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Abstract. Monitoring snow avalanche activity is essential for operational avalanche forecasting and the successful imple-
mentation of mitigation measures to ensure safety in mountain regions. To facilitate and automate the monitoring process,
avalanche detection systems equipped with seismic sensors can provide a cost-effective solution. Still, automatically differen-
tiating avalanche signals from other sources in seismic data remains challenging, mainly due to the complexity of seismic sig-
nals generated by avalanches, the complex signal transmission through the ground, the relatively rare occurrence of avalanches,
and the presence of multiple sources in continuous seismic data. One approach to automate avalanche detection is by apply-
ing machine learning methods. So far, research in this area has mainly focused on extracting standard domain-specific signal
attributes as input features for statistical models. In this study, we propose a novel application of deep learning autoencoder
models for the automatic and unsupervised extraction of features from seismic recordings. These new features are then fed into
classifiers for discriminating snow avalanches. To this end, we trained three random forest classifiers based on different feature
extraction approaches. The first set of 32 features was automatically extracted from the time-series signals by an autoencoder
consisting of convolutional layers and a recurrent long short-term memory unit. The second autoencoder applies a series of
fully connected layers to extract 16 features from the spectrum of the signals. As a benchmark, a third random forest was
trained with typical waveform, spectral and spectrogram attributes used to discriminate seismic events. We extracted all these
features from 10-second windows of the seismograms recorded with an array of five seismometers installed in an avalanche test
site located above Davos, Switzerland. The database used to train and test the models contained 84 avalanches and 828 noise
(unrelated to avalanches) events recorded during the winter seasons of 2020-2021 and 2021-2022. We assessed the performance
of each classifier, compared the results, and proposed different aggregation methods to improve the predictive performance of
the developed seismic detection algorithms. The classifiers achieved an avalanche f1-score of 0.61 (seismic attributes), 0.49
(temporal autoencoder) and 0.60 (spectral autoencoder) and avalanche recall of 0.68, 0.71 and 0.71, respectively. Overall, the
macro fl-score ranged from 0.70 (temporal autoencoder) to 0.78 (seismic attributes). After applying a post-processing step
to event-based predictions, the avalanche recall of the three models significantly increased, reaching values between 0.82 and
0.91. The developed approach could be potentially used as an operational, near-real-time avalanche detection system. Yet,
the relatively high number of false alarms still needs further implementation of the current automated seismic classification

algorithms to be used as unique methods to detect avalanches effectively.
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1 Introduction

Every winter, snow-covered mountainous regions worldwide are exposed to the destructive potential of snow avalanches, caus-
ing fatalities and damage to infrastructure. On average in Switzerland, 25 avalanche fatalities occur every winter (Techel et al.,
2016). The catastrophic winter of 1999 resulted in infrastructural damage costing several hundred million Swiss francs (Briindl
et al., 2004). Such periods underscored the need for ongoing investments in avalanche prevention measures and providing
accurate avalanche forecasts. Avalanche forecasting is mainly driven by analysing weather measurements and forecasts in
combination with snowpack and avalanche observations (Schweizer et al., 2020). Detailed information on the location and
timing of avalanche occurrences is indispensable for validating avalanche forecasts (e.g. van Herwijnen et al., 2016; Biihler
et al., 2022), effectively implementing mitigation measures (e.g. McClung and Schaerer, 2006; Alec van Herwijnen and Techel,
2018), hazard mapping (e.g. Biihler et al., 2022) and the development of statistical approaches to predict natural avalanche re-
lease (Sielenou et al., 2021; Hendrick et al., 2023; Mayer et al., 2023). However, avalanche activity data are still mainly
obtained through human field observations, which are especially incomplete and uncertain in poor visibility conditions during
storms when avalanche activity is usually high (Schweizer et al., 2020). Hence, the demand for automated avalanche detection
systems that provide reliable and continuous avalanche activity data is rapidly growing.

Since avalanches are extended moving sources of seismic energy, seismic monitoring systems can be used to detect natural
avalanches in large areas within a radius of several kilometres (Hammer et al., 2017; Pérez-Guillén et al., 2019; Heck et al.,
2019b), regardless of the weather and visibility conditions. Seismic avalanche detection systems have been employed for sev-
eral decades to monitor and characterise avalanches (Surifiach et al., 2001; Biescas et al., 2003; van Herwijnen and Schweizer,
2011), assess the source location (Lacroix et al., 2012; Pérez-Guillén et al., 2019; Heck et al., 2019a) and infer flow properties
(Vilajosana et al., 2007; Lacroix et al., 2012; Pérez-Guillén et al., 2016). Avalanches generate spindle-shaped, high-frequency
signals similar to other types of mass movements (Surifiach et al., 2005). These patterns have frequently been used to discrimi-
nate avalanche signals from other seismic sources. Nevertheless, seismic detection systems have not yet reached the same level
of reliability compared to other systems, such as radars, when it comes to the automatic detection of avalanches (Schimmel
etal., 2017). This limitation is partly due to the complex signal transmission from the source (i.e., the avalanche) to the receiver
and multiple sources of environmental noise (e.g., earthquakes, aeroplanes, etc.).

The first attempt to automatically distinguish avalanches from other sources based on seismic features extracted in the
time-frequency domain and combined with fuzzy logic was conducted by Leprettre et al. (1996). Afterwards, Bessason et al.
(2007) developed a nearest-neighbour approach that successfully detected 65% of previously confirmed avalanche events.
Later, Rubin et al. (2012) divided a seismic data stream into 5 s time windows and extracted 10 spectral features by applying
a fast Fourier transform. Several machine-learning classifiers were tested using these input features, such as random forest
algorithms, support vector machines, and artificial neural networks. Among them, the decision stump classifier reached the
highest precision of 0.13 on manually identified avalanches, while they reported a recall of 0.90 and an accuracy of 0.93. More

recently, Hammer et al. (2017) and Heck et al. (2018) applied hidden Markov models (HMMs) to learn class characteristic
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patterns based on extracted spectral features for automatic avalanche classification. Extending on this approach, Heck et al.
(2019a) trained an HMM-based method to detect avalanches in continuous seismic data.

In recent years, the extensive growth of collected data and the emergence of machine learning algorithms have opened
up new perspectives for efficient and automated data processing. Machine learning models can handle complex datasets in
a reasonable time and rapidly synthesise data processes, providing valuable and complementary insights into data (Mousavi
and Beroza, 2022). Over the past decade, statistical and machine learning methods have been developed for automatically
classifying seismic signals generated by different types of slope failures based on Hidden Markov Models (Hammer et al.,
2013; Dammeier et al., 2016), fuzzy logic (Hibert et al., 2014) and random forest algorithms (Provost et al., 2017). So far,
these approaches relied on carefully engineered features derived from processing signals in the time and frequency domains.
In contrast, we explored a novel approach to automatic feature extraction by developing two unsupervised autoencoders based
on temporal and spectral signals. Autoencoders, introduced by Rumelhart et al. (1986), are neural networks specialised in
extracting features from data, relying on unsupervised learning. They can be directly trained on raw input signals without
considering class labels (i.e. unsupervised). The vanilla architecture consists of an encoder and a decoder. The former embeds
an input signal to a lower-dimensional space, i.e. the latent space, which is designed and optimized to retrieve the relevant
information of the given signal. For example, Mousavi et al. (2019) used an autoencoder to cluster seismic signals of an
earthquake catalogue and showed comparable precision to supervised methods, while Kong et al. (2021) evaluated different
autoencoder architectures for seismic event discrimination and phase picking.

In this study, we explored the autoencoder model for automatic feature extraction from seismic signals generated by
avalanches and other sources. First, we compiled a catalogue of seismic events recorded at our study site above Davos (Sect.
2), Switzerland, throughout the winter seasons of 2020-2021 and 2021-2022. In Sect. 3, we described the foundation of this
dataset, which is one of the most critical parts of any machine learning model development. Similar to previous studies, we
extracted features from 10s seismic time windows and trained classifiers based on these features. In the feature extraction
process (Sect. 4.1), we developed two new methods based on autoencoders, which learned to automatically extract 32 and 16
input features from the time and frequency domain respectively, and compared them against a set of 57 standard expert-based
seismic attributes. The routines to optimize and train the autoencoder models are shown in Sect. 4.2. Using the different sets of
input features, we trained three random forest classifiers to automatically distinguish the avalanche signals from other seismic
events (Sect. 4.3). We analyzed and compared the performance of the models in Sect. 5. Finally, a discussion of the main results

and conclusions are presented in Sect. 6 and 7.

2 Study Site

The study site is located at the end of the Dischma Valley, a tributary valley above Davos, Switzerland (Fig. 1). The seismic sys-
tem was deployed on a flat meadow at about 2000 m a.s.l. (Eastern Swiss Alps; 46.72°N, 9.92°E). The surrounding mountains
form a basin of steep slopes reaching up to 3000 m a.s.l. Since the winter season of 2020-2021, approximately from November

to May, we installed a seismo-acoustic array of five co-located seismic and infrasound sensors arranged in a star-like pattern.
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Figure 1. Left: Map and location of the study site. The instrumentation consisted of a seismo-acoustic array (blue dots), three cameras and
a Doppler radar (red triangle). The approximate area where avalanches can be detected is shown for the seismo-acoustic array (blue ellipse)
and the radar (red cone). Moreover, an avalanche path is highlighted with the red shaded area. Right: Photo taken by an automatic camera at

the Dischma study site, showing the georeferenced path of a dry-snow avalanche released on 2 February 2022 at 02:31.

The seismic sensors were buried into the ground at a depth of approximately 50 cm and subsequently covered by snow during
winter. A single measuring unit consists of a one-component seismometer Lennartz LE-1D/V (eigenfrequency of 1 Hz and sen-
sitivity of 800 V m ™! s) and an infrasound sensor Item-prs (frequency response of 0.2-100 Hz and sensitivity of 400 mV Pa™").
The only exception is the central measuring unit applying a three-component seismometer LE-3Dlite (eigenfrequency of 1 Hz
and sensitivity of 800 Vm~1!s), of which we only used the vertical component in this study. The sensors were connected to
the same digitizer (Centaur digitizer from Nanometrics), recording continuously with a sampling frequency of 200 Hz. The
seismo-acoustic array monitors avalanches released from all slopes within a radius of approximately 3 km (blue ellipse in Fig.
1).

Additionally, the site is equipped with a Doppler radar and three automatic cameras to obtain independent validation data
when weather conditions allow it, including accurate release times and information on the type and size of the avalanches. The
radar emits electromagnetic waves that are reflected by the avalanche flow, providing the location and velocity of the moving
avalanche (Meier et al., 2016). Figure 1 shows the location of the radar, which monitors several avalanche paths exposed to the
west-southwest, covering an approximate area of 4 km? (red delineated area in Fig. 1). In this case, avalanches can be detected
up to a maximum distance of approximately 2 km. The cameras automatically photograph every 30 minutes all the surrounding

slopes (Fig. 1).
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3 Data

We compiled a catalogue of seismic events from the continuous recordings of the winter season 2020-2021 and 2021-2022.
Concretely, we manually picked events within periods of known avalanche activity and preprocessed the seismic signals. Then,

three experts labelled the events, with which we finally compiled a two-class classification dataset.
3.1 Event picking and signal processing

Supervised machine-learning models require a definition of events and a subsequent annotation for training. For the for-
mer requirement, we picked events from the continuous recordings. Typically, the amplitude of seismic signals generated
by avalanches gradually increases since the avalanche approaches the location of the seismic sensors (Fig. 1) and larger seis-
mic energy dissipation due to snow entertainment and erosion processes within the flowing avalanche (Pérez-Guillén et al.,
2016). As avalanche signals gradually emerge from background noise and initially have a low signal-to-noise ratio (Fig. 2a),
automated picking methods often miss the starting phase of avalanches and sometimes entire events. To prevent this, we vi-
sually inspected the continuous seismic recordings and identified signals that exhibited a high signal-to-noise ratio, i.e. were
not in the order of magnitude of the background noise. We limited our search to periods with known avalanche activity for
efficiency. This included avalanche cycles during snow storms, days when avalanches were detected by the radar and periods
with observed avalanche deposits in the cameras.

Before picking the signals in those periods, we transformed the raw seismic signals to ground velocity (meters per second).
Additionally, the signals were linearly detrended, tapered with a Hanning window and filtered with a 4th-order Butterworth
band-pass filter between 1 and 10 Hz. We found this to be the most energetic frequency band of the avalanche signals recorded
at our study site, considering the typical relative distance between the avalanche and our receivers. To finally compile a clean
event catalogue we manually defined the start and end times of the identified signals by visually inspecting the seismic signal,
the envelope signal and the spectrogram. In summary, we picked 912 non-background noise signals lasting between 5 and

515 s, which we labelled in the next step.
3.2 Event labelling
For annotating the events, three experts assigned signals into two classes, avalanche and non-avalanche events:

Avalanches: Avalanche events were first identified using the radar and camera data (Fig. 1) by matching seismic signals to
avalanches detected by the radar or on images. A second step to collect avalanches missed by these systems was to
visually classify signals based on the characteristic seismic signature of avalanches (e.g. non-impulsive onsets, spindle-
shaped signals and triangular-shaped spectrograms; Fig. 2a) as proposed by van Herwijnen and Schweizer (2011). Addi-
tionally, the output of wave parameters derived from array processing of the seismic and infrasound data was considered,

i.e. backazimuth angles and apparent velocity (Marchetti et al., 2015; Heck et al., 2019a).
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Figure 2. Recordings of the avalanche in Fig. 1, an earthquake and an airplane. The dashed orange vertical lines indicate the manual cuts of

the event catalogue.

Noise (non-avalanche events): Earthquakes were the most frequent source of environmental noise at our study site. They
were identified by visual inspection of the signals (typical emergent onsets and usually identifiable arrival of the dif-
ferent phases; Fig. 2b) and comparison of our seismo-acoustic recordings with two nearby seismic stations from the

140 Swiss national network (e.g. Clinton et al., 2011). In addition, online earthquake catalogues were consulted to match our
recordings with catalogued events (SED, 2023; EMS, 2023). The remaining portion of seismic events was generated by
different sources, including aeroplanes (Fig. 2¢), helicopters, explosions in nearby skiing resorts, weather events (e.g.
wind), people or animals walking close to the sensors, and many more unknown event sources. We summarized this
collection of unrelated events as a “noise” class. In particular, weak signals generated by non-verified small avalanches
145 might also fall into this heterogeneous class. Notably, this definition of the noise class barely included low SNR back-

ground noise.

The three experts independently assigned subjective probabilities using either 0 (non-avalanche), 0.5 (potential avalanche)
or 1 (certain avalanche). A signal was labelled positive if the sum of the three expert scores exceeded 1.5. Note that the average
rate of agreement in avalanche score on the avalanche signals between the three experts was 58%. In this manner, we compiled

150 an event catalogue with 84 avalanches (31 verified with the radar or camera images) and 828 unrelated noise events from the
2020-2021 and 2021-2022 winter seasons. For completeness, the same labelling process was used for earthquakes, with which

we found 183 earthquakes in the noise class. The seismic sensors recorded maximum absolute amplitudes ranging from 3.3 x
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1078 t0 4.7 x 1075 ms~! for avalanches, 1.3 x 1078 t0 9.7 x 10~ ms~! for earthquakes and 1.4 x 1072 t0 5.1 x 10" ® ms~!
for noise signals. Signal duration ranged from 13 to 113, 7 to 263 s and 5 to 515 s in each class, respectively. Noteworthy,
the amplitude range of the noise class includes the amplitude ranges of both avalanches and earthquakes, highlighting its

heterogeneity.
3.3 Signal windowing and dataset splitting

Before training the models, we further processed the event data in the catalogue. First, we treated the records of each seismic
sensor independently yielding a five-fold enlargement. Second, we applied a 10 s windowing with 50% overlap to all signals.
This windowing resulted in more data samples to train and ensured fixed-sized inputs for the models. Beyond, this strategy
is also beneficial in a potential (near) real-time detection system, where 10 s windows are continuously parsed. With this, the
labelled data set comprised 3’580 avalanche and 37’110 noise (non-avalanche) windows, which included 11’575 earthquake
windows. This dataset is the foundation of this study and allows for systematic comparison of the methods in different settings.

Lastly, to develop the models and select the best architectures and hyper-parameters, we defined four independent data
folds, i.e. three train folds for cross-validation and a test fold for assessing the performance on an independent inference set.
We separated the folds by specific dates to prevent any correlation between the folds and reduce temporal data leakage. We
chose the dates such that the class distributions across the folds are even (Fig. 3). The first train fold included dry avalanches
exclusively, whereas the second contained a mixture of dry avalanches in the early part of the period, and wet avalanches in the
latter. The third train fold and the fourth test fold spanned the winter season of 2021-2022. Again, the earlier counted towards
dry conditions and the last both wet and dry.

4 Model development

In order to classify the signal windows (Fig. 4), we extracted features from them (Sect. 4.1), and trained a classification model
to discriminate classes of interest (Sect. 4.3). In the former, we used a conventional human-supervised feature-engineering
approach (Sect. 4.1.1 and Appendix B) as a benchmark and two fully unsupervised autoencoders (Sect. 4.1.2), which required
definitions of the training strategies (Sect. 4.2). In the latter classification, we chose and developed binary classifiers for the

preceding feature extraction methods (Sect. 4.3).
4.1 Feature extraction

Feature extraction generally describes the compression of a signal to a lower dimensional embedding while retrieving/pre-
serving the signal’s most distinctive information. The embedded information (the features) is usually input into an upstream
classification or regression task. Following this general approach, we explore three methods to extract information from seismic
signals either as learned feature vectors or domain-specific features, which are then classified as avalanche or noise.

In a first attempt, following a similar approach to Provost et al. (2017), which classified seismic events generated by land-

slides, we extracted a set of 57 predefined standard seismic attributes (Sect. 4.1.1). The feature engineering strategy is widely
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Figure 3. Class distributions in the folds. The annotations on top of the bars depict the total number of 10 s seismic windows in each fold.
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Figure 4. Overview of the three different approaches for avalanche classification. The blue elements depict the feature extraction, while
the orange parts show the classification. Top (blue): The temporal autoencoder features; middle: The human-engineered seismic attributes;

bottom: The spectral autoencoder features.

used in seismic detection of mass movements (Rubin et al., 2012; Provost et al., 2017; Lin et al., 2020; Wenner et al., 2021;

185 Chmiel et al., 2021) and time series classification in general (Barandas et al., 2020). Additionally, it served as a benchmark for
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comparing our second approach (Sect. 4.1.2), which is to learn the feature extraction completely unsupervised without making
any preliminary assumptions about the signals. Using an unsupervised learning algorithm is beneficial when not provided with
ground-truth labels, as in our case. Therefore, we used two autoencoder models to extract features from temporal and spectral
input data, respectively (Sect. 4.1.2). The autoencoder concept was first introduced by Rumelhart et al. (1986) and has since
been adapted for various applications (Lu et al., 2013; Mousavi et al., 2019; Gu et al., 2021). The architecture consists of an
encoder and a decoder: The encoder compresses the input signal to a lower-dimensional embedding, i.e. the latent (feature)
vectors. The decoder decompresses these feature vectors to the original input dimension. Overall, the autoencoder is trained by
learning to reconstruct the input signals. Thus by design, the encoder feature vectors are optimized to preserve the most dis-
tinctive information characterising a given input signal, such that the decoder can reconstruct it. During inference, the decoder

is discarded, and only latent vectors are used as inputs to the classifier, which is trained separately.
4.1.1 Seismic attributes

In the first approach, we used a set of 22 waveform, 17 spectral and 18 spectrogram attributes (see Table B1, B2 and B3 for
more details). These features were extracted from the frequency-filtered (1 to 10 Hz) and normalized 10s seismic signals for

all sensors separately. Note that we did not include any network or polarity-related attributes.
4.1.2 Autoenconders

Developing neural networks involves optimizing network hyper-parameters and defining a training strategy. Therefore, we used
the first three folds in Fig. 3 to run 3-fold cross-validation. We defined a grid of hyper-parameter combinations and iteratively
trained the resulting model configurations on two and evaluated them on the left-out fold. We selected the model showing
the best average performance on all three folds according to predefined metrics. By definition, the autoencoder performance
can be measured with its reconstruction loss. However, given a decent reconstruction, we aimed to find the best input features
for classification. Hence, we evaluated the autoencoders based on the avalanche and noise class separation within the latent
(feature) space. We calculated the silhouette score (Rousseeuw, 1987) and the Calinski-Harabasz index (Califiski and Harabasz,
1974) based on the feature embedding location and their given expert labels (see Appendix C2). The best autoencoder was
selected by searching for the highest-ranking combination of silhouette score, Calinski-Harabasz index and the reconstruction
mean squared error loss (see Appendix F). Following the model selection, the autoencoders were retrained on the train folds
(fold 1, 2 and 3 in Fig. 3), and after, we extracted the autoencoder features from all folds.

In the first autoencoder, i.e. the temporal autoencoder (TAE), we considered the seismic time series data, hence the name.
It was developed for seismic waveform signals of 10 s normalized by their absolute maximum amplitude. When dealing with
time series data, common choices of computational units are one-dimensional convolutions and recurrent units such as the
long short-term memory (LSTM) cells. Thus, we implemented the encoder as a sequence of 3 convolution layers and one
LSTM cell layer learning temporal dynamics. The best model from the cross-validation procedure (Table F2) was composed of
convolutions with kernel size 20 (or 0.1 s) and stride 10. This implementation of stride reduces the initial input length of 2000

samples (200 Hz x 10s) to 200, 20, and 2 within each encoder layer. Similarly, we selected 32 filters in the first convolutional
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Figure 5. Illustration of the temporal autoencoder architecture.

layer and doubled the number in each consecutive layer. In the last encoder layer, the LSTM cell summarizes the output of the
convolutions, i.e. two 128-dimensional vectors, to a feature vector of 32 dimensions (32 features). The decoder sequentially
repeats this latent vector twice and applies 3 transposed convolutions with kernel size 20 and stride 10 to decompress the
sequence back to its original length. Starting at 128 filters, we halved them in each decoder layer to reach 32 channels. To
reduce this number back to the number of input channels, i.e. 1, a convolutional layer with kernel size 3, stride 1 is applied in
the decoder output layer.

In addition, we used batch normalization (BN) (Ioffe and Szegedy, 2015) in all encoder and decoder layers except for the
decoder output layer to stabilize and accelerate training. As an activation function, we use the leaky rectified linear unit (leaky
ReLU; (Xu et al., 2015)), which outperformed the tangent hyperbolic function (Tanh) during model optimization. The only
exception is again the output layer, where we replace the leaky ReLU with the Tanh function to output values in the same
range as the normalized input signals in [—1, 1]. In summary, Fig. 5 gives a simplified overview of this architecture comprising
514’337 learnable parameters (226’848 in the encoder). Note that this architecture is relatively small in the number of trainable
parameters, hence well adapted to the size of our dataset.

The second autoencoder implementation operates in the spectral domain, henceforth referred to as the spectral autoencoder
(SAE). We used the fast Fourier transform (FFT) to convert the filtered 10 s seismic signals into the frequency domain. Thus,
the input data to this model contains the amplitude spectrum normalised using the min-max normalization. In contrast to
the temporal autoencoder, we replaced the aforementioned computational units, i.e. convolutions and LSTM cells, with fully
connected layers. Through hyper-parameter optimization, we designed the encoder and decoder to comprise 3 fully connected
linear layers each. The hidden dimensions in the encoder evolve from 200 to 139, 78 and 16 (feature dimension). The decoder
is a mirrored version of the encoder. Based on parameter tuning we used the Tanh function as non-linearity in all layers (Table
F3). Moreover, we apply layer normalization (LN) in each layer with the same exception of the output layer. Figure 6 illustrates
a simplified version of this architecture summing up to 81’330 learnable weights (40’589 in the encoder). As for the TAE, this

architecture is small and well adapted to the size of the dataset.

10
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4.2 Autoencoder training

The training strategy is another main part of model development, which we optimized for the selected autoencoder architec-
tures. A training step in neural network optimization starts with sampling a batch of predefined size from the dataset. For
sampling, given that our dataset is severely imbalanced (Fig. 3), we implemented the weighted random sampler (see Appendix
D), which samples data points according to user-specified class weights. This allowed us to control the proportion of avalanche
samples within each batch. The batch is then passed through the entire network (forward pass) to produce the output (predic-
tion). The output is compared to the target and the reconstruction loss is computed. The network weights are then optimized
by computing the gradients of the loss function and applying a specified back-propagation algorithm. Within this training
procedure, we searched for the optimal number of expected avalanche samples in each batch, the batch size and the learning
rate to use with the mean squared error (MSE) loss function and the Adam optimizer (Kingma and Ba, 2014). After following
our hyper-parameter optimization strategy, we found the temporal autoencoder training optimal with an expected portion of
avalanches per batch of 0.6, a learning rate of le~* and a batch size of 128. The model was trained for 120 epochs, i.e. it-
erations through the entire dataset, with early stopping when the class-separation metrics started decreasing. Additionally, we
applied data augmentation by randomly shifting the 10 s window signals by 0 to 1 seconds to either the right or left, to reduce
overfitting in the avalanche class and for better generalization (Zhu et al., 2020). Similarly, in the spectral autoencoder training,
we used an expected portion of 0.5 avalanches per batch, a learning rate of 1e~* and a batch size of 128 and found 5 training

epochs to be optimal.
4.3 Feature classification

The motivation for separating the feature extraction and classification processes was manifold. First, the partial uncertainty in

the labels led to the conclusion that an unsupervised feature extraction approach is more robust to label noise and therefore

11
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preferable, as it could additionally leverage more unlabelled data. In contrast, a fully supervised neural network might suffer
from the relatively low number of labels and bias, tending to overfit these expert labels rather than learn avalanche character-
istic patterns in seismic signals. In an early stage, we tested this approach and did not observe better results. Thus for better
comparability of the features themselves with the benchmark model, i.e. feature engineering, we proceeded with the unsuper-
vised feature extraction strategy. Ideally, several classifiers can then be used, combined or ensembled over different feature
extraction steps.

Apart from expert label uncertainty, we considered the subjectivity of the manual cuts. Due to the attenuation of avalanche
signals with the distance to the sensors and the low initial energy of avalanches, we inevitably included 10s windows from
avalanche signals, which rather account towards background noise. This particularly applies to the starting and ending sections
of a signal (see the upper plot in Fig. 2). Labelling these parts as avalanches (false positives) bears the danger of distracting
a fully supervised neural network. Therefore, we decoupled the classification from the feature extraction and implemented
random forest classifiers for each feature set.

The random forest model is a widely used algorithm for classification in general and for seismic event detection (e.g. Li
et al., 2018; Provost et al., 2017; Chmiel et al., 2021), as it is favourable when dealing with high-dimensional features and
heterogeneous (seismic attributes) input data. The algorithm was introduced by Breiman (2001) and belongs to the class of
ensemble methods. During training, several decision trees (estimators) are grown. Each tree is grown on a different bootstrap
sample of the original dataset, i.e. a random draw with replacement. Instead of using the entire set of features (columns) in
the original dataset, a random subset is assigned to each node in the tree individually. The split (branch) is based on a single
feature from this random subset, which is optimal under a specified splitting criterion, such as the Gini information criterion
when dealing with categorical (classification) splitting problems. During inference, each tree prediction is aggregated to form
a final majority vote, from which it is possible to retrieve class proportions, often interpreted as probabilities.

In search of the best hyper-parameters of this tree-growing algorithm, e.g. the maximal number of estimators (trees), we used
a randomized grid search with 3-fold cross-validation. This method evaluates hyper-parameter combinations by iteratively
fitting the random forest model to two of the three train folds and testing it on the left-out fold. As a scoring function, we
chose the avalanche class fl-score to weigh the precision and recall uniformly and averaged the score across the three folds.
This optimization process was applied with the three feature sets individually, i.e. the seismic attributes and the autoencoder

features, to find the random forests presented in Table E1.

5 Results

After completion of the model development, we evaluated the three approaches on the test fold (fold 4 in Fig. 3). First, we
summarized the results of the seismic attribute, TAE and SAE feature classification on the windowed 10 s seismic signals (Sect.
5.1). Further, we aggregated the predictions by averaging the per-sensor 10 s window probabilities over the seismic array (Sect.

5.2). Thus, we gained insights into the predictions of unique 10 s signals at our study site.
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Figure 7. Confusion matrices of the binary classification results for the three feature sets on the held-out test fold data. The rows indicate the

true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.

5.1 Single sensor predictions

The true positive rates (or avalanche recall) were similar across the models (Fig. 7), i.e. between 67.3% and 71.2%. Neverthe-
less, the avalanche recall was slightly higher for the autoencoder features classification. Regarding the true negative rates (or
specificities), i.e. the probability that an actual noise event will be predicted as noise, we noted that the TAE features classi-
fication showed the lowest rate of 82.6% and also showed the lowest avalanche precision of 0.33, compared to 0.51 for the
seismic attributes and 0.45 for the spectral autoencoder features (Table 1). Thus, we expect this model to produce comparably
more false alarms (false positives). Overall, the macro-average f1-score reached values of 0.76, 0.67 and 0.74 for the seismic
attributes, the TAE features and the SAE features classification respectively (Table 1). Additionally, since the feature extraction
and its information content are core concepts of this study, we visualized part of the latent spaces in Fig. 8. As earthquakes
account for a significant proportion of the noise class and labels were available, we show them separately. This visualization

provided some insights into the organization of the autoencoder latent space.
5.2 Array-based predictions

In addition to the predictions on the individual 10s windows, we aggregated the window predictions over the 5 sensors in
the seismic array by averaging the per-sensor output probabilities, resulting in improved model performance (Fig. 9). The
macro-average fl-scores increased by 2.6% (seismic attributes), 4.5% (TAE) and 5.4% (SAE). After ensembling, the seismic
attribute and the SAE feature classification yielded similar performance in the classification metrics (see Table 2). Despite this
improvement, the TAE feature classification still showed approximately double the number of false alarms, i.e. 323 (14.7%),
compared to the other models. The array-based aggregation further enabled us to investigate how predictions over an entire

seismic signal evolve (Fig. 10). For the avalanche shown in Fig. 1 and 2, the models are comparably unsure in the starting
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Table 1. Classification metrics on the (unseen) test fold data for the three feature sets. Due to the strong class imbalance, the weighted

averages of the metrics are not shown.

Model Class Precision Recall  Fl1 Support
Avalanche 0.51 0.67  0.58 1335
Seismic Noise 0.96 092 094 | 11135
Auribute |\ o Ave 074 080 076 | 12470
Accuracy 0.90
Avalanche 0.33 071 045 1335
TAE Noise 0.96 083 0.89 | 11135

Features Macro Avg 0.64 077  0.67 | 12470

Accuracy 0.81
Avalanche 0.45 0.70  0.54 1335
SAE Noise 0.96 090 093 | 11135
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Figure 8. Latent space visualization of the most important features according to the impurity-based feature importance of random forest
models for the seismic attributes (left), the temporal autoencoder features (middle) and the spectral autoencoder features (right). In parenthe-

sis, the impurity-based importance of each feature is shown.
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Figure 9. Results on the held-out test fold data after applying a probabilistic aggregation of the 10 s predictions over the 5 sensors of the

array. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours

code the percentage numbers.

phase, i.e. when it emerges from background noise. However, as the signal becomes more energetic, the avalanche probability

increases for all models.

Table 2. Classification metrics on the (unseen) test fold data after probabilistic aggregation over the 5 sensors. Due to the strong class

imbalance and bias towards the noise class, the weighted averages of the metrics are not shown.

Model Class Precision Recall Fl Support
Avalanche 0.56 0.68  0.61 267
Seismic Noise 0.96 093 095 2202
Auributes | yproAve 076 081 078 | 2469
Accuracy 0.91
Avalanche 0.37 0.71 0.49 267
TAE Noise 0.96 085 0.90 2202
Featwres |\ pcroAve 067 078 070 | 2469
Accuracy 0.84
Avalanche 0.53 0.71  0.60 267
SAE Noise 0.96 092 094 2202
Featwres | \rcroAve 075 082 077 | 2469
Accuracy 0.90
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Figure 10. Example of the seismic signal generated by an avalanche (up) and the mean output probabilities for each developed model over
the entire avalanche signal (down). The probability is computed as the average of the individual probabilities predicted by each sensor every
5 seconds (10s windows with 50% of overlap). The manual cuts are highlighted in dashed grey lines (upper plot), and the classification

threshold 0.5 is in orange (lower plot).

5.3 Event-based predictions

Besides the single sensor and array-based predictions (Sect. 5.1 and 5.2), we investigated the predictions on the event level to
close the gap to avalanche activity monitoring and provide a broader outlook. For this, we aggregated the array-level predictions
in Fig. 9 over the entire duration of an event. We defined that at least two consecutive windows (or 15s of an event) had to
be positively predicted for the entire event to be considered an avalanche. This threshold of two windows was not optimized.
However, considering that the shortest avalanche in the dataset is 13 s, this boundary was feasible. This post-processing led to
the results in Appendix 5.3. Figure F1 shows a significant increase in avalanche recall with values of 0.82 (seismic attributes),
0.88 (TAE) and 0.91 (SAE). Nevertheless, the overall performance of the three models decreases by about 5% (see Table F4).

6 Discussion

So far, we compared the performance of a human-engineered seismic attribute classification and the autoencoder feature clas-
sification results based on a dataset containing 10s seismic signals on a single sensor-level and multiple sensor-level (aggre-
gation). With the latter aggregation, we observed a significant reduction in false alarms and a slight improvement in avalanche
recall. Furthermore, we noticed that the automatically learned features, specifically the ones from the spectral autoencoder,
performed better than the seismic attributes. Hence, the results showed that spectral input information seemed favourable. In
the following, we contextualise the results by investigating the detection errors and their possible origins. Therefore, we sum-

marize the model development (Sect. 6.1) and focus on the false predictions of the models to find potential limitations and
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Figure 11. Array-based output probabilities of the random forest models for their respective input features with expert avalanche scores. The

blue dashed line indicates the threshold applied to the expert scores to assign avalanche class labels.

reasons (Sect. 6.2 and 6.4). Finally, we argue about the applicability of these models (Sect. 6.3) and compare the results to

previous work (Sect. 6.5).
6.1 Model performance and limitations

Machine-learning models are strongly influenced by the quality and size of the dataset. The relatively small size constrained
us to design autoencoder architectures with rather few trainable weights. In addition, we used each sensor independently to
compensate for dataset size, as each sensor can be considered a different view of the same event. However, this came at the cost
of introducing correlation among dataset samples as the sensors were installed nearby (Fig. 1) and thus recorded very similar
signals, yet not necessarily adding much new and enriching information to the dataset. Given that the dataset will increase in
the next years, we will consider incorporating the 5 sensors as distinct channels in a convolutional model in future studies. With
this, the sensor aggregation and fusion would be implicitly implemented into the model. Another aspect to bear in mind was the
signal normalization. Normalizing input data has proven crucial when training neural networks (Sola and Sevilla, 1997). The
temporal autoencoder, in particular, therefore loses information on absolute and relative amplitudes. Yet, both autoencoders
could still capture signal characteristics and remarkably show similar patterns when looking at continuous predictions (see Fig.
10). Alternatively, a normalization over the entire signal before windowing could be envisioned to preserve information on
relative amplitudes. However, this is not practical for (near) real-time signal detection.

Further, the dataset drove the decision to separate the feature extraction and classification. The unsupervised feature ex-
traction is not constrained to a labelled dataset (only the model selection and hyper-parameter tuning of the classifiers are),
an advantage when dealing with non-ground-truth labels (two-thirds of the avalanches were not verified). This allowed us
to analyze a lower-dimensional embedding of the dataset by inspecting the feature space distributions (Fig. 8). As labels for

earthquakes were available, we visualised the earthquake class separately. Moreover, earthquake and avalanche signals can be
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similar in the time domain (Heck et al., 2019a), thus we wanted to investigate them in the feature domain. In an early stage,
we trained models with three classes (earthquake separately), without seeing an increase in overall model performance. In
addition, note that training a model to also classify earthquakes was out of scope as these can be detected with other methods.
Overall, the three event types, i.e. avalanches, earthquakes and rest, varied in the encoding locations, yet also showed consid-
erable overlap. Interestingly though, the avalanche and earthquake signals were well separated (blue and orange in Fig. 8). The
rest (grey) resembled a connecting cloud between avalanche and earthquake signals. The reason for this might be two-fold;
first, the heterogeneity of these noise events by potentially comprising minor avalanches and low magnitude earthquakes (false
negatives), and second, the strong attenuation in some sections of avalanche signals resulting in low amplitude avalanche win-
dows. The heterogeneity within the noise class originated from including different sources in comparable amplitude ranges, e.g.
earthquakes, aeroplanes or strong wind. However, these various sources are definitive to be expected and need to be considered
in a real-time detection system.

In future implementations, further investigations could also be conducted considering the avalanche class by differentiating
between type and sizes. Since the primary goal of this study was to develop and compare models to detect avalanches regard-
less of their type or size, we trained the models considering all the recorded avalanches. Therefore, we ensured that various
avalanche types were included in both the train and test set by separating them based on appropriate dates (Sect. 3.3). Accord-
ing to radar and image data, most avalanches detected by our seismic array ranged between size classes 2 and 3, based on the
European avalanche size classification (EAWS, 2021). Future models could be expanded to also classify avalanches by size and
type. Given that seismic patterns of avalanches are influenced by the avalanche type (Pérez-Guillén et al., 2016), an alternative
approach could be to develop two independent models to detect dry-snow and wet-snow avalanches separately. However, the
current dataset was too small to further categorize the avalanche events by size and type, and accurate ground-truth data was
often also missing.

Finally, the applied expert labelling was subject to an unknown degree of subjectivity and belief for the non-verified events.
In addition, having decided upon a hard threshold to convert expert scores to class labels further blurred the boundaries between
the avalanche and noise class, i.e. the noise class might include minor avalanches (false negatives). We, therefore, investigated
the relationship between the random forest’s output probabilities and the expert scores of potential avalanche signals (Fig.
11). Also, we found the average expert agreement rate on the avalanche samples to be 58%, i.e. on average, two experts
agree on 58% of the avalanche signals. Overall, the output probabilities of the random forest models positively increased
with the expert scores. As expected, we also noted the highest uncertainty at the selected threshold (dotted blue line). When
comparing the feature sets, the classification with the seismic attributes yielded clearer steps over expert scores and more
distinctive probabilities for the highest and lowest expert scores. A measure to mitigate having to deal with noisy labels in
future works might be to solely include verified avalanches and discard the non-verified ones for training the models. However,
the unsupervised autoencoders are entirely independent of any class labels or information. Thus, by considering only verified
avalanches, we would not reduce class ambiguity from the autoencoder’s perspective but the dataset size and with it, valuable

information might be lost.
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Another noticeable observation, which bridges to the upcoming Sect. 6.2 and 6.4, was the number of outliers for the expert

scores of 0.5 (false positives) and 3.0 (false negatives), most prominently in the seismic attributes classification.
6.2 Missed avalanche windows

Two types of errors are inherent in a binary classification problem, namely false negatives (FNs) and false positives (FPs),
which are the focus of this and the following Sect. 6.4, respectively.

Looking again at Fig. 11, we accredited the outliers in the expert score of 3.0, i.e. FNs, to the nature of mass movement
signals. Concretely, avalanche signals slowly emerge from the background noise due to source-receiver distance and the low
generation of energy in the initial and very end stages of avalanche motion, resulting in the typical spindle-shape signal with a
relatively low signal-to-noise ratio at the beginning and end of the signal (Surifiach et al., 2001; van Herwijnen and Schweizer,
2011; Pérez-Guillén et al., 2016). We suspect that the models had difficulties correctly classifying these parts of an avalanche
signal, producing FN predictions. Further, the manual cutting was rather generous in including the entire avalanche signal with
parts characterised by very low amplitudes. The selection of the onsets and ends of the signals was subjective, and we cannot
exclude that some background noise was included. For instance, Fig. 12 a) shows a comparison of the time series of array-based
averaged predictions for each model with the misclassified onset of an avalanche event, while in Fig. 12 b), the end portion
was characterised by a very low signal-to-noise ratio. In Fig. 12 a), the first few time windows from 10s to 35 s are arguably
rather noise, as suggested by the model probabilities. Tough as the signal strength increases, model probabilities also increase.
Concretely, if we considered the first five predictions or time windows as noise, this sample accounts for 5 (non) FNs in the
results in Fig. 9 and approximately 25 in Fig. 7 per model. The array-based prediction aggregation did not reduce these missed
‘avalanche’ windows (Fig. 9) since all the sensors predicted low probabilities of being an avalanche. Thus, we were left with

approximately one-third of FNs in all three models.
6.3 Applicability to early warning and monitoring systems

For monitoring avalanche activity, false negatives at the start or end of each event are not very problematic. As long as the
most energetic part of the signal is well detected, the overall avalanche activity can still be accurately recorded. However, in a
potential early-warning operation, an effective model must detect all key parts of the signal, particularly the onset, to identify
avalanche movement in its early stages and trigger an appropriate alert. The current classifiers, which often fail to capture
the avalanche onset, may not be suitable for this purpose. To improve early-warning models, future studies should focus
on examining avalanche onsets in more detail and developing specialized models that target these specific signal windows.
Additionally, when assessing overall avalanche activity, missed detections can be problematic. Installing additional sensors
near the release area and along the avalanche path could help address this issue. However, given the terrain characteristics at
our test site (Fig. 1), where avalanches can occur along multiple paths, a single sensor may not be sufficient to detect all events.

To give a general outlook on avalanche activity monitoring, we further post-processed the array-based predictions (Fig. 9) to
formulate event-based predictions. We considered an entire signal an avalanche if at least two consecutive windows (i.e. 15s

that is approximately the minimum duration of an avalanche signal) were positively predicted. In theory, this should eliminate
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Figure 12. Signals generated by avalanches triggered on 2 February 2022 at 18:14 (top left) and 7 February 2022 at 04:07 (top right) and
comparison of the array-based averaged probabilities by each model over the entire length of the avalanche signals (bottom). The dashed

vertical lines in grey indicate the manual cuts.

the FNs in the tails of the actual signal and provide us with event-based detectors. For instance, in Fig. 12, we then would
detect avalanches with this post-processing. Indeed, in Fig. F1, we observe a drastic reduction in missed avalanches for the
three models, which achieved a high avalanche recall of 0.82 (seismic attributes), 0.88 (TAE) and 0.91 (SAE).

In closing, we reduced the missed avalanches by applying the presented post-processing steps. Furthermore, we observed
that the models struggle to detect the starting and ending of an event (Fig. 12). We argued that this behaviour is reasonable and
in part desirable as these parts of an event often resemble background noise. However, in most cases, the entire (unique) event
is detected (Fig. F1). Thus, the models could, in turn, be considered to annotate large datasets, which in turn can be used to

detect fine precursor signals.
6.4 False alarms

The second type of error, i.e. false positives (FPs) or false avalanche alarms, showed greater variation in numbers across the
three models. With 7.8% the seismic attributes produced the smallest portion of false positives. Predicting with the TAE features
resulted in roughly three times as many false positives, with the SAE feature prediction in between. However, we observed
a significant improvement in these errors when aggregating over the array (Fig. 9). This suggested that the 5 recordings of a
specific event, particularly noise events, can show strong variations across the array, which we filtered by this averaging. As
the noise class is extremely dominant and, for instance, 10% FPs result in approximately 1000 FP samples (compared to 1335
avalanche samples), the avalanche precision of all three models is relatively low with 0.51 (Seismic Attributes), 0.33 (TAE)

and 0.45 (SAE).
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We therefore analyzed the origins of FPs to find potential tendencies or failure cases (Fig. 13). Most FPs, i.e. 76% (seismic
attributes), 65% (TAE) and 71% (SAE), were generated by windows either carrying a non-zero avalanche score or belonging
to an earthquake. Interestingly, the highest portion of false positives falls to windows with an avalanche score of 0.5, i.e. one’
expert thinks it might be an avalanche. This might indicate that minor-size avalanches, or larger avalanches that flowed at the
detection limits of the system, are not well recognized by the experts yet by the models. Considering the earthquakes, the test
fold comprises a total of 3880 earthquake windows, of which only 135 (Seismic), 200 (TAE) and 158 (SAE) are misclassified
as avalanches, i.e. 3.5%, 5.2%, 4.1%. The remaining approx. 30% FPs in all models originated from unknown sources.

Overall, our results thus showed that using an array of sensors helped to reduce the number of false avalanche detections
by averaging the predictions of the sensors. This can be viewed as model ensembling and is generally known to improve
results (Mohammed and Kora, 2023). Second, including features from the frequency domain tended to show fewer FPs. Third,
an interesting and positive finding was that the models rarely confused earthquakes for avalanches (on average 4.3% of all
earthquake windows). Moreover, the models generate false alerts to a similar extent to previous studies in avalanche detection
(e.g. Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018). Thus, they might not yet be suited for an
early-warning application. However, the models could be implemented in an avalanche activity assessment process or to label
unverified events in the future by being aware of the limitations and that they tend to produce too many avalanche detections.
In pursuit of reducing the number of false alerts, one might consider including other types of recordings, e.g. infrasound data
(Mayer et al., 2020). Also, implementing specialized data augmentation techniques to increase the variety and number of the
avalanche recordings, e.g. seismic data augmentation techniques (Zhu et al., 2020) or generative models (Wang et al., 2021),
might help to make the classifiers more robust to changing environments and setups. Classifier robustness is another compelling
prerequisite when considering the transferability of such models to other test sites and should be considered in future studies.
We would expect variations in the detection performance to arise from different configurations in the study site setup, sensor

location and configuration as well as in the characteristics of the terrain and the avalanches.
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6.5 Comparison to previous studies

To conclude, we put our results in a broader context by comparing them with previous studies. Provost et al. (2017) used a
random forest model based on the 71 engineered seismic attributes. They reported stunning true positive rates of 94%, 93%
and 94% for the rockfall, quake and earthquake class and a true negative rate of 92% for the noise class. The setting, however,
is difficult to compare, as they used non-windowed signals from an evenly distributed dataset comprising 418 rockfalls, 239
quakes, 407 earthquakes, and 395 noise events. Also, these event types typically generate signals with a higher signal-to-noise
ratio than avalanches. Moreover, they included polarity and network attributes in the features, which for the classification turned
out to be most important. Nevertheless, with 92% true negatives, their model is comparably prone to producing false alerts as
the models in this study are. Also, for avalanche detection, several studies presented the approach of feature engineering and
subsequent classification (e.g. Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018). Rubin et al.
(2012) used 10 engineered features in the frequency domain and tested 12 classification models, of which the decision stump
classifier showed the highest overall accuracy of 0.93. However, the model showed a poor precision of 0.13, hence, producing
many more false alerts. In contrast to our approach, they only considered avalanches verified on camera images or manually
picked events. Heck et al. (2018) used the same avalanche catalogue of 283 avalanches, of which 25 were confirmed and the rest
were labelled by three experts. They implemented engineered temporal and spectral features and used an HMM as a classifier.
Similar to most previous studies, they also noted high values of FPs. Moreover, they observed improvements when aggregating
single sensor to array-based predictions as we did in this study. In conclusion, based on the results of this and previous studies,
we expect that an avalanche predictor based on solely seismic data will always produce false alarms, as it remains a difficult
task to identify low-energy avalanche signals. Therefore, installing a secondary seismic detection system in the proximity of
the avalanche path would be advantageous in mitigating false alarms. Alternatively, integrating a complementary detection
system, such as an infrasound system, could also be beneficial but less cost-effective.

In summary, the classification results met the performance of previous studies on avalanche detection. However, the core
contribution of this study is two alternatives to extract features from seismic signals. We showed that the proposed encoder
features are applicable for avalanche detection and compare well to engineered features. In particular, the learned feature
extraction does not depend on prior expertise or knowledge and thus can be adapted easily to new settings, e.g. changing
environments, without having to set some parametrisations of expert features. Moreover, with growing dataset size or larger
datasets, it can improve over time. Finally, a future interesting comparison would be to evaluate the models on how they

generalize to other test sites and settings.

7 Conclusions

We proposed two unsupervised seismic feature extraction methods based on deep learning algorithms and a set of standard
seismic attributes to train three random forest classifiers for avalanche detection. The dataset was compiled from seismic

avalanche data recorded during two winter seasons in Davos, Switzerland. While in earlier studies, seismic data classification

22



490

495

500

505

mostly followed the approach of extracting well-defined signal attributes to train classifiers, the proposed deep learning models
bridge the gap to a purely learned (automatic) pipeline.

Overall, the classifiers achieved macro-average f1-scores ranging from 0.70 to 0.78 with avalanche recall values ranging
from 0.68 to 0.71. Moreover, the results clearly show that including features from the frequency domain improves model
performance. Further, as we observed that the onset and end of avalanche signals were often misclassified as noise but the
most energetic signal parts were not, we proposed a simple post-processing step. By imposing that at least two consecutive
prediction windows, i.e. 15s, must be positive for an entire event to be positive, we drastically reduced the missed avalanches
(false negatives). This criterion significantly improves the avalanche recall, ranging from 0.82 to 0.91. Lastly, contrary to
previous expectations, earthquakes are rarely mistaken for avalanches at our study site.

Revisiting our primary goal of comparing human-engineered with automatic feature extraction, there is no denying that
the standard expert-based seismic attributes classification is a robust approach. These predefined attributes have been studied
and applied for a decade and optimized and tuned throughout various studies. The unsupervised representation learning, in
contrast, is a completely new approach to seismic avalanche data analysis. We have shown that it bears strong potential for
future implementations and applications. Compared to the engineered features, the learned features require no prior expertise
and, therefore, can easily be adapted to changing environments without having to set some parametrisations of expert features.

Also, they can improve with growing dataset size and quality in future.

Code and data availability. The code and data are available on Zenodo (doi: 10.5281/zenodo.12162570). It is predominately written in
Python using the PyTorch library (Paszke et al., 2019) for the autoencoder design, the random forest implementation of the Scikit-learn
library (Pedregosa et al., 2011), the Pandas library (Wes McKinney, 2010) for handling the data and more standard Python libraries such as
NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020).
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Table A1. Detailed view on the applied splits of the dataset. For each fold, the table shows the number of respective events.

Fold | Date Avalanches | Earthquakes | Noise
13.01.2021

1 17 39 196
- 28.01.2021
29.01.2021

2 16 39 100
-24.05.2021
10.01.2022

3 - 04.02.2022 18 39 138

(excl. 02.02.2022)

06.02.2022
4 -17.05.2022 33 66 211
(incl. 02.02.2022)

Appendix A: Dataset

Table A1l depicts the date ranges in each fold and the respective number of events. We used folds 1, 2 and 3 for the cross-
validation, i.e. the model development, and the test fold (number 4) to obtain the final results on unseen data. In general, we
picked the folds consecutive in time, with a minor exception in the test fold, where we moved the 2nd of February from fold 3

to the test fold. This balanced the number of events in the folds more evenly.

Appendix B: Seismic attributes

The implemented engineered feature extraction follows the work of Provost et al. (2017) and Turner et al. (2021). In contrast
to these, by defining our frequency band to 1-10 Hz we modified the attributes correspondingly. Also, we discarded network or
polarity-related attributes as we developed individual models per sensor, and most of our sensors only contained one vertical
component. In summary, we extracted 22 waveform attributes (Table B1), 17 spectral (Table B2) and 18 spectrogram attributes

(Table B3).

Appendix C: Metrics

We used the classification and clustering metrics defined here to evaluate both the classifiers and the unsupervised clustering

of the autoencoders.
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Table B1. Waveform attributes extracted from the 10 s seismic signals.

Number ‘ Description

Ratio of the mean and median

1-2
over the maximum of the normalised envelop signal
3 ‘ Ratio between ascending and descending time
4 ‘ Kurtosis of the raw signal
5 ‘ Kurtosis of the envelope
6 ‘ Skewness of the raw signal
7 ‘ Skewness of the envelope
8 ‘ Number of peaks in the autocorrelation function
9 Energy in the first third part
of the autocorrelation function
10 Energy in the remaining part
of the autocorrelation function
11 ‘ Ratio of 10 and 9
Energy of the signal filtered in
12—-16 & £
[1,3], [3,6], [5,7], [6,9] and [8,10] Hz
Kurtosis of the signal in
17-21
[1,3], [3,6], [5,7], [6,9] and [8,10] Hz
» RMS between the decreasing part of the signal
— Ymaz
and I(t) = Ymaz — mt

C1 Classification metrics

Various metrics exist to evaluate binary classification problems. All are tailored to specific objectives. For instance, the precision
525 is chosen when false alerts, i.e. false positives, are critical, the recall is sensitive to missed events, i.e. false negatives and the

f1-score combines both to form the harmonic mean as follows:

Fl—o Precision * Recall

1
* Precision + Recall (CD)

The macro average summarizes the per-class results within a single value. This value is an unweighted mean over the given

classes and ensures that the values are not biased towards the most frequent class, i.e. noise.
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Table B2. Spectral attributes extracted from the 10 s seismic signals. The Nyquist frequency (NyF) is 100 Hz, i.e. half of the sampling rate.

Number ‘ Description
23— 24 | Mean and Max of the FFT
25 ‘ Frequency at the maximum
26 — 27 ‘ Central frequency of the 1st quartile and 2nd quartile
28 — 29 ‘ Median and Variance of the normalized FFT
30 ‘ Number of peaks
31 ‘ Number of peaks in the autocorrelation function
32 ‘ Mean value for the peaks
43 g | Enereyin (g5 AIVYF. (3 3N (5. 3]NyF
and [2,1]NyF
37 ‘ Spectral centroid
38 ‘ Gyration radius
39 ‘ Spectral centroid width
1 K
MacrofFIZK*kZ:OFlk,whereK:2 (C2)

C2 Clustering metrics

A natural metric choice when evaluating autoencoders is a reconstruction loss, e.g. the mean squared error, on which the
autoencoders in this work were trained. In pursuit of good autoencoder features for later classification, however, we aimed to
optimize the latent space representation. Since a good reconstruction does not necessarily imply a sufficient separation in latent
space, we explored clustering metrics to compare the latent space distribution of different models with the given (expert) labels.
We, therefore, implemented the silhouette score (Rousseeuw, 1987) and the Calinski-Harabasz index (Caliniski and Harabasz,
1974). These scores are usually used to evaluate clustering algorithms that predict classes, e.g. k-means. The silhouette score
computes the mean intra-cluster and inter-cluster distances per sample. For instance, given a sample, it calculates the distance
to the cluster it is part of (a) and the distance to the nearest cluster it is not part of (b) and forms the sample score:
b—a

e maz(a,b) ©3)

After taking the mean over all samples, the silhouette score ranges from -1 (worst) to 1 (best). The Calinski—Harabasz index, or

variance ratio criterion, on the other hand, is the ratio of between- and within-cluster dispersion. The between-cluster dispersion
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570

is defined as the weighted sum of squared Euclidean distances of the cluster centroids and the overall centroid (higher better).
The within-cluster dispersion is given as the sum of squared Euclidean distance of the samples and their respective cluster

centre (lower better). Thus, a good clustering algorithm is supposed to yield a high Calinski—-Harabasz score.

Appendix D: Weighted random sampler

Training a deep learning model on a dataset characterised by a severe class imbalance can bias the model predictions towards
focusing solely on the most frequent class. The model can thus achieve high accuracy by accurately predicting this class.
Therefore, it can fail to predict events in the minority class, which in our study is the main objective, i.e., avalanches. To
mitigate this problem, we applied a weighted bootstrapping technique during the training of the autoencoders, a so-called
weighted random sampler, as implemented in PyTorch (Paszke et al., 2019). Therefore, we assign the following relative weights

to each sample of the avalanche (wy, ) and noise class (wy,,).

_Nno Pav .
Nav 1_13(1/117

Way Wno =1 (D1)

P,, is the user-defined portion of expected avalanches within each batch. Internally, these weights are rescaled and inter-

preted as probabilities.

Appendix E: Random forest optimization

The random forest models and their optimizations were implemented using the scikit-learn library (Pedregosa et al., 2011).
Table E1 presents the three selected random forest models that were optimized on the same hyper-parameters grid and ranked

based on the avalanche class f1-score.

Appendix F: Autoencoder optimization

To select the autoencoder hyper-parameters, we opted to first optimize model intrinsic parameters, such as hidden dimensions
or the number of layers, instead of training strategy parameters. This separation reduced the computation time.

The temporal autoencoder architecture optimization proved to be more sensitive and critical. First, we optimized the kernel
size, stride, number of filters, feature dimension and activation function. We observed that the kernel size and stride combi-
nations of (20, 10) and (8, 4) showed the best clustering metrics. Moreover, concerning the non-linear activation, the leaky
ReLU outperformed the Tanh function in most tests. Since the overall performance was not entirely satisfying, we tested the
weighted random sampler (Sect. D with 50% expected avalanches in each batch. This addition to the training strategy showed
a considerable improvement for most models with kernel size 20 and stride 10. Although using a kernel size of 8 and stride of
4 tended to show better clustering metrics, the reconstruction of the signals was comparably poor. Based on these observations,

we implemented a kernel size of 20 and stride of 10. Also, we found the feature dimension 32 better suited than 64 or 16.
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Figure F1. Confusion matrices of the results for the three feature sets aggregated on event level. The rows indicate the true (expert) labels,

while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.

Lastly, we selected the number of filters as 32, 64 and 128 within each encoder layer. See Table F2 for a summary of the
best 10 models of this process and Table F1 for the selected autoencoders. Having defined the intrinsic parameters, we tested
different training strategies. In particular, we optimized the learning rate, the batch size and the expected portion of avalanches
per batch. This test led to values of 1e=#, 128 and 0.6 for the temporal autoencoder. Finally, we found that augmenting the data
by randomly shifting input samples by O to 1 s to the left or right improved robustness.

While optimizing the spectral autoencoder, we found faster convergence. We started by testing combinations of the number
of layers with hidden dimensions, feature dimensions and activation functions. The results for the best 8 models are shown
in Table F3. We foremost noted that 16 features were optimal for this task. Moreover, we observed that the Tanh activation
function was favourable in comparable architectures. Finally, we selected the model highlighted in bold since it showed a
good compromise between the number of weights in the network and performance. Following the same training strategy as for
the temporal autoencoder, we optimized the learning rate, the batch size and the expected portion of avalanches per batch. In

contrast to the temporal autoencoder, we used an expected portion of 0.5 avalanches within a batch, a learning rate of 1e~* and
a batch size of 128.

F1 Event-based prediction results
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Table B3. Spectrogram attributes extracted from the 10 s seismic signals.

40

Kurtosis of the maximum of

all fast Fourier transforms (FFTs) over time

41

Kurtosis of the maximum of

all FFTs as a function of time

42

Mean ratio between the maximum

and the mean of all FFTs

43

Mean ratio between the maximum

and the median of all FFTs

44 — 46

Number of peaks in the curve showing
the temporal evolution of the FFTs maximum (44),

mean (45) and median (46)

47

Ratio between 44 and 45

48

Ratio between 44 and 46

49

Number of peaks in the curve of the temporal evolution

of the FFTs central frequency

50

Number of peaks in the curve of the temporal evolution

of the FFTs maximum frequency

51

Ratio between 50 and 51

52

Mean distance between the curves of the
temporal evolution of the FFTs maximum frequency

and mean frequency

53

Mean distance between the curves of the
temporal evolution of the FFTs maximum frequency

and median frequency

54

Mean distance between the 1st quartile and the median

of all FFTs as a function of time

55

Mean distance between the 3rd quartile and

the median of all FFTs as a function of time

56

Mean distance between the 3rd quartile and

the 1st quartile of all FFTs as a function of time

57

Number of gaps in the signal
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Table El. Selected random forest models

Seismic
Parameter TAE SAE
Attributes
Number of Estimators | 512 512 512
Maximum Depth ‘ 8 8 8
Maximum Number
log2 sqrt sqrt
of Features
Maximum Number
0.1 0.2 0.2
of Samples
Class Weight ‘ Balanced
Criterion | Gini
Bootstrap ‘ True
Table F1. Selected autoencoders
Temporal Spectral
Parameter
Autoencoder Autoencoder
Number of Weights 514°337 81330
Feature Dimension 32 16

Hidden Dimension [200, 20, 2] [139, 78, 16]

|
|
|
Filters ‘ [32, 64, 128] -
|
|
|

Number of Layers 3 3
Kernel Size 20 -
Stride 10 -
Expected Avalanche

0.6 0.5
Portion in Batch
Learning Rate ‘ le~* le~*
Batch Size IE: 128
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Table F2. Summary of the TAE hyper-parameter optimization. Shown are only the models for which all three metrics are ranked in the top

20. The best metrics and the selected model are highlighted in bold.

, Filtrsin | Featwe | Kemel | | 0ed | silhouette  Calinski-Harabasz
Weights first Layer | Dimension Size Stride | Avalanche | Augmentation Score Index MSE
Portion
ses | 8 | e | 8 | 4 | defaur | Rame | 091 $49.959 0.078
ooses | 8 | e | 8 | 4 | o5 | FRmse | o002 357.494 0.073
oses | 8 | e+ | 8 | 4 | os | e | oo 345.684 0.076
156045 | 16 | 32 | 20 | 10 | os | Rae | 003 374.174 0.06
156045 | 16 | 32 | 20 | 10 | 05 | Twe | oom 567.276 0.055
si4337 | 32 | 32 | 20 | 10 | defaurt | Tme | 0072 368.876 0.054
si337 | 32 | 32 | 20 | w0 | 05 | Rase | 006l 333.174 0.061
si337 | 32 | 32 | 20 | 10 | 05 | Tre | 004 613.917 0.054
65185 | 32 | e4 | 20 | 10 | 05 | Fase | -0.095 29278 0.063
65185 | 32 | ea | 20 | 10 | 05 | Twe | -0105 307.477 0.064

Table F3. Summary of the SAE hyper-parameter optimization. Shown are only the models for which all three metrics are ranked in the top
10. A “default” hidden dimension indicates that the dimensions in the layers of the encoder linearly decrease from the input dimension (200)

to the feature dimension. The best clustering metrics and the selected model are highlighted in bold.

. Feature Activation Hidden Silhouette  Calinski—Harabasz
Weights | Layers MSE
Dimension Function Dimensions Score Index
w552 | 2 | 16 | Tah | defar | 0227 1205.952 0.014
41552 | 2 | 16 | leakyReLU | defaul | 0218 1088.234 0.012
70880 | 2 | 64 | Tah | defaur | 0.98 999.475 0.014
833 | 3 | 16 | Tanh | defaurc | 0224 1237.579 0.013
81330 | 3 | 16 | leakyReLU | default | 0217 1015.357 0.012
112432 ‘ 4 ‘ 16 ‘ Tanh ‘ default ‘ 0.238 1111.027 0.013
12432 | 4 | 16 | leakyReLU | defaurr | 0223 1013.013 0.012
146120 | 5 | 16 | leakyReLU | default | 0223 968.953 0.012
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Table F4. Classification metrics on the (unseen) test fold data after the aggregation over entire events of the array-based predictions. Due to

the strong class imbalance and bias towards the noise class, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1 Support

Avalanche 0.42 082 0.55 33

Seismic Noise 0.98 0.86  0.92 275

Auributes | o Ave 070 084 073 | 308
Accuracy 0.86

Avalanche 0.27 0.88 0.41 33

TAE Noise 0.98 072 0.83 275

Featres | croAve  0.63 08 062 | 308
Accuracy 0.73

Avalanche 0.41 0.91 0.56 33

SAE Noise 0.99 0.84 091 275

Features |\ cro Ave 0.7 087 073 | 308
Accuracy 0.85
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