

3.2.2 Assessment of temporal variation in chemical components

The ensemble DA employs a cyclic updating process wherein the forecast and analysis steps are continuously completed at
each iteration (Evensen, 2003; Houtekamer and Zhang, 2016). In the forecast step, the ANA at the current time step serves as
the optimal initial field to advance the model integration and obtain the FOR at the next step. In the analysis step, the FOR at
the next time step provides background field information for the subsequent DA analysis to generate the ANA at the next time
step. The FOR and ANA interact with each other in the temporal dimension. Therefore, in this section, we assess the ability of
NAQPMS-PDAF v2.0 to interpret the temporal variations of the five chemical components. Figure 8 illustrates the time series
of the five chemical components at two representative sites, including a DA site in Tianjin City and a VE site in Heze City. For
the DA site (Fig. 8a), the temporal variations of NH4" and NO;3™ in FR and FOR exhibit better agreement with the observed
temporal variations (OBS) than those of SO4%, OC, and EC. However, NHs" and NOs™ mass concentrations are significantly
lower than the high-value mass concentrations observed on February 25", The mass concentration of SO4* in FR is greatly
overestimated during the periods of Feb. 88-11", Feb. 18%-19"™, and Feb. 24"-25", The mass concentrations of OC and EC in
FR are overestimated throughout February with substantial temporal fluctuations. Although the time series of SO4>, OC, and
EC in FOR show some improvement, noticeable differences from the OBS are still apparent. After DA, the ANA time series
for the five chemical components align well with the OBS, indicating good consistency and accurate representation of temporal
characteristics, such as the NHsNOs3 pollution captured on February 25, Notably, the mass concentrations of SO4>, NOs", and
NH4" peaked on Feb. 88-11" and February 25", indicating intensified atmospheric secondary chemical reactions primarily due

to neutralization reactions of acidic pollutants capturing NHs. The temporal variations of NH4" and NO3™ are more similar
21



14 because atmospheric NO3™ peimariymainly exists as NH4NOs rather than other metal nitrates, and NH4NO;3 can form before

15  the complete neutralization of H2SO4 (Ge et al., 2017). The improvements at the VE site (Fig. 8b) are like those at the DA site,
16 with the ANA time series of the five chemical components showing closer agreement with the OBS, which suggests that the
17  localization analysis in DA effectively facilitates the propagation of observations within a specific spatial range and mitigates
18 the assimilation anomalies caused by spurious correlations from the distant sites (Hunt et al., 2007).
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22 NH4%, SO+, NOs, OC, and EC are critical chemical components of PMa s, and the sum of their mass concentrations can be
23 approximated as the PMz.5s mass concentration. We further assessed the simulation enhancement of PMa s time series based on
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ground-level PMz s observations. Six representative sites were selected, including 3 DA sites (Fig. 9al-a3) and 3 VE sites (Fig.
9b1-b3). The FR and FOR in DA and VE sites show significant overestimation and poor consistency with the OBS, mainly
due to the overestimation of OC and EC mass concentrations. Conversely, the PMz s time series in ANA closely matches that
of the OBS, accurately capturing the actual variation of PM> s. In some specific instances, such as on February 26™ at 00:00 in
Tianjin City and Langfang City, the peak value of ANA was lower than that of OBS, which could be attributed to the negligence
of other PM2.s components (such as mineral dust and sea salt) and the inconsistency in location between ground-level PMz s
observational sites and chemical components observational sites. Overall, the DA of chemical component observations
significantly enhanced the simulation of PM2s time series in NAQPMS. Compared to the CORR values of FR and FOR, the
CORR values of ANA at the six representative sites increased by 13.64%-89.58% and 17.19%-75.00%, respectively, while the

RMSE values decreased by 56.03%-83.13% and 40.74%-72.20% (Table S3).
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Figure 9: Hourly variation of PM, s in three representative DA sites (al-a3) and three representative VE sites (b1-b3).

3.2.3 Assessment of spatial distribution in chemical components

DA can improve the interpretation of model states in the analysis domain by using a limited number of observations. The
ability to represent spatial distribution accurately is a crucial performance for aerosol DA. Figure 10 displays the spatial
distribution of the monthly average mass concentrations for the five chemical components, including OBS, FR, FOR, ANA,
and analysis increment (INC). The spatial distributions of bias and statistical indicators for FR, FOR, and ANA are shown in

Fig. 11 and Fig. 12, respectively.
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Figure 11: Spatial distribution of DA-site bias for five PM, s chemical components from observation (OBS) for the free-running field

(FR, al-el), forecast field (FOR, a2-e2) and analysis field (ANA, a3-e3).
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Figure 12: Spatial distribution of DA-site statistical indietersindicators for five PM, s chemical components. (al-el) represents the
values of RMSE and CORR for the forecast field (FOR), (a2-e2) same as (al-el) but for analysis field (ANA), (a3-e3) represents the
improvement of RMSE and CORR for the forecast field (FOR), (a4-e4) same as (a3-e3) but for analysis field (ANA). The size

represents the value of RMSE in (al-e2) and the improvement percentage compared to non-assimilation in (a3-e4), respectively.

The spatial characteristics of NH4" and NO3™ are similar. Compared to the OBS (Fig. 10al and c1), the FR (Fig. 10a2 and ¢2)
and FOR (Fig. 10a3 and c3) have failed to capture the high-value mass concentrations in the border area between Hebei
province, Shanxi province, Henan province, and Shandong province, especially in the northern region of Henan province. The
primary reason is the uncertainties in emission inventories in winter heating periods, which results in insufficient emission
statistics of gaseous precursors NOx and NH3 (Aleksankina et al., 2018). After DA, this situation is significantly improved
with the ANA (Fig. 10a4 and c4). The INCs in the Beijing-Tianjin-Hebei region, Shanxi province, Henan province, and
Shandong province are positive (Fig. 10a5 and c5), indicating varying degrees of improvement in correcting the
underestimation of mass concentrations. Specifically, for NH4" and NOs™at DA sites, the biases between the OBS and ANA
are significantly reduced compared to the biases between the OBS and FR (Fig. 11), with the mean absolute bias decreasing

by 0.93 pg/m? and 4.27 pg/m?, respectively. Moreover, the overall biases at VE sites also decrease (Fig. S5). As for the spatial
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statistical indicators of NH4" (Fig. 12al and a2), the CORR values in FOR and ANA range from 0.39 to 0.79 and 0.70 to 0.97,
respectively, and the RMSE values range from 3.16 pug/m®to 7.65 pg/m> and 1.20 pg/m? to 3.49 pug/m?, respectively. As for
the spatial statistical indicators of NOs™ (Fig. 12c1 and c2), the CORR values in FOR and ANA range from 0.09 to 0.76 and
0.89 to 0.99, respectively, and the RMSE values range from 4.88 pg/m® to 15.69 ug/m® and 1.34 pg/m®to 5.39 pg/m’,
respectively. For the FOR, the improvement in accuracy for NOs3™ is more significant than that for NH4*, with the CORR values
of most DA sites increasing by more than 10% and the RMSE of most DA sites decreasing by not less than 10% (Fig. 12a3
and c3). For the ANA, NH4"5~ and NOs™ exhibit significant improvements in CORR and RMSE, as most DA sites show over
150% in CORR and over 50% in RMSE (Fig. 12a4 and c4). The-imprevementsImprovements can also be found forin NH4"
and NOs"at VE sites (Fig. S6). The spatial consistency of NH4" and NOs™ indicates that NH4sNOs is the primary aerosol chemical

component, highlighting the necessity of coordinated control of precursor NOx and NHs.

Unlike NH4* and NO3, compared to the OBS (Fig. 10b1), the mass concentrations of SO4> in the FR and FOR (Fig. 10b2 and
b3) are significantly overestimated, especially in Shandong province. In contrast, the ANA has dramatically improved (Fig.
10b4), with most areas showing negative INCs (Fig. 10b5). The mean absolute biases in DA and VE sites have decreased by
1.80 ng/m?® and 2.68 ng/m?, respectively (Fig. 11 and Fig. S5). Specifically, after DA, the CORR values of the FOR and ANA
range from 0.22 to 0.71 and 0.58-0.97, and the RMSE values range from 3.42 pg/m? to 11.07 pg/m? and 1.20 pg/m? to 4.30
pg/m?, respectively (Fig. 12b1 and b2). The CORR and RMSE values in FOR have significantly improved (Fig. 12b3) at DA
sites around Beijing. While the CORR values in ANA have increased by more than 13%, with most DA sites showing an
increase of over 50%, and RMSE values have decreased by no less than 30%, with most DA sites showing a decrease of over
70% (Fig. 12b4). Besides, half of the VE sites show significant improvement in the CORR and RMSE in the FOR and ANA,
mainly due to their proximity to more DA sites (Fig. S6). The OBS and ANA indicate a considerable control in SO4> pollution

during the winter heating period due to the emission reduction of gaseous precursors (Zhai et al., 2019; Yan et al., 2021).

The spatial distributions of OC and EC exhibit similarities (Fig. 10d1 and el), consistent with the finding of a strong correlation
between OC and EC in winter (Cao et al., 2007). Since the low temperature and weakened photochemical reactions in winter
reduced secondary OC (SOC) generation, and primary OC (POC) and EC mainly originate from direct anthropogenic
emissions, such as combustion (Guo, 2016). Compared to the OBS, the mass concentrations in FR (Fig. 10d2-d3) and FOR
(Fig. 10e2-¢3) are significantly overestimated over a wide range. Similar overestimations have also been reported in the global
reanalysis datasets of CAMS and MERRA-2, likely attributed to the hygroscopic growth scheme of carbonaceous aerosols in

the models, poorly constrained semi-volatile species escaping from primary organic aerosols (Soni et al., 2021), and aging
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mechanisms in the models (Huang et al., 2013). After DA, the spatial distribution of the ANA aligns entirely with that of the
OBS (Fig. 10d4 and e4), with the improvements in all overestimations (Fig. 10d5 and e5) and the average biases of OC and
EC at DA sites both significantly decreasing to 0.14 pg/m?® (Fig. 11d3 and e3). The VE sites show similar results to the DA
sites, with the-average biases of less than 2 pg/m? (Fig. S5d3 and e3). Specifically, for OC (Fig. 12d1 and d2), the CORR
values in FOR and ANA are 0.18-0.71 and 0.92-1.00, respectively, with RMSE values of 7.91 pg/m3-26.27 pg/m?® and 0.16
pg/m3-1.45 pg/m?, respectively. For EC (Fig. 12el and e2), the CORR values in FOR and ANA are 0.01-0.66 and 0.97-1.00,
respectively, with RMSE values of 5.33 pg/m3-16.91 pg/m* and 0.01 pg/m*-0.26 pg/m?, respectively. Although significant
improvements are not observed in FOR at some specific DA sites, the RMSE values at all DA sites decrease by 10%-50% (Fig.
12d3 and e3). The CORR values of OC and EC in ANA increase by more than 30%, with most DA sites exceeding 200%, and
the RMSE values decrease by more than 90% (Fig. 12d4 and e4). At VE sites (Fig. S6), significant improvements in the CORR
are not observed, but the RMSE values in the FOR and ANA decrease, which indicates that DA has limited benefits for whole

areas but can effectively reduce biases of swhele-areasentire regions.

3.3 Compared to NAQPMS-PDAF v1.0 and global reanalysis dataset

To comprehensively evaluate the competitiveness and superiority of NAQPMS-PDAF v2.0 in generating the reanalysis
datasets of the PM2.s chemical compositions, we assimilated the mass concentrations of the five PM2s chemical components
from all sites (sum of DA sites and VE sites) in February 2022 to generate a reanalysis dataset. We compared our reanalysis
dataset with the global reanalysis (RA) datasets (CAMSRA and MERRA-2) and NAQPMS-PDAF v1.0 output. Figure 13
illustrates the spatial distribution of the monthly average mass concentrations for the five chemical components. Compared to
the OBS (Fig. 13al and c1), CAMSRA underestimates the NH4" and NO3™ concentrations and fails to capture the high-value
concentration in northern Henan Province (Fig. 13a2 and c2). Meanwhile, MERRA-2 overestimates the concentrations of
SO+, OC, and EC (Fig. 13b2, d2, and €2), particularly SO4*, exhibiting a large region with inaccurately high concentrations.
Besides, CAMSRA (approximately 80*80 km?) and MERRA-2 (55*70 km?) have significantly lower spatial resolutions
compared to NAQPMS-PDAF v2.0 (5*5 km?). Therefore, NAQPMS-PDAF v2.0 provides a more detailed description of the

pollution characteristics of chemical components in Northern China and surrounding areas compared to RA.
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Figure 13: Spatial distribution of the monthly averaged concentration of five PM, s chemical components for observations (OBS, al-
el), global reanalysis data (RA, a2-e2), NAQPMS-PDAF v1.0 analysis data (a3-e3) and NAQPMS-PDAF v2.0 analysis data (a4-e4).

Although NAQPMS-PDAF v1.0 demonstrates a superior spatial representation of the five chemical components when
compared to RA, it fails to capture the high-value concentrations of NH4" in the northwest of Henan Province and correct the
high-value concentrations of NH4" in the central and western areas of Hebei Province (Fig. 13a3). Moreover, the scattered
high-value concentrations of SO4* in the North China Plain do not align with the spatial characteristics of the OBS (Fig. 13b3).

Notably, NAQPMS-PDAF v1.0 exhibits poor performance in interpreting OC and EC with significant overestimations in a
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wide range (Fig. 13d3 and e3), which indicates that NAQPMS-PDAF v1.0 is weaker than NAQPMS-PDAF v2.0 in terms of
DA performance on chemical components, primarily due to insufficient propagation of observations. In NAQPMS-PDAF v2.0,
the LKNETF algorithm with an adaptive forgetting factor is more suitable for the nonlinear and non-Gaussian situations
compared to EnKFs in NAQPMS-PDAF v1.0, and the ensemble perturbation with non-Gaussian distribution can better

represent the reasonable error distribution of model states.

Table 3 presents a quantitative comparison of three reanalysis datasets. Compared to the CORR of NAQPMS-PDAF v2.0
(0.86-0.99), the CORR of RA for the five chemical components is significantly lower (0.42-0.55). Moreover, NAQPMS-PDAF
v1.0 exhibits significantly poorer consistency in SO4>-, OC, and EC, with CORR values ranging from 0.35 to 0.57. NAQPMS-
PDAF v2.0 has lower overall RMSE values (0.14 pg/m?3-3.18 ug/m?) compared to RA and NAQPMS-PDAF v1.0, with RMSE
values ranging from 4.51 pg/m®to 12.27 pg/m> and 2.46 png/m®to 15.50 pg/m?’, respectively. The characteristics of the R? are
ikesimilar to those of $he-CORR and RMSE. For NH4" and NO3", NAQPMS-PDAF v2.0 (0.85 and 0.93) and v1.0 (0.80 and
0.96) are much higher than RA (0.09 and 0.13). Notably, for SO+*, OC, and EC, NAQPMS-PDAF v2.0 (0.74-0.98) is
significantly higher than v1.0 (-0.16-0.25) and RA (-0.15-0.25). Overall, NAQPMS-PDAF v2.0 more accurately and
consistently interprets the five chemical components, particularly for NHs*, SO4*, OC, and EC. The reasons are summarized
as follows. (1) The DA frequency of CAMSRA is 12 hours, which is lower than the hourly DA frequency in NAQPMS-PDAF
v2.0. (2) CAMSRA only assimilates satellite retrievals (Inness et al., 2019), and MERRA-2 only assimilates aerosol optical
depth (AOD) from both ground-based and space-based remote sensing platforms (Randles et al., 2017). The aerosol optical
information analysis increment cannot be allocated to each chemical component accurately and reasonably due to the lack of
a deterministic relationship between aerosol optical information and PMz.s chemical components. (3) NAQPMS-PDAF v1.0
has evident DA shortcomings for chemical components due to the limited DA algorithm under the assumption of a linear model
or system, inappropriate ensemble perturbation under the assumption of Gaussian distribution; and inadequate observational
modules. (4) The state variable structure in NAQPMS-PDAF v1.0 lacks-the-eapaeity-tecannot effectively mitigate the impact

of spurious correlations between chemical component variables, even when using analytical localization.

Table 3: Statistical indicators (CORR, RMSE, R?) of five PM, s chemical components for global reanalysis data (RA), NAQPMS-
PDAF v1.0 analysis data and NAQPMS-PDAF v2.0 analysis data.

CORR RMSE (pg/m?) R?
Components

vli0O v20 RA v1.0 v20 RA v1.0 v2.0
NH4* 049 090 092 559 253 222 0.09 080 0.85
SO+* 0.55 0.57 086 1227 545 261 025 025 0.74
NOs 0.54 098 096 1027 246 3.18 0.13 096 093
oC 0.50 042 097 451 1292 093 0.15 -0.09 093
EC 042 035 099 7.59 1550 0.14 -0.15 -0.16 0.98
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3.4 The uncertainty in NAQPMS-PDAF v2.0

In ensemble DA, the ensemble members represent possible values of the model states, and the ensemble sampling can
determine the uncertainties of the model states. Therefore, the ensemble generation directly affects the propagation of
observations and subsequently impacts the final DA performance. Previous studies generated ensemble members based on the
uncertainties of emission species and the Gaussian-distribution assumption to satisfy the requirements of EnKFs algorithms
(Kong et al., 2021; Wang et al., 2022). However, the true error probability distribution of emission species is not an ideal
Gaussian distribution, and the assumption will introduce errors. In this study, we coupled the hybrid nonlinear DA algorithm
(LKNETF) with NAQPMS to handle the nonlinear and non-Gaussian situations, which combines the stability of LETKF with
the nonlinearity of LNETF. Therefore, we evaluate the performance of ensemble members with different uncertainties and

error probability distributions in NAQPMS-PDAF v2.0 through two groups of sensitivity experiments.

The first group of experiments (T1-T5) involves controlling the SOz uncertainty as a fixed value of 200% and transforming
the distribution of the perturbation coefficient matrix. The second group of experiments (M1-M5) focuses on assessing the
influence of SO2 uncertainty on NHs" and SO4* DA based on a fixed non-Gaussian distribution (m3=1, m4=6). Figure 14
shows the statistical indicators of the five chemical components under different error probability distributions, including a
Gaussian distribution (T1) and four non-Gaussian distributions (T2-T5). The mean CRPS and RMSE in T2 and T4 are lower
than those in T1, T3, and T5, and the CORR values in T2 and T4 are higher than those in T1, T3, and TS5, indicating that the
DA performance of non-Gaussian-distribution assumption is superior to that of Gaussian-distribution assumption. Moreover,
positively skewed non-Gaussian distribution performs better than negatively skewed distribution. Except for SO4*, the
performance in T2 outweighs that in T4 for other chemical components, implying that higher kurtosis harms the chemical

components DA.
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Figure 14: Statistical indicators (mean CRPS (a), RMSE (b), and CORR (c)) of five PM, s chemical components for five perturb

experiments based on distribution.

SOz is a crucial precursor of NHs" and SO4%, and perturbing SO: affects the forecast and simulation of NH4" and SO4>. Table
4 presents statistical indicators of NH4" and SO4* analysis fields based on ensemble perturbations with different SO2
uncertainties (12%-300%). Increasing the uncertainty of SOz from 12% to 200% leads to a decrease in the mean CRPS in the
SO4?> analysis field from 2.67 to 1.40, an increase in the CORR from 0.51 to 0.74, and a reduction in the RMSE from 4.10
pg/m’ to 2.37 ng/m?. Similarly, the mean CRPS in the NH4" analysis field decreases from 0.98 to 0.77, the CORR increases
from 0.88 to 0.91, and the RMSE decreases from 1.55 pg/m?> to 1.33 pg/m?. It indicates that increasing the uncertainty of SOz
improves the DA performance on NHs" and SO4* because the higher SO2 uncertainty makes SO: perturbed sufficiently, and
the estimated error probability distribution is closer to the real distribution, resulting in a sufficient spread of observations.
However, when the uncertainty of SO reaches 300%, the statistical indicators do not significantly improve and even worsen
because excessively high SO» uncertainty causes the estimated error probability distribution to deviate from the true

distribution. Thus, selecting appropriate uncertainties for emission species is crucial in aerosol chemical component DA.

To summarize, the non-Gaussian- distribution assumption outperforms the Gaussian- distribution assumption in NAQPMS-
PDAF v2.0. Positive skewness performs better than negative skewness, and excessively high kurtosis should be avoided.
Additionally, appropriately increasing the uncertainty of SOz enhances the DA performance of NH4* and SO4*. Future studies
should conduct more sensitivity experiments on emission species perturbation to determine the suitable schemes for different

aerosol chemical components.
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Table 4: Statistical indicators (mean CRPS (a), RMSE (b), and CORR (c)) of five PM,s chemical components for five perturb

experiments based on SO, emission uncertainty.

. SO+* NH4*
Experiment
CRPS CORR RMSE CRPS CORR RMSE
Ml 2.67 0.51 4.10 0.98 0.88 1.55
M2 2.07 0.59 3.24 0.92 0.89 1.48
M3 1.61 0.69 2.63 0.83 0.91 1.39
M4 1.40 0.74 2.37 0.77 0.91 1.33
M5 1.41 0.74 2.39 0.78 0.91 1.33

4 Conclusions

In this paper, we online coupled NAQPMS with PDAF-OMI to develop a novel hybrid nonlinear DA system (NAQPMS-
PDAF v2.0) with level-2 parallelization based on a hybrid Kalman-Nonlinear Ensemble Transform Filter (LKNETF) for the
first time. Compared to NAQPMS-PDAF v1.0, NAQPMS-PDAF v2.0 with OMI can be applied with multiple component
types and nonlinear/non-Gaussian situations in chemical analysis to effectively interpret five PM2s chemical components
(NH4", SO+, NOs", OC and EC), which is not achieved in previous studies. The background error covariance was calculated
by ensemble perturbation based on adaptive uncertainties and non-Gaussian- distribution assumption of emission species. The

DA experiments were conducted based on 33 observational sites in Northern China and surrounding areas.

NAQPMS-PDAF v2.0 with LKNETF can maintain high accuracy and reliability in ensemble DA with an ensemble size of 10,
smaller than the traditional minimum of 20 ensemble members, as observed in prior ensemble assimilation studies. The FR
(free-run fields without DA) have a poor consistency with the observations, with the CORR values ranging from 0.32-0.56
and the R? values less than 0.3, showing that SO4%, OC and EC are significantly overestimated, while NHs" and NOs™ are
underestimated. A significant improvement was observed in the ANA (analysis fields) efat the DA sites. The CORR values are
not less than 0.86, the RMSE and MAE values do not exceed 3.23 ug/m? and 1.49 pg/m?, respectively, and R? is not less than
0.74. Specifically, the CORR values for NO3", OC, and EC are not less than 0.96, and R? is not less than 0.93. The error
distributions of the five chemical components concentrate to 0 with the mean bias ranging from 0+0.08 pg/m?to 1.02+3.07
pg/m’. These improvements are also found in the ANA at VE sites, indicating an excellent DA performance of NAQPMS-

PDAF v2.0.

The ability of NAQPMS-PDAF v2.0 to interpret the spatiotemporal characteristics of the five chemical components was
examined. For temporal variations, compared to the FR and FOR (forecast fields), the ANA closely aligned with the OBS
(observations) and accurately captured the peak concentrations of SO42-, NOs", and NH4" on specific periods (such as February
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25™), indicating good consistency and accurate characterization. Specifically, the CORR of the ANA at the six representative
sites increased by 13.64%-89.58% and 17.19%-75.00%, respectively, while the RMSE decreased by 56.03%-83.13% and
40.74%-72.20%. For spatial distributions, after DA, both NH4" and NOs” with positive analysis increments exhibit significant
improvements in CORR and RMSE, as most DA sites show improvements of over 150% in CORR and over 50% in RMSE.
SO4*, OC, and EC with negative analysis increments were also improved. Especially for OC and EC, the improvements of
CORR and RMSE at most DA sites were over 200% and over 90%, respectively. The improvements at VE sites were also
identified. Consequently, DA successfully aligned the spatiotemporal characteristics of the ANA with OBS and significantly

reduced the biases of five chemical components.

Compared to the global reanalysis datasets (CORR: 0.42-0.55, RMSE: 4.51-12.27 pg/m*) and NAQPMS-PDAF v1.0 (CORR:
0.35-0.98, RMSE: 2.46-15.50 pg/m?), the NAQPMS-PDAF v2.0 (CORR: 0.86-0.99, RMSE: 0.14-3.18 pg/m?) has significant
superiority in generating the reanalysis datasets of the PM2.s chemical compositions with high spatiotemporal resolution.
Besides, NAQPMS-PDAF v1.0 cannot capture the high-value concentrations and exhibits poor performance when interpreting
S04*, OC, and EC with CORR values ranging from 0.35 to 0.57. In contrast, NAQPMS-PDAF v2.0 interprets the five chemical

components more accurately and consistently.

Finally, the uncertainties of NAQPMS-PDAF v2.0 are examined by identifying the influence of ensemble generation on
ensemble DA performance. The non-Gaussian-_distribution assumption outperforms the Gaussian- distribution assumption in
NAQPMS-PDAF v2.0. Positive skewness performs better than negative skewness, and excessively high kurtosis should be
avoided. Additionally, appropriately increasing the uncertainty of SOz enhances the DA performance of NH4" and SO4>. Future
studies should conduct more sensitivity experiments on emission species perturbation to determine the suitable schemes for

different aerosol chemical components.

The novel hybrid nonlinear DA system (NAQPMS-PDAF v2.0) can be effectively applied in the interpretation of chemical
components and outperform in generating the reanalysis dataset of the five PM2.s chemical components with high accuracy
and high consistency, thus providing the sufficient channel to investigate the spatiotemporal characteristics, identify the
regional transport and prevent and control aerosol composition pollution. In future work, we plan to research the vertical DA
of chemical components, introduce more vertical information from more observational platforms, and verify the simultaneous

DA performance of surface and vertical mass concentrations.

36



52

53

54

55
56
57
58

59

60

61

62
63
64
65
66
67

Code and data availability

The source codes in our work are available online via Zenodo (https://doi.org/10.5281/zenodo.10886914).

Author contributions

HL developed the data assimilation system, performed numerical experiments, carried out the analysis, and wrote the original
manuscript. TY provided scientific guidance, designed the paper streutrestructure, and wrote this paper. LN developed PDAF
and provided help for the model code. DWZ, DZ, and GT provided PMa.s chemical component data. HW provided help ferwith
the model code. YS, PF, HS, and ZW did overall supervision. All authors reviewed and revised this paper.

Competing interests

The contact author has declared that neither they nor their co-authors have any competing interests.

Acknowledgements

This work was supported by the National Key Research and Development Program for Young Scientists of China (No.
2022YFC3704000), the National Natural Science Foundation of China (No. 422751223), and the National Key Scientific and
Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab). Ting Yang would like
to express gratitude towards the Program of the Youth Innovation Promotion Association (CAS). We thank the Big Data Cloud

Service Infrastructure Platform (BDCSIP) for providing computing resources.

37



68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12

Reference

Aleksankina, K., Heal, M. R., Dore, A. J., Van Oijen, M., and Reis, S.: Global sensitivity and uncertainty analysis of an
atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study, Geosci. Model Dev., 11, 1653-
1664, https://doi.org/10.5194/gmd-11-1653-2018, 2018.

Ali, A., Amin, S. E., Ramadan, H. H., and Tolba, M. F.: Enhancement of OMI aecrosol optical depth data assimilation using
artificial neural network, Neural Computing and Applications, 23, 2267-2279, https://doi.org/10.1007/s00521-012-1178-9,
2013.

Alves, C., Evtyugina, M., Vicente, E., Vicente, A., Rienda, I. C., de la Campa, A. S., Tomé, M., and Duarte, I.: PM2 s chemical
composition and health risks by inhalation near a chemical complex, J. Environ. Sci., 124, 860-874,
https://doi.org/10.1016/j.jes.2022.02.013, 2023.

Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model: procedures, data sources and analysis, 2009.

Arthur, D. and Vassilvitskii, S.: K-means++: the advantages of careful seeding, Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, 1027-1035, https://dl.acm.org/doi/10.5555/1283383.1283494, 2007

Bao, Y., Zhu, L., Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., Che, H., Ali, G., Dong, Y., Tang, Z., Gu, Y., Tang, W., and
Hou, Y.: Assessing the impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts: Sand dust events in
northeast China, Atmos. Environ., 205, 78-89, https://doi.org/10.1016/j.atmosenv.2019.02.026, 2019.

Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., and Samet, J. M.: Spatial and temporal variation in PMas chemical
composition in the United States for health effects studies, Environ. Health Perspect., 115, 989-995,
https://doi.org/10.1289/ehp.9621, 2007.

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I:
Theoretical Aspects, Mon. Weather Rev., 129, 420-436, https://doi.org/10.1175/1520-
0493(2001)129<0420:ASWTET>2.0.CO:2, 2001.

Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., Jin, Z. D., Shen, Z. X., Chen, G. C., Kang, Y. M., Zou,
S. C., Zhang, L. Z., Qi, S. H., Dai, M. H., Cheng, Y., and Hu, K.: Spatial and seasonal distributions of carbonaceous aerosols
over China, J. Geophys Res.-Atmos., 112, https://doi.org/10.1029/2006]d008205, 2007.

Chai, T, Kim, H. C., Pan, L., Lee, P., and Tong, D.: Impact of moderate resolution imaging spectroradiometer acrosol optical

depth and airnow PMazs assimilation on community multi-scale air quality aerosol predictions over the contiguous United
States, J. Geophys Res., 122, 5399-5415, https://doi.org/10.1002/2016JD026295, 2017.

Chang, W., Zhang, Y., Li, Z., Chen, J., and Li, K.: Improving the sectional Model for Simulating Aerosol Interactions and
Chemistry (MOSAIC) aerosols of the Weather Research and Forecasting-Chemistry (WRF-Chem) model with the revised
Gridpoint Statistical Interpolation system and multi-wavelength aerosol optical measurements: The dust aerosol observation
campaign at Kashi, near the Taklimakan Desert, northwestern China, Atmos. Chem. Phys., 21, 4403-4430,
https://doi.org/10.5194/acp-21-4403-2021, 2021.

Chang, W., Liao, H., Xin, J., Li, Z., Li, D., and Zhang, X.: Uncertainties in anthropogenic aerosol concentrations and direct

radiative forcing induced by emission inventories in eastern China, Atmos. Res., 166, 129-140,
https://doi.org/10.1016/j.atmosres.2015.06.021, 2015.

Cheng, Y., Dai, T., Goto, D., A J Schutgens, N., Shi, G., and Nakajima, T.: Investigating the assimilation of CALIPSO global
aerosol vertical observations using a four-dimensional ensemble Kalman filter, Atmos. Chem. Phys., 19, 13445-13467,
https://doi.org/10.5194/acp-19-13445-2019, 2019.

Cheynet, E.: Non-Gaussian process generation, https://github.com/ECheynet/Gaussian_to_nonGaussian/releases/tag/v1.2
GitHub. Retrieved July 7, 2024.

Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Assessment of ensemble-based chemical data assimilation
in an idealized setting, Atmos. Environ., 41, 18-36, https://doi.org/10.1016/j.atmosenv.2006.08.006, 2007.

Dai, T., Schutgens, N. A. J., Goto, D., Shi, G., and Nakajima, T.: Improvement of acrosol optical properties modeling over

Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model, Environ. Pollut.,
38



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

195, 319-329, https://doi.org/10.1016/j.envpol.2014.06.021, 2014.

Du, W,, Dada, L., Zhao, J., Chen, X., Daellenbach, K. R., Xie, C., Wang, W., He, Y., Cai, J., Yao, L., Zhang, Y., Wang, Q., Xu,
W., Wang, Y., Tang, G., Cheng, X., Kokkonen, T. V., Zhou, W., Yan, C., Chu, B., Zha, Q., Hakala, S., Kurppa, M., Jarvi, L.,
Liu, Y., Li, Z., Ge, M., Fu, P, Nie, W., Bianchi, F., Petiji, T., Paasonen, P., Wang, Z., Worsnop, D. R., Kerminen, V.-M.,
Kulmala, M., and Sun, Y.: A 3D study on the amplification of regional haze and particle growth by local emissions, npj Climate
and Atmospheric Science, 4, 4, https://doi.org/10.1038/s41612-020-00156-5, 2021.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast
error statistics, J. Geophys Res., 99, https://doi.org/10.1029/94jc00572, 1994.

Evensen, G.: The Ensemble Kalman Filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53, 343-
367, https://doi.org/10.1007/s10236-003-0036-9, 2003.

Friedman, J. H., Bentley, J. L., and Finkel, R. A.: An algorithm for finding best matches in logarithmic expected time, ACM T.
Math. Software, 3, 209-226, https://doi.org/10.1145/355744.355745, 1977.

Ge, B., Wang, Z., Xu, X., Wu, J., Yu, X., and Li, J.: Wet deposition of acidifying substances in different regions of China and
the rest of East Asia: Modeling with updated NAQPMS, Environ. Pollut., 187, 10-21,
https://doi.org/10.1016/j.envpol.2013.12.014, 2014.

Ge, X.,He, Y., Sun, Y., Xu, J., Wang, J., Shen, Y., and Chen, M.: Characteristics and Formation Mechanisms of Fine Particulate
Nitrate in Typical Urban Areas in China, Atmosphere, 8, https://doi.org/10.3390/atmos8030062, 2017.

Gordon, N. J., Salmond, D. J., and Smith, A. F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE
Proc.-F, 140, 107-113, https://doi.org/10.1049/ip-f-2.1993.0015, 1993.

Guo, Y.: Characteristics of size-segregated carbonaceous aerosols in the Beijing-Tianjin-Hebei region, Environ. Sci. Pollut. R.,
23, 13918-13930, https://doi.org/10.1007/s11356-016-6538-z, 2016.

Ha, S.: Implementation of aerosol data assimilation in WRFDA (v4.0.3) for WRF-Chem (v3.9.1) using the RACM/MADE-
VBS scheme, Geosci. Model Dev., 15, 1769-1788, https://doi.org/10.5194/gmd-15-1769-2022, 2022.

Hamill, T. M. and Snyder, C.: A Hybrid Ensemble Kalman Filter—3D Variational Analysis Scheme, Mon. Weather Rev., 128,
2905-2919, https://doi.org/10.1175/1520-0493(2000)128<2905: AHEKFV>2.0.CO:2, 2000.

Hersbach, H.: Decomposition of the continuous ranked probability score for ensemble prediction systems, Wea. Forecasting,
15, 559-570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO:2, 2000.

Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X., Lamarque, J. F., Schultz, M.
G., Tyndall, G. S., Orlando, J. J., and Brasseur, G.P.: A global simulation of tropospheric ozone and related tracers: Description
and evaluation of MOZART, version 2, J. Geophys Res.-Atmos., 108, https://doi.org/10.1029/2002JD002853, 2003.
Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation, Mon. Weather
Rev., 144, 4489-4532, https://doi.org/10.1175/mwr-d-15-0440.1, 2016.

Huang, B., Pagowski, M., Trahan, S., Martin, C. R., Tangborn, A., Kondragunta, S., and Kleist, D. T.: JEDI-Based Three-
Dimensional Ensemble-Variational Data Assimilation System for Global Aerosol Forecasting at NCEP, J. Adv. Model. Earth
Sy., 15, https://doi.org/10.1029/2022ms003232, 2023.

Huang, Y., Wu, S., Dubey, M. K., and French, N. H. F.: Impact of aging mechanism on model simulated carbonaceous aerosols,
Atmos. Chem. Phys., 13, 6329-6343, https://doi.org/10.5194/acp-13-6329-2013, 2013.

Huneeus, N., Boucher, O., and Chevallier, F.: Atmospheric inversion of SOz and primary aerosol emissions for the year 2010,
Atmos. Chem. Phys., 13, 6555-6573, https://doi.org/10.5194/acp-13-6555-2013, 2013.

Huneeus, N., Chevallier, F., and Boucher, O.: Estimating aerosol emissions by assimilating observed aerosol optical depth in
a global aerosol model, Atmos. Chem. Phys., 12, 4585-4606, https://doi.org/10.5194/acp-12-4585-2012, 2012.

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform
Kalman filter, Physica D, 230, 112-126, https://doi.org/10.1016/j.physd.2006.11.008, 2007.

Inness, A., Ades, M., Agusti-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M., Dominguez, J. J., Engelen, R.,
Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V. H., Razinger, M., Remy, S.,

Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515-3556,
39




59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04

https://doi.org/10.5194/acp-19-3515-2019, 2019.

Jia, J., Cheng, S., Liu, L., Lang, J., Wang, G., Chen, G., and Liu, X.: An Integrated WRF-CAMx Modeling Approach for
Impact Analysis of Implementing the Emergency PM2.s Control Measures during Red Alerts in Beijing in December 2015,
Aerosol Air Qual. Res., 17, 2491-2508, https://doi.org/10.4209/aaqr.2017.01.0009, 2017.

Jin, J., Segers, A., Heemink, A., Yoshida, M., Han, W., and Lin, H. X.: Dust Emission Inversion Using Himawari-8 AODs
Over East Asia: An Extreme Dust Event in May 2017, J. Adv. Model. Earth Sy, 11, 446-467,
https://doi.org/10.1029/2018MS001491, 2019.

Jolliffe, I. T. and Stephenson, D. B.: Forecast verification: a practitioner's guide in atmospheric science, John Wiley & Sons,
https://doi.org/10.1002/9781119960003, 2012.

Khanna, I., Khare, M., Gargava, P., and Khan, A. A.: Effect of PM>.5 chemical constituents on atmospheric visibility impairment,
Journal of the Air & Waste Management Association, 68, 430-437, https://doi.org/10.1080/10962247.2018.1425772, 2018.

Kim, G, Lee, S., Im, J., Song, C.-K., Kim, J., and Lee, M.-i.: Aerosol data assimilation and forecast using Geostationary Ocean

Color Imager aerosol optical depth and in-situ observations during the KORUS-AQ observing period, GISci. Remote Sens.,
58, 1175-1194, https://doi.org/10.1080/15481603.2021.1972714, 2021.

Kong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., Chen, H., Zhu, L., Wang, W., Liu, B., Wang, Q., Chen, D., Pan,
Y., Song, T., Li, F., Zheng, H., Jia, G., Lu, M., Wu, L., and Carmichael, G. R.: A 6-year-long (2013-2018) high-resolution air
quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC, Earth Syst. Sci. Data, 13,
529-570, https://doi.org/10.5194/essd-13-529-2021, 2021.

Kumar, R., Ghude, S. D., Biswas, M., Jena, C., Alessandrini, S., Debnath, S., Kulkarni, S., Sperati, S., Soni, V. K., Nanjundiah,
R. S., and Rajeevan, M.: Enhancing Accuracy of Air Quality and Temperature Forecasts During Paddy Crop Residue Burning
Season in Delhi Via Chemical Data Assimilation, J. Geophys Res.-Atmos., 125, https://doi.org/10.1029/2020JD033019, 2020.
Kurtz, W., He, G., Kollet, S. J., Maxwell, R. M., Vereecken, H., and Hendricks Franssen, H. J.: TerrSysMP-PDAF (version
1.0): a modular high-performance data assimilation framework for an integrated land surface—subsurface model, Geosci.
Model Dev., 9, 1341-1360, https://doi.org/10.5194/gmd-9-1341-2016, 2016.

Lawson, W. G. and Hansen, J. A.: Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation
Methods in Varying Regimes of Error Growth, Mon. Weather Rev., 132, 1966-1981, https://doi.org/10.1175/1520-
0493(2004)132<1966:10SADF>2.0.C0O:2, 2004.

Li, H., Yang, T., Du, Y., Tan, Y., and Wang, Z.: Interpreting hourly mass concentrations of PM>.s chemical components with an
optimal deep-learning model. J. Environ. Sci., 151, 125-139, https://doi.org/10.1016/].jes.2024.03.037, 2025.

Li, J., Li, X., Carlson, B. E., Kahn, R. A., Lacis, A. A., Dubovik, O., and Nakajima, T.: Reducing multisensor satellite monthly
mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations, J. Geophys Res.-Atmos., 121,
609-627, https://doi.org/10.1002/2016JD025469, 2016.

Li, J., Dong, Y., Song, Y., Dong, B., van Donkelaar, A., Martin, R. V., Shi, L., Ma, Y., Zou, Z., and Ma, J.: Long-term effects
of PMz.s components on blood pressure and hypertension in Chinese children and adolescents, Environ. Int., 161, 107134,
https://doi.org/10.1016/j.envint.2022.107134, 2022a.

Li, S., Chen, L., Huang, G., Lin, J., Yan, Y., Ni, R., Huo, Y., Wang, J., Liu, M., Weng, H., Wang, Y., and Wang, Z.: Retrieval
of surface PM2.s mass concentrations over North China using visibility measurements and GEOS-Chem simulations, Atmos.
Environ., 222, https://doi.org/10.1016/j.atmosenv.2019.117121, 2020.

Li, Y., Wang, X., Li, J., Zhu, L., and Chen, Y.: Numerical Simulation of Topography Impact on Transport and Source
Apportionment on PMz5 in a Polluted City in Fenwei Plain, Atmosphere, 13, 233, https://doi.org/10.3390/atmos 13020233,
2022b.

Lin, G. Y., Chen, H. W,, Chen, B. J., and Chen, S. C.: A machine learning model for predicting PM> .5 and nitrate concentrations

based on long-term water-soluble inorganic salts datasets at a road site station, Chemosphere, 289,
https://doi.org/10.1016/j.chemosphere.2021.133123, 2022.
Liu, Y., Liu, J., Li, C, Yu, F., and Wang, W.: Effect of the Assimilation Frequency of Radar Reflectivity on Rain Storm

Prediction by Using WRF-3DVAR, Remote Sens., 13, https://doi.org/10.3390/rs13112103, 2021.
40




05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129-137, https://doi.org/10.1109/TIT.1982.1056489,
1982.

Luo, X., Liu, X., Pan, Y., Wen, Z., Xu, W., Zhang, L., Kou, C., Lv, J., and Goulding, K.: Atmospheric reactive nitrogen
concentration and deposition trends from 2011 to 2018 at an urban site in north China, Atmos. Environ., 224,
https://doi.org/10.1016/j.atmosenv.2020.117298, 2020.

Lv, Z., Wei, W., Cheng, S., Han, X., and Wang, X.: Meteorological characteristics within boundary layer and its influence on
PM2.5 pollution in six cities of North China based on WRF-Chem, Atmos. Environ., 228,
https://doi.org/10.1016/j.atmosenv.2020.117417, 2020.

Lynch, P, Reid, J. S., Westphal, D. L., Zhang, J., Hogan, T. F., Hyer, E. J., Curtis, C. A., Hegg, D. A., Shi, Y., Campbell, J. R.,
Rubin, J. I., Sessions, W. R., Turk, F. J., and Walker, A. L.: An 11-year global gridded aerosol optical thickness reanalysis (v1.0)
for atmospheric and climate sciences, Geosci. Model Dev., 9, 1489-1522, https://doi.org/10.5194/gmd-9-1489-2016, 2016.

Mallet, V. and Sportisse, B.: Uncertainty in a chemistry-transport model due to physical parameterizations and numerical

approximations: An ensemble approach applied to ozone modeling, J. Geophys Res.-Atmos., 111,
https://doi.org/10.1029/2005jd006149, 2006.

Miao, R., Chen, Q., Zheng, Y., Cheng, X., Sun, Y., Palmer, P. I., Shrivastava, M., Guo, J., Zhang, Q., Liu, Y., Tan, Z., Ma, X,
Chen, S., Zeng, L., Lu, K., and Zhang, Y.: Model bias in simulating major chemical components of PMa.s in China, Atmos.
Chem. Phys., 20, 12265-12284, https://doi.org/10.5194/acp-20-12265-2020, 2020.

Ming, L., Jin, L., Li, J., Fu, P, Yang, W., Liu, D., Zhang, G., Wang, Z., and Li, X==~E-—.: PMa;s in the Yangtze River Delta,

China: Chemical compositions, seasonal variations, and regional pollution events, 223, 200-212, 2017.

Mingari, L., Folch, A., Prata, A. T., Pardini, F., Macedonio, G., and Costa, A.: Data assimilation of volcanic aerosol
observations using FALL3D+PDAF, Atmos. Chem. Phys., 22, 1773-1792, https://doi.org/10.5194/acp-22-1773-2022, 2022.

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simultaneous assimilation of satellite

NO3, O3, CO, and HNO; data for the analysis of tropospheric chemical composition and emissions, Atmos. Chem. Phys., 12,
9545-9579, https://doi.org/10.5194/acp-12-9545-2012, 2012.

Nerger, L.: On Serial Observation Processing in Localized Ensemble Kalman Filters, Mon. Weather Rev., 143, 1554-1567,
https://doi.org/10.1175/mwr-d-14-00182.1, 2015.

Nerger, L.: Data assimilation for nonlinear systems with a hybrid nonlinear Kalman ensemble transform filter, Q. J. Roy.
Meteor. Soc., 148, 620-640, https://doi.org/10.1002/qj.4221, 2022.

Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation
Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev., 13, 4305-4321, https://doi.org/10.5194/gmd-
13-4305-2020, 2020.

Nerger, L., Janji¢, T., Schréter, J., and Hiller, W.: A Unification of Ensemble Square Root Kalman Filters, Mon. Weather Rev.,
140, 2335-2345, https://doi.org/10.1175/mwr-d-11-00102.1, 2012.

Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., and Okamoto, H.: Algorithms to retrieve optical properties of three

component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering
nonsphericity of dust, J. Quant. Spectrosc. Ra., 112, 254-267, https://doi.org/10.1016/1.jgsrt.2010.06.002, 2011.

Nishizawa, T., Okamoto, H., Takemura, T., Sugimoto, N., Matsui, 1., and Shimizu, A.: Aerosol retrieval from two-wavelength

backscatter and one-wavelength polarization lidar measurement taken during the MRO1KO02 cruise of the R/V Mirai and
evaluation of a global aerosol transport model, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007jd009640, 2008.
Nishizawa, T., Sugimoto, N., Matsui, 1., Shimizu, A., Hara, Y., Itsushi, U., Yasunaga, K., Kudo, R., and Kim, S. W.: Ground-
based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions
of aerosol components, J. Quant. Spectrosc. Ra., 188, 79-93, https://doi.org/10.1016/j.jqsrt.2016.06.031, 2017.

Park,R. S., Lee, S., Shin, S. K., and Song, C. H.: Contribution of ammonium nitrate to acrosol optical depth and direct radiative
forcing by aerosols over East Asia, Atmos. Chem. Phys., 14, 2185-2201, https://doi.org/10.5194/acp-14-2185-2014, 2014.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare,

R., Hair, J., Shinozuka, Y., and Flynn, C. J.: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and
41




51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

data assimilation evaluation, J. Climate, 30, 6823-6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Rodriguez, M. A., Brouwer, J., Samuelsen, G. S., and Dabdub, D.: Air quality impacts of distributed power generation in the

South Coast Air Basin of California 2: Model uncertainty and sensitivity analysis, Atmos. Environ., 41, 5618-5635,
https://doi.org/10.1016/j.atmosenv.2007.02.049, 2007.

Rubin, J. I. and Collins, W. D.: Global simulations of acrosol amount and size using MODIS observations assimilated with an
Ensemble Kalman Filter, J. Geophys Res. Atmospheres, 119, 12,780-712,806, https://doi.org/10.1002/2014JD021627, 2014.
Rubin, J. I, Reid, J. S., Hansen, J. A., Anderson, J. L., Holben, B. N., Xian, P., Westphal, D. L., and Zhang, J. L.: Assimilation
of AERONET and MODIS AOT observations using variational and ensemble data assimilation methods and its impact on
aerosol forecasting skill, J. Geophys Res.-Atmospheres, 122, 4967-4992, https://doi.org/10.1002/2016jd026067, 2017.

Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G. R.: Assimilation of next generation geostationary

aerosol optical depth retrievals to improve air quality simulations, Geophys. Res. Lett.,, 41, 9188-9196,
https://doi.org/10.1002/2014GL062089, 2014.

Sax, T. and Isakov, V.: A case study for assessing uncertainty in local-scale regulatory air quality modeling applications, Atmos.
Environ., 37, 3481-3489, https://doi.org/10.1016/S1352-2310(03)00411-4, 2003.

Schlesinger, R. B.: The health impact of common inorganic components of fine particulate matter (PMzs) in ambient air: a
critical review, Inhal. Toxicol., 19, 811-832, https://doi.org/10.1080/08958370701402382, 2007.

Schult, I., Feichter, J., and Cooke, W. F.: Effect of black carbon and sulfate acrosols on the Global Radiation Budget, J. Geophys
Res.-Atmospheres, 102, 30107-30117, https://doi.org/10.1029/97jd01863, 1997.

Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Applying an ensemble Kalman filter to the assimilation of
AERONET observations in a global aerosol transport model, Atmos. Chem. Phys., 10,2561-2576, https://doi.org/10.5194/acp-
10-2561-2010, 2010.

Schwartz, C. S., Liu, Z., Lin, H.-C., and Cetola, J. D.: Assimilating aerosol observations with a "hybrid" variational-ensemble
data assimilation system, J. Geophys Res.-Atmospheres, 119, 4043-4069, https://doi.org/10.1002/2013jd020937, 2014.

Soni, A., Mandariya, A. K., Rajeev, P, Izhar, S., Singh, G. K., Choudhary, V., Qadri, A. M., Gupta, A. D., Singh, A. K., and
Gupta, T.: Multiple site ground-based evaluation of carbonaceous aerosol mass concentrations retrieved from CAMS and
MERRA-2 over the Indo-Gangetic Plain, Environm. Sci.-Atmos., 1, 577-590, https://doi.org/10.1039/d1ea00067¢, 2021.
Strebel, L., Bogena, H. R., Vereecken, H., and Hendricks Franssen, H. J.: Coupling the Community Land Model version 5.0

to the parallel data assimilation framework PDAF: description and applications, Geosci. Model Dev., 15, 395-411,
https://doi.org/10.5194/emd-15-395-2022, 2022.

Su Lee, Y., Choi, E., Park, M., Jo, H., Park, M., Nam, E., Gon Kim, D., Yi, S.-M., and Young Kim, J.: Feature Extraction and
Prediction of Fine Particulate Matter (PMa.5) Chemical Constituents using Four Machine Learning Models, Expert Syst. Appl.,
119696, https://doi.org/10.1016/j.eswa.2023.119696, 2023.

Talagrand, O. and Courtier, P.: Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation.
I: Theory, Q. J. Roy. Meteor. Soc., 113, 1311-1328, https://doi.org/10.1002/qj.49711347812, 1987.

Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H. C., and Chen, W.: Using optimal interpolation to assimilate surface

measurements and satellite AOD for ozone and PMzs: A case study for July 2011, Journal of the Air and Waste Management
Association, 65, 1206-1216, https://doi.org/10.1080/10962247.2015.1062439, 2015.

Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker, J. S.: Ensemble Square Root Filters, Mon. Weather
Rev., 131, 1485-1490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO:2, 2003.

Todter, J. and Ahrens, B.: A Second-Order Exact Ensemble Square Root Filter for Nonlinear Data Assimilation, Mon. Weather
Rev., 143, 1347-1367, https://doi.org/10.1175/MWR-D-14-00108.1, 2015.

Todter, J., Kirchgessner, P., Nerger, L., and Ahrens, B.: Assessment of a Nonlinear Ensemble Transform Filter for High-
Dimensional Data Assimilation, Mon. Weather Rev., 144, 409-427, https://doi.org/10.1175/MWR-D-15-0073.1, 2016.
Tsikerdekis, A., Schutgens, N. A. J., and Hasekamp, O. P.: Assimilating aerosol optical properties related to size and absorption
from POLDER/PARASOL with an ensemble data assimilation system, Atmos. Chem. Phys., 21, 2637-2674,
https://doi.org/10.5194/acp-21-2637-2021, 2021.

42



97
98
99
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Wang, H., Yang, T., Wang, Z., Li, J., Chai, W., Tang, G., Kong, L., and Chen, X.: An aerosol vertical data assimilation system
(NAQPMS-PDAF v1.0): development and application, Geosci. Model Dev., 15, 3555-3585, https://doi.org/10.5194/gmd-15-
3555-2022, 2022.

Wang, N., H. Guo, Jiang, F., Ling, Z. H., and Wang, T.: Simulation of ozone formation at different elevations in mountainous
area of Hong Kong using WRF-CMAQ model, Sci. Total Environ., 505, 939-951,
https://doi.org/10.1016/j.scitotenv.2014.10.070, 2015.

Wang, T., Liu, H., Li, J., Wang, S., Kim, Y., Sun, Y., Yang, W., Du, H., Wang, Z., and Wang, Z.: A two-way coupled regional
urban—street network air quality model system for Beijing, China, Geosci. Model Dev.,, 16, 5585-5599,
https://doi.org/10.5194/emd-16-5585-2023, 2023.

Wang, Z., Itahashi, S., Uno, 1., Pan, X., Osada, K., Yamamoto, S., Nishizawa, T., Tamura, K., and Wang, Z.: Modeling the
Long-Range Transport of Particulate Matters for January in East Asia using NAQPMS and CMAQ, Aerosol Air Qual. Res.,
17, 3065-3078, https://doi.org/10.4209/aaqr.2016.12.0534, 2017.

Wang, Z., Li, J., Wang, Z., Yang, W., Tang, X., Ge, B., Yan, P, Zhu, L., Chen, X., Chen, H., Wand, W., Li, J., Liu, B., Wang,
X., Wand, W., Zhao, Y., Lu, N., and Su, D.: Modeling study of regional severe hazes over mid-eastern China in January 2013
and its implications on pollution prevention and control, Sci. China Earth Sci., 57, 3-13, https://doi.org/10.1007/s11430-013-
4793-0, 201 45net—YumimetoK—Pan—X—Chen—X—Li—}—Wane Z Shimizu—A—and-Susimeto—N=—Dust Heterozencou:

6+0 o a S o S ASASAYLEEA”,

Wang, Z., Maeda, T., Hayashi, M., Hsiao, L. F., and Liu, K. Y.: A Nested Air Quality Prediction Modeling System for Urban
and Regional Scales: Application for High-Ozone Episode in Taiwan, Water Air Soil Poll., 130, 391-396
https://doi.org/10.1023/A:1013833217916, 2001.

Wang, Z., Uno, L., Yumimoto, K., Pan, X., Chen, X., Li, J., Wang, Z., Shimizu, A., and Sugimoto, N.: Dust Heterogeneous
Reactions during Long-Range Transport of a Severe Dust Storm in May 2017 over East Asia, Atmosphere, 10, 680,
https://doi.org/10.3390/atmos 10110680, 2019Wane~Z-.

Werner, M., Kryza, M., and Guzikowski, J.: Can Data Assimilation of Surface PMa.5s and Satellite AOD Improve WRF-Chem
Forecasting? A Case Study for Two Scenarios of Particulate Air Pollution Episodes in Poland, Remote Sens., 11,
https://doi.org/10.3390/rs11202364, 2019.

Wilcox, E. M., Thomas, R. M., Praveen, P. S., Pistone, K., Bender, F. A., and Ramanathan, V.: Black carbon solar absorption
suppresses turbulence in the atmospheric boundary layer, P. Natl. Acad. Sci. USA, 113, 11794-11799,
https://doi.org/10.1073/pnas.1525746113, 2016.

Xia, X., Min, J., Wang, Y., Shen, F., Yang, C., and Sun, Z.: Assimilating Himawari-8 AHI aerosol observations with a rapid-
update data assimilation system, Atmos. Environ., 215, https://doi.org/10.1016/j.atmosenv.2019.116866, 2019.

Xia, X., Min, J., Shen, F., Wang, Y., Xu, D., Yang, C., and Zhang, P.: Aerosol data assimilation using data from Fengyun-4A,
a next-generation geostationary meteorological satellite, Atmos. Environ., 237,
https://doi.org/10.1016/j.atmosenv.2020.117695, 2020.

Xie, X., Hu, J., Qin, M., Guo, S., Hu, M., Wang, H., Lou, S., Li, J., Sun, J,, Li, X., Sheng, L., Zhu, J., Chen, G., Yin, J., Fu, W,,
Huang, C., and Zhang, Y.: Modeling particulate nitrate in China: Current findings and future directions, Environ. Int., 166,
107369, https://doi.org/10.1016/j.envint.2022.107369, 2022.

Yan, Y., Zhou, Y., Kong, S., Lin, J., Wu, J., Zheng, H., Zhang, Z., Song, A., Bai, Y., Ling, Z., Liu, D., and Zhao, T.: Effectiveness
of emission control in reducing PMz s pollution in central China during winter haze episodes under various potential synoptic
controls, Atmos. Chem. Phys., 21, 3143-3162, https://doi.org/10.5194/acp-21-3143-2021, 2021.

Yang, T., Li, H., Wang, H., Sun, Y., Chen, X., Wang, F., Xu, L., and Wang, Z.: Vertical acrosol data assimilation technology
43




43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

and application based on satellite and ground lidar: A review and outlook, J. Environ. Sci., 123, 292-305,
https://doi.org/10.1016/j.jes.2022.04.012, 2023.

Yang, X., Wu, Q., Zhao, R., Cheng, H., He, H., Ma, Q., Wang, L., and Luo, H.: New method for evaluating winter air quality:
PMz5 assessment using Community Multi-Scale Air Quality Modeling (CMAQ) in Xi'an, Atmos. Environ., 211, 18-28,
https://doi.org/10.1016/j.atmosenv.2019.04.019, 2019.

Ye, Q., Li, J., Chen, X., Chen, H., Yang, W., Du, H., Pan, X., Tang, X., Wang, W., Zhu, L., Li, J., Wang, Z., and Wang, Z.:
High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global
tropospheric atmospheric chemistry source-receptor model (GNAQPMS-SM), Geosci. Model Dev., 14, 7573-7604,
https://doi.org/10.5194/emd-14-7573-2021, 2021.

Yu, H. C., Zhang, Y. J., Nerger, L., Lemmen, C., Yu, J. C. S., Chou, T. Y., Chu, C. H., and Terng, C. T.: Development of a
flexible data assimilation method in a 3D unstructured-grid ocean model under Earth System Modeling Framework,
EGUsphere [preprint], 2022, 1-29, https://doi.org/10.5194/egusphere-2022-114, 2022.

Zhai, S. X., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y. Z., Gui, K., Zhao, T. L., and Liao, H.: Fine particulate matter
(PM25) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem.
Phys., 19, 11031-11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.

Zhang, F., Wang, Z.-w., Cheng, H.-r., Lv, X.-p., Gong, W., Wang, X.-m., and Zhang, G.: Seasonal variations and chemical
characteristics of PMoas in  Wubhan, central China, Sci. Total  Environ., 518-519, 97-105,
https://doi.org/10.1016/j.scitotenv.2015.02.054, 2015.

Zhang, J., Reid, J. S., Westphal, D. L., Baker, N. L., and Hyer, E. J.: A system for operational acrosol optical depth data
assimilation over global oceans, J. Geophys Res., 113, https://doi.org/10.1029/2007jd009065, 2008.

Zhang, J., Campbell, J. R., Hyer, E. J., Reid, J. S., Westphal, D. L., and Johnson, R. S.: Evaluating the impact of multisensor

data assimilation on a global aecrosol particle transport model, J. Geophys Res.-Atmos., 119, 4674-4689,
https://doi.org/10.1002/20137d020975, 2014.

44



