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Abstract. We introduce the optimized dynamic mode decomposition algorithm for constructing an adaptive and computa-

tionally efficient reduced order model and forecasting tool for global atmospheric chemistry dynamics. By exploiting a low-

dimensional set of global spatio-temporal modes, interpretable characterizations of the underlying spatial and temporal scales

can be computed. Forecasting is also achieved with a linear model that uses a linear superposition of the dominant spatio-

temporal features. The DMD method is demonstrated on three months of global chemistry dynamics data, showing its signifi-5

cant performance in computational speed and interpretability. We show that the presented decomposition method successfully

extracts and forecasts chemical patterns for leading chemical indicators, including nitric oxide, ozone, nitrogen dioxide, hy-

droxyl radical, isoprene, and carbon monoxide. Moreover, the DMD algorithm allows for rapid reconstruction of the underlying

linear model, which can then easily accommodate non-stationary data and changes in the dynamics.

1 Introduction10

The monitoring and forecasting of global atmospheric chemistry is critical for understanding the effects of air quality, chemistry-

climate interactions, and global biogeochemical cycling (Jacob, 1999). The dynamics of atmospheric chemistry is character-

ized by complex interactions among hundreds of chemical species, which can produce kinetics across temporal scales span-

ning many orders of magnitude, from microseconds to years. Accurate monitoring and prediction requires full knowledge of

the chemical state of the atmosphere at all locations and times, resulting in a 4-dimensional data set for longitude, latitude,15

elevation, and time for each chemical species that can become massive as the resolution of each dimension is increased. Di-

mensionality reduction is a critically enabling aspect of machine learning and data science (Brunton and Kutz, 2019) that

can be leveraged to approximate the monitoring and forecasting capabilities of global chemistry with more readily tractable

computational algorithms (Velegar et al., 2019). Dynamic mode decomposition (DMD) is a data-driven regression architecture

for adaptively learning linear dynamics models over snapshots of temporal data, specifically in a low-dimensional subspace.20

DMD has been broadly used in the scientific community due to its ease of use, interpretability and adaptive nature (Kutz et al.,

2016a). When applied to the spatio-temporal dynamics of atmospheric chemistry, we demonstrate that the method provides

an effective and computational efficient reduced order modeling strategy that can be used for characterization, monitoring and
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forecasting of global chemical concentrations with either computational or sensor data. Moreover, we show that the optimized

DMD algorithm (Askham and Kutz, 2018) and bagging optimized DMD (BOP-DMD) (Sashidhar and Kutz, 2022) versions of25

the DMD algorithm are critical for characterizing the complexities of the chemical interaction dynamics and their uncertainties.

The characterization of multiscale phenomenon, such as that embodied by global atmospheric chemistry, remains challeng-

ing due to the need to resolve spatial and temporal scales that are separated by many orders of magnitude. Computational

methods, which are typically based upon the underlying partial differential equations that model the governing dynamics, eas-

ily become intractable due to the need to resolve the finest space scales and the fastest time scales. Thus, numerical stiffness is30

automatically imposed upon a numerical scheme in such a spatio-temporal system. Building models from sensor data directly

is no different: sensors must be placed densely in space in order to resolve spatial features. This also places significant limits

on practicality, as sensors are not only prohibitively expensive, but also require completely impractical global coverage. Com-

putations and sensors, however, are typically used in combination and provide the critical data infrastructure for modeling the

multiscale physics of atmospheric chemistry. So despite the limitations and cost, many advances have been made in our ability35

to characterize, predict and monitor global chemistry.

Reduced order models (ROMs) provide an attractive alternative to large scale computing. ROMs provide a mathemati-

cal architecture for reducing the computational complexity of mathematical models in numerical simulations (Benner et al.,

2015; Antoulas, 2005; Quarteroni et al., 2015; Hesthaven et al., 2016). Fundamental to rendering simulations computationally

tractable is the construction of a low-dimensional subspace on which the dynamics can be approximately embedded. Unfortu-40

nately, projective-based ROM construction often produces a low-rank model for the dynamics that can be unstable (Carlberg

et al., 2017.), i.e. the models produced generate solutions that rapidly go to infinity in time. Machine learning techniques offer a

diversity of alternative methods for computing the time-dynamics in the low-rank subspace, with a diversity of neural networks

showing how to advance solutions, or learn the flow map from time t to t+∆t (Qin et al., 2019; Liu et al., 2020). Indeed, deep

learning algorithms provide a flexible framework for constructing a mapping between successive time steps. The typical ROM45

architecture constrains the dynamics to a subspace spanned by POD (proper orthogonal decomposition), thus in the new POD

coordinate system, time evolution can be used to construct a time-stepping model using neural networks. Recently, (Parish and

Carlberg, 2020) and (Regazzoni et al., 2021) developed a suite of neural network based methods for learning time-stepping

models for tropospheric bromine chemistry and cardiovascular dynamics, respectively. Moreover, (Parish and Carlberg, 2020)

provide extensive comparisons between different neural network architectures along with traditional techniques for time-series50

modeling.

Projective ROMs are often unstable and ill-suited for massive multiscale systems, while deep learning models require sig-

nificant time and data for training and also assume stationarity of the data in order for the results to be valid for withheld

test sets. Both of these limitations make their use in global atmospheric chemistry modeling problematic. Certainly the land-

scape of models is growing rapidly, with machine learning techniques especially proving useful in weather and temperature55

forecasting. These methods are driven by leading tech companies which at scale are training such models with many GPUs

over long periods of time to achieve their exceptional performance. However, a computationally efficient and adaptive ROM

approach is embodied by DMD, which is a simple regression requiring no training, cross-validation and hyper-parameter tun-

2



ing. It is a straight regression much like a line fit. DMD was introduced as an algorithm by (Schmid, 2010) and has rapidly

become a commonly used data-driven analysis tool. It is the leading approximation method for the Koopman (linear) operator60

from data (Rowley et al., 2009). DMD by construction provides a method for identifying spatio-temporal coherent structures

in high-dimensional time-series data. DMD analysis offers a dynamic version of standard dimensionality reduction methods

such as the proper orthogonal decomposition (POD), which highlights low-rank features in spatio-temporal data (Kutz, 2013).

However, DMD not only provides a low-rank subspace, but each mode is associated with linear (exponential) behavior in time,

often given by oscillations at a fixed frequency with growth or decay. Thus, DMD is a regression to solutions of the form65

x(t) =

r∑
j=1

ϕje
ωjtbj =Φexp(Ωt)b, (1)

where x(t) is an r-rank approximation to a collection of state space measurements xk = x(tk) (k = 1,2, · · · ,n). The algorithm

regresses to values of the DMD eigenvalues ωj , DMD modes ϕj and their loadings bj . The ωj determines the temporal behavior

of the system associated with a modal structure ϕj . Such a regression can also be learned from time-series data (Lange et al.,

2020). DMD may be thought of as a combination of singular value decomposition (SVD)/POD in space with the Fourier70

transform in time, combining the strengths of each approach (Chen et al., 2012; Kutz et al., 2016a). DMD is modular due

to its simple formulation in terms of linear algebra, resulting in innovations related to control (Proctor et al., 2016; Deem

et al., 2020), compression (Erichson et al., 2016; Brunton et al., 2015), reduced-order modeling (Alla and Kutz, 2017), and

multi-resolution analysis (Kutz et al., 2016b; Liu et al., 2023; Lapo et al., 2024), among others. The SVD/DMD can even be

done on Terabytes of data in seconds Eiximeno et al. (2025).75

2 Atmospheric Chemistry Data Sets, Data Pre-processing, and Methods

2.1 Atmospheric chemistry model

Many of the dominant spatio-temporal features of atmospheric chemistry are well-understood through extensive simulation and

data collection (Jacob, 1999; Brasseur and Jacob, 2017). This will not be the focus of this work, but rather a robust, computa-

tionally efficient and accurate reduced order model for reconstructing and forecasting the dynamics. Chemical transport models80

(CTM) are used to simulate the evolution of atmospheric constituents in space and time (Brasseur and Jacob, 2017). A CTM

solves the system of coupled continuity equations for an ensemble of m species with number density vector n = (n1, . . . ,nm)
T

via operator splitting of transport and local processes:

∂ni

∂t
=−∇ · (niU)+ (Pi −Li)(n)+Ei −Di i ∈ [1,m] (2)

with U being the wind vector, (Pi −Li)(n) the (local) chemical production and loss terms, Ei the emission rate, and Di the85

deposition rate of species i. The transport operator,

∂ni

∂t
=−∇ · (niU) i ∈ [1,m] (3)
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Figure 1. The spatial grid for atmospheric chemistry data sets on the left panel. The data x(tk) is collected into snapshot matrices X which

are used to regress to the best exponential (linear) solution argminω,Φb
∥X−ΦbT(ω)∥F , where Φb are the weighted DMD modes and T

is a matrix of exponentials for fitting the data (6).

involves spatial coupling across the model domain but no coupling between chemical species, while the chemical operator,

dni

dt
= (Pi −Li)(n)+Ei −Di i ∈ [1,m] (4)

includes no spatial coupling but the species are chemically linked through a system of ordinary differential equations (ODEs).90

Chemistry models repeatedly solve equations (3) and (4), which requires full knowledge of the chemical state of the atmo-

sphere at all locations and times. The resulting 4-dimensional data sets (longitude,latitude,levels,species) can become massive,

which makes it impractical to output them at high temporal frequency and refined spatial resolution. As a consequence, model

output is generally restricted to a few selected species of interest (e.g. ozone), while the full model state is only output very

infrequently, e.g. to archive the information for future model restarts. We show here that the chemical state of a CTM such95

as GEOS-Chem has distinct low-ranked features and exploiting these properties using modern diagnostic tools such as vari-

able reduction or sub-sampling makes it possible to represent the majority of information in a computationally more efficient
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manner. While we focus here on identifying low-ranked features across the spatio-temporal dimension (i.e., for each species

separately) the presented methods could similarly (and independently) be applied across the species domain.

2.1.1 Global Atmospheric Chemistry Simulations100

The reference simulation of atmospheric composition was generated using the GEOS-Chem model, as described in (Velegar

et al., 2019). GEOS-Chem (https://geoschem.github.io) is an open-source global model of atmospheric chemistry used for a

wide range of applications. The model can be run in offline mode as a chemical transport model (CTM) (Bey et al., 2001;

Eastham et al., 2018) or as an online component within the NASA Goddard Earth System Model (GEOS) (Long et al., 2015;

Hu et al., 2018). The dataset used here was produced using the offline version of GEOS-Chem (v11-01), driven by archives of105

assimilated meteorological data from the GEOS Forward Processing (GEOS-FP) data stream of the NASA Global Modeling

and Assimilation Office (GMAO). Model chemistry includes detailed HOx-NOx-VOC-ozone-BrOx tropospheric chemistry as

originally described by (Bey et al., 2001), with addition of BrOx chemistry by (Parrella et al., 2012) and updates to isoprene

oxidation as described by (Mao et al., 2013). Stratospheric chemistry is simulated using a linearized mechanism as described

by (Murray et al., 2012).110

The model output covers one year (July 2013 - June 2014) at 4◦×5◦ horizontal resolution, providing a comprehensive set of

atmospheric chemistry model diagnostics. For every chemistry time step of 20 minutes, the concentrations of all 143 chemical

constituents were archived immediately before and after chemistry in units of molecules/cm3. The difference between these

concentration pairs are the species tendencies due to chemistry (expressed in units of molecules/cm3/s). Since the solution of

chemical kinetics is sensitive to the environment, we further output key environmental variables such as temperature, pressure,115

water vapor, and photolysis rates. The latter are computed online by GEOS-Chem using the Fast-JX code of (Bian and Prather,

2002) as implemented in GEOS-Chem by (Mao et al., 2010) and (Eastham et al., 2014). At every time step, the data set thus

consists of 143 chemical concentrations at every grid location. We restrict our analysis to the lowest 30 model levels to avoid

influence from the stratosphere. The resulting data set has dimensions nlon× nlat× nlev× ntimes× nfeatures = 72× 46×
30× 26280× 380 = 9.9× 1011. The 380 in the feature space breaks down as 143+91+3+143 = 380 which refers to the120

chemical species concentration before integration, the photolysis rates, the 3 meteorological variables, and the tendencies (rate

of change) of all species due to chemistry as specified in the GEOS-Chem simulations https://geoschem.github.io.

2.2 Data Pre-Processing

Many dimensionality reduction techniques rely on an underlying singular value decomposition of the data that extracts cor-

related patterns in the data. A fundamental weakness of such SVD-based approaches is the inability to efficiently handle125

invariances in the data. Specifially, translational and/or rotational invariances of low-rank features in the data are not well cap-

tured (Kutz, 2013; Kutz et al., 2016a; Brunton and Kutz, 2019; Velegar et al., 2019). One of the key environmental variables

driving the chemistry is photolysis rate, the absolute concentrations of many chemicals of interest accordingly ‘turn on’ and are

non zero during day time, and ‘turn off’ or go to zero during the night. Thus sunlight activates many of the chemical reactions

in the atmospheric chemistry dynamics network. The time series of absolute chemical concentrations exhibit a translating wave130
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traversing the globe from east to west with constant velocity. The time series for the chemical species O3 (Ozone) is plotted

with respect to UTC time for one latitude = 30◦/elevation = 1 and three different longitudes = [−100◦,0◦,100◦] on bottom left

in Fig. 2, highlighting the translational invariance in the absolute concentration data. Any SVD-based approach will be unable

to capture this translational invariance and correlate across snapshots in time, producing an artificially high dimensionality,

i.e., higher number of modes would be needed to characterize the dynamics due to translation (Kutz, 2013; Brunton and Kutz,135

2019). To overcome this issue the time series for each grid point are shifted to align with the GMT time, as shown on bottom

middle in Fig. 2. With the local times for each grid point aligned SVD-based dimensionality reduction techniques can now

identify and isolate coherent low-dimensional features in the data. Similarly, the current season dictates length of days and

nights. Latitudes where the days are very short, i.e., the ‘turn-on times are very short, the chemistry exhibits “spiky" patterns.

SVD-based approaches would again need an artificially high number of modes to capture the low-rank features in the data.140

To work around this issue the day time chemistry can be isolated and analysis performed on the isolated day times, especially

if there is total ‘turn-off of dynamics during night times. The day time chemistry is isolated showing only the non-zero data

during daytime. We further note that out of the large number latitude, longitude and elevation settings, we highlighted surface

dynamics (elevation = 1) as this elevation is not only rich dynamically, but it is also the elevation on which humans are exposed

to the atmospheric chemistry dynamics. As will discussed in what follows, we have made judicious choices to demonstrate the145

dynamics present.

2.3 Optimized Dynamic Mode Decomposition (DMD)

The DMD algorithm schematic is shown in the right panel of Fig. 1. The DMD algorithm seeks the leading spectral decompo-

sition of the best fit linear operator A (Brunton and Kutz, 2019) that approximately advances the snapshot measurements of150

the state of a system x ∈ Rn forward in time by stepsize ∆t:

X′ ≈AX (5)

which leads to the mathematical definition of operator A as the best fit one-step operator (Tu et al., 2014).

However, the DMD formulated by this regression is rarely used for forecasting and/or reconstruction of time-series data155

except in cases with noise-free or nearly noise-free data. This is because the exact DMD (5) is extremely sensitive to noise in

the data, causing a bias in the computed DMD modes and eigenvalues (Bagheri, 2014; Dawson et al., 2016; Hemati et al.,

2017). The optimized DMD algorithm of Askham and Kutz (Askham and Kutz, 2018), which uses a variable projection

method (Golub and Pereyra, 2003) for nonlinear least squares to compute the DMD for unevenly timed samples, provides the

best and most optimal performance of any algorithm currently available. Indeed, this optimal performance is mathematically160

guaranteed by the exponential fitting procedure of Askham and Kutz (Askham and Kutz, 2018). The exponential fitting is given
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Figure 2. Shifting the data for each cell in time to align the local time zones across a latitude to the prime meridian (Lon = 0◦) local time,

shown here for O3 tendency data for Lat = 30◦. The bottom left panel is the raw data for the 3 highlighted cells, the bottom center panel is

this data shifted in time, and the bottom right panel shows isolated day time values only.

by

argminωk,ϕk,bk
∥X−

r∑
k=1

bkϕk exp(ωkt)∥22 (6)

where a rank r approximation is estimated. As noted, optimized DMD iterates to a solution of this non-convex problem by

using variable projection (Golub and Pereyra, 2003). This has been shown to provide a superior decomposition due to its165

ability to optimally suppress noise bias and handle snapshots collected at arbitrary times. Fig. 3 shows a comparison of surface

nitrogen oxide (NO) as produced by GEOS-Chem (top panel), reconstructed using classical or exact DMD (middle panel),
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Figure 3. Comparing 30 day reconstruction results for Classical and Optimized DMD at the surface of NO preprocessed data at Lat =

30◦. The results are for absolute concentration or CONC data; the top panel shows the preprocessed data, the middle panel shows the

reconstruction from the Classical DMD, and the bottom panel shows the reconstruction from Optimized DMD. The Classical DMD is

unable to capture the dynamics for the absolute concentration data and it decays down to zero. The Optimized DMD reconstructs the data

and resolves the dynamics accurately.

and using optDMD (bottom panel). The classical DMD reconstruction dies out within a few days, failing in the task of even

reconstructing the time-series data, let alone forecasting, as it was originally regressed to. In contrast, the optDMD is able to

capture, sustain and faithfully reconstruct the original time series.170
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Figure 4. Summary of the BOP-DMD architecture reproduced with permission from (Sashidhar and Kutz, 2022). The data snapshots x(tk)

are collected over m snapshots into the matrix X. Columns of X are randomly sub-selected into the matrix X(k) to build an optimized DMD

model. Each DMD model x(k) =Φ(k) exp(Ω(k)t)b(k) is used to compute the statistics (mean and variance) of the DMD parametrizations

Φ, Ω, b which are used in building a the BOP-DMD ensemble solution with Uncertainty Quantification (UQ).

We can also introduce constraints to the optDMD algorithm, including constraining all the DMD eigenvalues in (6) to (i)

The imaginary axis:

subject to ℜ(ωk) = 0 (7)

(ii) The closed left-half plane:

subject to ℜ(ωk)≤ 0 (8)175

As discussed below, these constraints further stabilize and make robust reproduction and forecast of the time series data. The

disadvantage of optimized DMD is that one must solve a nonlinear optimization problem through variable projection (Golub

and Pereyra, 2003), often which can at times fail to converge.

2.4 Bagging OPtimized Dynamic Mode Decomposition (BOP-DMD)

180

BOP-DMD (Sashidhar and Kutz, 2022) leverages Breimans statistical bagging sampling strategy (Leo Breiman, 1984) in

partnership with the optimized DMD algorithm. The BOP-DMD architecture is presented in Fig. 4. Bagging is designed
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to produce an ensemble of models, thereby reducing model variance and suppressing over-fitting by design. Not only does

ensembling improve DMD, it also is effective in deep neural network regressions (Allen-Zhu and Li, 2020). Further inno-

vations include stabilizing the variable projection technique used by optDMD so that it converges consistently to an optimal185

solution (Sashidhar and Kutz, 2022). Its ability to converge is often dependent upon a suitable initial guess for the DMD

eigenvalues and eigenvectors.

The BOP-DMD algorithm accounts for the initialization process and further provides the optimal solutions to linear models

by using optDMD as the regression architecture. Algorithm 1 shows the algorithmic structure of BOP-DMD, highlighting the

bagging, initialization and ensembling of the DMD models to produce an ensemble, probabilistic DMD model. The initial-190

ization of DMD is accomplished by first constructing an optDMD model approximation, whose eigenvalues and eigenvectors

Φ0 can be used to seed the BOP-DMD. p snapshots are randomly selected from the full data matrix X ∈ Rn×m, to form a

subset data matrix X ∈ Rn×p. optDMD produces the model for this subset data, and we save the resulting model parame-

ters. The process is repeated for K trials producing an ensemble of optDMD models. The mean {⟨Φ⟩,⟨Ω⟩,⟨b⟩} and variance

{⟨Φ2⟩,⟨Ω2⟩,⟨b2⟩} of the model parameters Φ, Ω, b can now be computed. Hence, in addition to producing the DMD model195

itself, the output of algorithm 1 generates both spatial and temporal uncertainty quantification metrics or UQ metrics. In this

work we primarily focus on the temporal UQ metrics for forecasting.

Algorithm 1: BOP-DMD

Input: Input (X, p, K)200

Procedure: BOPDMD (X, p, K)

Compute Φ0,Ω0,b0

For k ∈ {1,2, · · · ,K}
Choose p of m snapshots (p <m)

optDMD Φk,Ωk,bk and Initialize with Ω0205

Update Φ,Ω,b by adding Φk,Ωk,bk to Φ,Ω,b

Compute mean µ= {⟨Φ⟩,⟨Ω⟩,⟨b⟩}
Compute variance σ = {⟨Φ2⟩,⟨Ω2⟩,⟨b2⟩}
return: µ,σ which are optDMD parameters.

3 Results210

The analysis is performed for preprocessed or time-shifted raw data for 60 days, from July, 2ND - August, 30TH. This time

period is characterized by very active photo-chemistry in the Northern Hemisphere. The photolysis rate dictates a different

kinetic environment for many key species of interest. To simplify interpretation, the analysis is performed on surface data

(elevation = 1) and one latitude at a time, and for all 72 longitudes with data shifted in time as described above.
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In most of the latitudes in the Southern Hemisphere, the days are much shorter than the nights, and accordingly the daylight215

chemistry period is much shorter as compared to the nighttime chemistry period. Thus, the data exhibits a spiky pattern that

needs much higher modes to accurately reconstruct it; and/or we would need to isolate the day time values only when there are

active chemical kinetics present. Hence, we are picking latitude = 30◦N for the analysis, which has the longest day times for

the latitudes considered. The first 40 days of data is used as training data, and the DMD diagnostics below are presented for this

time period and for latitude = 30◦. With 72 snapshots per day we have a data matrix of 72(lon)×2880(time) for each latitude.220

The optDMD is performed for this data matrix. We perform the analysis for six different chemical species of interest (Velegar

et al., 2019): Nitric Oxide NO, Ozone O3, Nitrogen dioxide NO2, Hydroxyl radical OH, Isoprene ISOP, and Carbon

Monoxide CO. For each species, we have CONC or absolute concentration data (expressed in units of molecules/cm3) and

TEND or tendency/rate of change data (expressed in units of molecules/cm3/s). Using the diagnostics from the 40 day training

period (July 2 - August 10), we then forecast the chemical evolution for the following 20 days (August 11 - 30). The number225

of days used for fitting (40 days) is one of two hyper-parameters for the DMD regression, the other being the number of modes

(rank) used. A sliding window approach for sampling for DMD has been shown to be quite effective for reconstruction and

forecasting Kutz et al. (2016b); Lapo et al. (2024). Typically a shorter sampling window helps in forecasting as the often data

is non-stationary and long time histories compromise the DMD model. Thus we use a fairly models history of 40 days for

forecasting, which also makes the model smaller to manage. In general, this is also in keeping with the DMD philosophy of a230

model that can be simply run again due to its small computational footprint. Although there are hundreds of chemicals whose

dynamics can be demonstrated, the six selected are chemicals commonly associated with atmospheric diagnostics, including

pollution and environmental health. Similarly, out of the large number latitude, longitude and elevation settings, we highlighted

surface dynamics as these are often some of the richest and most relevant for understanding the role of atmospheric chemistry

affecting humans. It is an intractable task to show all chemicals at all locations. Thus the judicious choices represent those235

of greatest impact and which are commonly considered by experts in practice. The code provided allows one to consider any

chemical at any location desired. There are, of course, limitations in the methodology presented, especially when considering

chemical dynamics that are highly intermittent and which lack any periodic, or quasi-periodic behavior. Ozone is an example of

a chemical which is intermittently active in its dynamics, thus compromising the ability of an algorithm like DMD to produce

quality reconstructions and forecasts. Such chemical have been excluded from consideration as methods for such time-series240

behavior are currently lacking.

3.1 DMD Diagnostics

The optDMD decomposes data into time dynamics represented by the spectrum of eigenvalues Ω and the corresponding

spatial modes Φ. We will be presenting diagnostics from four different DMD approaches: (i) optDMD without constraining

the eigenvalues; (ii) optDMD with eigenvalues constrained to the left-half plane; (iii) optDMD with eigenvalues constrained to245

the imaginary axis; and finally (iv) exact DMD. This is to examine which decomposition is best suited for reconstruction and

forecasting of the chemistry dynamics. The constraints are important in practice, especially for forecasting the atmospheric

chemistry. Without constraints, and often due to noise, the data can generate eigenvalues which have positive real parts. Even
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moderate length forecasts will blow up artificially due to the real part being positive. The optDMD algorithm allows us to

remove this unbounded artificial exponential growth. Growth of the solution is still accommodated by modeling it as the first250

part of an oscillatory solution (which looks like it is growing, but which is in reality an oscillating mode). Similarly, it has

already been noted that noise can also artificially bias the eigenvalues towards the left half plane which makes solutions decay

to zero. Thus a forecast will exponentially die away to zero. The constraint of eigenvalue on the imaginary axis guarantees a

stable long-term forecast that neither grows nor decays. Of course, this is a pure regression problem which induces its own

limitations, but in regards to forecasting, it has the important and desirable properties of stability for long-term forecasting.255

There is an additional inherent assumption with constraining the eigenvalues to the imaginary axis: conservation of mass of

that chemical species. The diagnostics are presented for the 40-day time series of the hydroxyl radical species (OH). The

results are consistent for all chemical species of interest. colormagenta Specifically, the forecasting performance and error

is agnostic to the specific chemical species considered, thus suggesting the DMD behavior is independent of the specific

chemistry being modeled. We have used a hard rank threshold truncation of r = 25 for the CONC data and r = 50 for the260

TEND data. Truncating the rank for the DMD models is described below. These specific target ranks are chosen through hyper

parameter tuning of their forecasting performance. Too few modes compromises the DMD model since there are not enough

features to accurately reconstruct and forecast the data. Too many modes overfit on the training data. So although arbitrary,

these specific values show generically strong performance across chemical species for the task of forecasting. The diagnostics

are presented for both absolute concentration of the chemical species, or OHCONC data, on the left panels and rate of change265

of concentrations/tendencies due to chemistry, or OHTEND data, on the right panels in Fig. 5 and Fig. 6. Four different spectra

of the DMD eigenvalues are presented in Fig. 5, and the corresponding reconstruction of data is shown in panels 2-5 of Fig. 6.

The top two panels in Fig.6 are the actual OHCONC data on the left and actual OHTEND data on the right, presented for

comparison.

270

(i) The spectrum for optDMD with no constraints on the eigenvalues for OHCONC data is presented on the top left panel,

and for OHTEND data is presented on the top right panel of Fig. 5. For both data sets, some eigenvalues fall on the right-

half plane with positive real parts, causing the corresponding modes to grow in time. The corresponding reconstruction

of data is presented in the second two panels of Fig. 6. optDMD with no constraints does a faithful reconstruction of data,275

but the forecasting results are poor, with the time series growing exponentially as a result of some eigenvalues on the

right-half plane. This approach is not used henceforth.

(ii) The optDMD is then constrained to produce only eigenvalues with negative or zero real parts, i.e. eigenvalues on the

closed left-half plane (ℜ(ωi ≤ 0)). The resulting spectrum for the two data sets is presented on the second two panels

in Fig. 5. The corresponding reconstruction of data is presented in the third two panels of Fig. 6. optDMD with these280

constraints not only faithfully reconstructs the data, but the forecasting results are also accurate, as presented in the

following section.
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Figure 5. Comparing the spectrum for 40 day reconstruction results for Classical and Optimized DMD at the surface of OH preprocessed

data. On the left 4 panels are the eigenvalues of OHCONC data; on the right 4 panels are the eigenvalues of OHTEND at Lat = 30◦. The

top panels show the spectrum from Optimized DMD with no constraints, the second set of panels show the spectrum from Optimized DMD

with linearized constraints that the eigenvalues be on the left-half plane, the third set of panels show the spectrum from Optimized DMD

with linearized constraints that the eigenvalues be imaginary, and the bottom panels show the spectrum from Classical or Exact DMD. Note

that a hard rank threshold truncation of r = 25 for the CONC data and r = 50 for the TEND data has been used.

(iii) The optDMD is then constrained to produce only imaginary eigenvalues with zero real parts (ℜ(ωi = 0)). The resulting

spectrum for the two data sets is presented on the third two panels in Fig. 5. The corresponding reconstruction of data is

presented in the fourth two panels of Fig. 6. optDMD with these constraints is not able to capture the data dynamics, and285

will not be used henceforth.
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Figure 6. Comparing 40 day reconstruction results for Classical, optimized DMD, and optimized DMD with no constraints at the surface

of OH preprocessed data at Lat = 30◦. The left panel is for absolute concentration or CONC data and the right panel is for Tendency

data; the top panels show the preprocessed data, the second panels show the reconstruction from optimized DMD, the third panels show

the reconstruction from optimized DMD with eigenvalues constrained to the Left half-plane, the fourth panels show the reconstruction from

optimized DMD with eigenvalues constrained to the Imaginary axis, and the bottom panels show the reconstruction from the Classic DMD.

The Classical DMD is unable to reconstruct the dynamics for the absolute concentration and tendency data. Note that a hard rank threshold

truncation of r = 25 for the CONC data and r = 50 for the TEND data has been used.

(iv) Finally, results from Exact DMD for both data sets are presented in the bottom two panels of Fig. 5 and Fig. 6. The

resulting spectrum for the two data sets have most eigenvalues on the negative real axis, implying decaying modes. The

14



corresponding reconstruction of data also decays out with no dynamics from the data captured or represented faithfully.

This approach is not used henceforth.290

Thus, we will use optDMD with eigenvalues constrained on the closed left-half plane ℜ(ωi ≤ 0). When computing the opt-

DMD, we truncate the number of modes to avoid fitting dynamics to the lowest energy modes, which may cause over-fitting

and may be corrupted by noise. We would be truncating using hard-thresholding at a rank r at which the relative error in re-

construction has an elbow, i.e. the error graph flattens out without further decrease. Focusing on six key chemicals of interest:

NO,O3,NO2,OH, ISOP,CO, CONC and TEND data, we now compute the relative error as we increase the number of295

modes from 1 to 50. The results for the two data sets and the six chemical species is presented in Fig. 7. A larger number of

modes is needed to reconstruct the TEND data as compared to the CONC data. Based on the results, we use 20-30 modes for

optimal diagnostics of CONC data, depending on the chemical species. For the TEND data we pick between 30-50 modes.

300

Finally, we present the global spatial modes for CO and NO computed at 12 latitudes -14◦ through 30◦ in Fig. 8 and Fig. 9

respectively. The 12 latitudes are selected for having consistent day lengths across all longitudes and at least 4 snapshots during

day time. As described above, the optDMD is performed for one latitude at a time to have consistent day time lengths across all

the time series, and the resulting spatial modes are pieced together to present a global picture. The underlying spatial features305

of the data sets are resolved well by the constrained optDMD diagnostics. The high-variance features at the coastlines and

within hot spots in the land for the chemical species are represented clearly (Jacob, 1999; Brasseur and Jacob, 2017).

3.2 Forecasting

As described above, using an appropriate rank truncation, the optDMD with eigenvalues constrained to the closed left-half plane

faithfully reconstructs the time series data for 40-day training window and a given elevation/latitude. We now forecast the time310

series data for future times beyond the training window. Using (1), with amplitudes b/modes Φ/eigenvalues Ω computed by

optDMD during the training window, we forecast time series for the subsequent 20 days. The results for CONC and TEND

data for two chemical species OH and NO are presented for 6 longitudes, and latitude 30◦ at the surface(elevation=1) in Figures

10, 11, 12, and 13.

315
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Figure 7. Relative Error plotted against number of modes used for Optimized DMD with eigenvalues constrained to the left-half plane; for

6 different chemical species and CONC and TEND data at Latitude=30◦

Constrained optDMD faithfully reconstructs and forecasts the time series for the 20 days tested. Since we use the fewest

modes possible, spikes in actual data are sometimes not reproduced and we see a sinusoidal best fit time series instead. The320

NOTEND results in Fig. 13 demonstrates this.

We have snapshots of the data every 20-minutes, hence 72 snapshots per day. We compute the relative error for all longitudes

for each day, and average across space and snapshots for each day. The resulting mean relative errors are presented for all 6

16



ϕ
1
,2

ϕ
3
,4

ϕ
5
,6

ϕ
7
,8

For COCONC data For COTEND data
L

at

Lon

Figure 8. 40 day reconstruction results for Optimized DMD at the surface of CO preprocessed data. The analysis was computed for 12

latitudes -14◦ through 30◦. The left panel shows the dominant four spatial modes for CONC data; and the right panel shows four of the

corresponding spatial modes for the TEND data. The complex conjugate pair of DMD modes are denoted by ϕi,j where for the pairing

j = i+1. Thus ω1 and ω2 are the complex conjugate pairs whose real parts are identical.

chemical species of interest and for both CONC and TEND data in Fig. 14 in color red. The 95-percentile confidence intervals325

for each day is presented as black bars, indicating the variance for the mean relative errors. Constrained optDMD does an

excellent job in forecasting the immediate future snapshots and does consistently well during the entire 20-day data tested,

with mean errors/uncertainty in forecasting increasing only slightly for some chemical species as the number of prediction

days increases away from the last snapshot used from training. No exponential growth/decay is observed in the forecast time-

series, while the underlying dynamics are forecast faithfully. Considering that the underlying dynamics represent a moving330
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Figure 9. 40 day reconstruction results for Optimized DMD at the surface of NO preprocessed data. The analysis was computed for 12

latitudes -14◦ through 30◦. The left panel shows four spatial modes for CONC data; and the right panel shows four of the corresponding

spatial modes for the TEND data. The complex conjugate pair of DMD modes are denoted by ϕi,j where for the pairing j = i+1. Thus ω1

and ω2 are the complex conjugate pairs whose real parts are identical.

state with time, the constrained optDMD minimizes model bias with the variable projection optimization, thus leading to

stable forecasting capabilities. The performance is slightly worse in forecasting the TEND data as compared to the CONC

data, which is due to the intrinsic rank of the TEND data being higher. Increasing the truncation rank of the projection would

lead to improvement in forecasting of the TEND data.
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CONC

Time (Days)

Figure 10. Time series of reconstructed and predicted results with OHCONC data at Lat 30◦ and 6 longitudes -180◦:5◦:-155◦. Both the

reconstructed data, shown here for 10 days; and the forecasted time series, shown here for the 20 day testing period, faithfully reconstruct

and forecast the actual data for OHCONC.

The optDMD performs worst in forecasting the chemical species OH. OH has a very short tropospheric lifetime of less335

than a second and exhibits rapid chemical cycling during the daytime. Consequently, this chemical species needs the highest

number of modes to capture its dynamics (Fig. 7).

3.3 Temporal Uncertainty Quantification

19



Time (Days)

Figure 11. Time series of reconstructed and predicted results with OHTEND data at Lat 30◦ and 6 longitudes -180◦:5◦:-155◦. Again, both

the reconstructed data, shown here for 10 days; and the forecasted time series, shown here for the 20 day testing period, faithfully reconstruct

and forecast the actual data for OHTEND.

We now present the results from BOP-DMD in partnership with the optimized DMD algorithm to produce ensemble models340

and compute temporal uncertainty for the eigenvalue spectrum of both CONC and TEND data for the six chemical species

of interest at Lat 30◦. We use the constrained optDMD as described above on a full training data set of 60 days (July, 2ND

- August, 30TH) to create an initial seed Φ0,Ω0,b0 for the BOP-DMD algorithm . For K = 100 trials, we randomly select

p= 216 snapshots/columns i.e. data for 3 days out of the 60 days to create our subset of data, as shown in Fig. 4. optDMD

now computes the eigenvalues of various subsets using the aforementioned initial conditions. The K = 100 ensemble models345

eigenvalues are used to produce the temporal UQ metrics. The UQ metrics are critical for understanding the ability of the BOP-
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Figure 12. Time series of reconstructed and predicted results with NOCONC data at Lat 30◦ and 6 longitudes -180◦:5◦:-155◦. Both the

reconstructed data, shown here for 10 days; and the forecasted time series, shown here for the 20 day testing period, reproduce the actual

data for NOCONC well.

DMD algorithm to perform long term forecasting. Specifically, BOP-DMD is a low-cost computational tool, as opposed to

Monte-Carlo simulations, for evaluating the divergence of future state predictions from an ensemble of predictions, specifically

drawn from the BOP-DMD eigenvalue distribution.

350

Fig. 15 shows the BOP-DMD distributions of the absolute value of the first five eigenvalues for each of the subsets of data for

OHCONC and OHTEND data at Lat 30◦. The BOP-DMD quantifies the temporal uncertainly by allowing for a Gaussian fit,
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Figure 13. Time series of reconstructed and predicted results with NOTEND data at Lat 30◦ and 6 longitudes -180◦:5◦:-155◦. Both the

reconstructed data, shown here for 10 days; and the forecasted time series, shown here for the 20 day testing period, do not capture the

spikes in the actual data for NOTEND. Since we are using only 20-30 modes for reconstruction, we get a sinusoidal best fit. In general,

spikes in time-series data are difficult to capture and forecast with any method, including with DMD. Although more modes can provide a

better reconstruction, it often is then overfit on training data for forecasting purposes.

shown in red. For both of the data sets, we see a high temporal uncertainty in eigenvalues with outliers skewing the distributions.

The temporal uncertainty gets worse for the higher modes in the OHCONC data and for all modes of OHTEND data. Then

we trim the eigenvalue distribution data to exclude the outliers below 10-percentile and above 90-textitpercentile to improve355

the UQ metrics. Fig. 16 shows the distributions of the trimmed absolute eigenvalues, and the Gaussian fit is better with lower
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Figure 14. Mean relative error with 95-percentile confidence intervals forecasting CONC and TEND data at Lat 30◦ for a prediction

window of 20 days; and for 6 different chemical species. The relative error stays nearly the same or changes only slightly as the number of

days we are forecasting out to increase. optDMD does better at forecasting CONC data as compared to the TEND data.

variances, and only 1 distribution with outliers. Still, we see that there is significant temporal variability, especially for higher

modes for OHTEND.

4 Discussion

Based on the results presented in this work, we conclude that the constrained optDMD is the DMD algorithm of choice for360

the reconstruction and forecasting of global atmospheric data. Exact DMD fails in the task of reconstructing the chemistry
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Figure 15. Temporal uncertainty quantification for absolute of eigenvalues for OHCONC and OHTEND data at Lat 30◦. The red lines

represent a least-square fit of a normal distribution. 60 days of training data was used with a sample size of 3 days and 100 cycles. The

complex conjugate pair frequencies are denoted by ⟨ω2
i,j⟩ where for the pairing j = i+1. Thus ω1 and ω2 are the complex conjugate pairs

whose variance is evaluated jointly.

time-series it is regressed to, let alone producing a reasonable forecast. This is due to the significant bias in the model from

energetic localized convective phenomena present in the atmospheric simulation data. The optDMD algorithm casts the regres-

sion problem as a nonlinear optimization enabled by variable projection techniques (Askham and Kutz, 2018), hence providing

an optimal de-biasing for the atmospheric chemistry dynamics. The optDMD is thus better able to capture hidden dynamics,365

showing an order of magnitude improvement in the reconstruction error. optDMD also produces modes which more accurately

describe the localized energetic convective phenomena in the CONC and especially the TEND chemistry dynamics. The non-
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Figure 16. Temporal uncertainty quantification for absolute of trimmed eigenvalues for with OHCONC and OHTEND data at Lat 30◦.

The data has been trimmed to remove outliers below 10 percentile and above 90 percentile. The red lines represent a least-square fit of a

normal distribution. The complex conjugate pair frequencies are denoted by ⟨ω2
i,j⟩ where for the pairing j = i+1. Thus ω1 and ω2 are the

complex conjugate pairs whose variance is evaluated jointly.

linear optimization problem in the optDMD also allows for constraints. By adding a constraint ℜ(ωi ≤ 0) to the optDMD

minimization, we obtain accurate eigenvalues that are able to produce high-fidelity stable and robust forecasts. For the entire

testing time window, the forecasts remain accurate as we increase time away from the training time window, not displaying any370

growth, decay or loss of accuracy. However, computing the optDMD requires solution of a nonlinear, nonconvex optimization

problem, which often fails to converge to a solution. The computational cost of the optDMD is higher, as we increase the num-

ber of snapshots, the cost increase becomes more significant. The solutions obtained here nevertheless represent significant
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improvements. Partnering the optDMD algorithm with the statistical bagging and ensembling of the BOP-DMD produces tem-

poral UQ metrics, and highlights the high temporal variance in the eigenvalues produced by optDMD. This temporal variance375

gets worse for higher modes of the CONC data; eigenvalues for the TEND data have quite high temporal variance.

An interesting further direction would be to apply the optDMD to an entire years worth of data, a still computationally

tractable problem. In particular, the current study did not look at the ability of optDMD to faithfully reproduce yearly patterns in

the chemistry data, and accurately forecast seasonal variations. The BOP-DMD can be leveraged to produce spatial UQ metrics,

illustrating the spatial patterns where optDMD is most uncertain in its ability to provide accurate representations. optDMD380

can be further empowered by partnering with the BOP-DMD by (i) an initialization procedure to stabilize its convergence,

improving the robustness and accuracy of the regression, (ii) leveraging statistical bagging to produce a stable model with

reduced variance in the model parameters, and (iii) leveraging this stable model to forecast future states of spatio-temporal

atmospheric chemistry system, with Monte Carlo simulations to produce UQ for future states.

The here presented approaches have the potential to produce reliable estimates of ‘business-as-usual patterns of global385

atmospheric composition in real-time and at very low computational cost. They are not designed to capture unusual events

such as air pollution due to wildfires or sudden pollutant emissions changes (as e.g. experienced in the wake of the COVID-19

outbreak). However, when combined with actual atmospheric observations, the presented method can be used to identify and

quantify air pollution anomalies.
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