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mentioning or considering.

2. Structuring 
1. Sections sometimes need to be structured better.
2. Context – content – conclusion: For most parts, you adhere to that, but several 

subsections do not follow that structure. Using CCC consistently would 
significantly improve the flow and accessibility of your manuscript

3. Language 
1. Consistency: The paper's language is sometimes inconsistent. You often switch 

between descriptors (sensor array vs multiple-sensors). You do not refer to your 
different models consistently with the same name. For you, the synonyms are 
clear, but for the reader, this can be very confusing: It is unclear if two terms are 
referring to the same concept or (slightly) different concepts and whether that 
difference is relevant.

2. Explicit is better than implicit (explain things as explicitly as possible).
3. Consider running the manuscript through a language correction tool – I am not a 
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4. Formatting
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3. Label noise: The agreement score of expert labels is relatively low. Evaluating the
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6. Data processing 
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2. Extending the dataset: Have you considered extending your dataset with samples 
from previous publications? (Provost et al. (2017) + Rubin et al. (2012))

3. Data split: you should also separate locations / sensors, so you do not have 
leakage via correlated samples. Are you doing a stratified split? I.e., are the same 
amount of pos/neg samples available in each split? Or is it a random split?

4. Normalization of your data. Look at feature transformation and data 
normalization techniques, make your choices, and describe them in the paper.

5. My thoughts are to do batch normalization or normalize with sensible physical 
values (max value recordable via sensor). 

1. 1) Generally, data normalization is necessary for your model activation 
functions and to achieve good and stable learning.

2. 2) You want to focus on the data's pattern, not the scale. I hypothesize that
this will improve your model's ability to detect small avalanches or 
avalanches that are farther away.

3. 3) You have different sensors at different geo-locations.
6. Imbalanced data: Explain how you address this (via sampling strategy?)
7. Data windowing: Are you adding additional features from larger window sizes? 

Such as mean, std, and frequency spectra – to provide long-term context?
7. Model section: Please restructure the section. Make clear separations between the feature 

extractor and the evaluation task. Make it clear that you validate the autoencoders on a 
separate validation task. Separate our hyperparameter tuning. Etc. I recommend reading a
couple of ML papers to get an intuition of how those sections are usually separated and 
written in a paper.

8. Model architecture: Please assign speaking names/identifiers to your three models that 
can be tracked throughout the complete paper (figures, text, abstract, appendix, tables) 
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1. TAE: Why 1d convolutional layers?
2. SAE: Could one use Fourier Neural Operators for this?
3. Have you considered looking into methods to learn from imbalanced data? There 

are several models out there. Most commonly, people change their sampling 
strategy for their model to make sure the model sees positive and negative 
examples equally frequently.

9. Model learning: Include learning curves and show that the models are actually learning 
well. The reader wants to know if you are overfitting/underfitting. These figures can be 
included in the appendix, but they are essential to strengthening your paper. If your 
models are underfitting or not learning incredibly well, this would be a strong indicator 
that you can achieve even better results.

10. Model comparison: Have more runs (change random seed) to show whether differences 
are relevant/significant. Include error bars in your results. If you already run models 
across multiple seeds, report the number of runs and error bars.

11. Figures 
1. Each figure should bring one main point / finding across. The current figures 

show results, but they are not all structured or designed in a way that makes 
results easily accessible. A reader should be able to read a paper and access all 
main findings by reading the figures + captions.

2. Some figures need more descriptive captions.



12. Discussion 
1. You need to back some of your claims (scalability, ability to generalize, etc.) 

with literature.
13. Conclusion 

1. Adapt the sentence "We have shown that it bears strong potential…" (see 
comments). You have shown it can keep up with current state-of-the-art 
avalanche detection methods. Still, you have not demonstrated its potential 
(scalability, generalization ability, etc) in your experiments.

2. A more memorable last sentence - talk about downstream applications 
(operational! Avalanche warning! - You have such a strong and relevant use case, 
and your audience wants to hear about that.) - would strengthen your conclusion.

14. Code 
1. Looks good! Clean repo, nicely coded, well done.
2. You could add more documentation.
3. You have the code two times in the repo – one seems to be for MacOS? Is this on 

purpose?
4. Mention the Python version in the Readme.
5. Add versions of your packages in requirements. Your code will not be 

reproducible later on if you do not report that (and it is not maintained).
6. Dir "models" and "lib" should be in "code" (semantically). I also get import errors

if I do not move them over there.
7. Using your panda version broke the code for me (numpy – pandas 

incompatability). I upgraded pandas to fix it.
8. Consider using Pathlib to handle path os-independently.
9. Add in your readme where people must change paths to get your code running on 

their machine.
15. Data 

1. Make sure to store the data on zenodo separately from the code. You will 
want to update the data without updating the code in the future. If you want the 
data to be accessible (for other researchers and their projects), it needs to be 
maintained separately and with its own version control.
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Abstract. Monitoring snow avalanche activity is essential for operational avalanche forecasting and the successful imple-

mentation of mitigation measures to ensure safety in mountain regions. To facilitate and automate the monitoring process,

avalanche detection systems equipped with seismic sensors can provide a cost-effective solution. Still, automatically differen-

tiating avalanche signals from other sources in seismic data remains challenging, mainly due to the complexity of seismic sig-

nals generated by avalanches, the complex signal transmission through the ground, the relatively rare occurrence of avalanches,5

and the presence of multiple sources in continuous seismic data. One approach to automate avalanche detection is by apply-

ing machine learning methods. So far, research in this area has mainly focused on extracting standard domain-specific signal

attributes as input features for statistical models. In this study, we propose a novel application of deep learning autoencoder

models for the automatic and unsupervised extraction of features from seismic recordings. These new features are then fed into

classifiers for discriminating snow avalanches. To this end, we trained three random forest classifiers based on different feature10

extraction approaches. The first set of 32 features was automatically extracted from the time-series signals by an autoencoder

consisting of convolutional layers and a recurrent long short-term memory unit. The second autoencoder applies a series of

fully connected layers to extract 16 features from the spectrum of the signals. As a benchmark, a third random forest was

trained with typical waveform, spectral and spectrogram attributes used to discriminate seismic events. We extracted all these

features from 10-second windows of the seismograms recorded with an array of five seismometers installed in an avalanche test15

site located above Davos, Switzerland. The database used to train and test the models contained 84 avalanches and 828 noise

(unrelated to avalanches) events recorded during the winter seasons of 2020-2021 and 2021-2022. We assessed the performance

of each classifier, compared the results, and proposed different aggregation methods to improve the predictive performance of

the developed seismic detection algorithms. The classifiers achieved an avalanche f1-score of 0.61 (seismic attributes), 0.49

(temporal autoencoder) and 0.60 (spectral autoencoder) and avalanche recall of 0.68, 0.71 and 0.71, respectively. Overall, the20

macro f1-score ranged from 0.70 (temporal autoencoder) to 0.78 (seismic attributes). After applying a post-processing step

to event-based predictions, the avalanche recall of the three models significantly increased, reaching values between 0.82 and

0.91. The developed approach could be potentially used as an operational, near-real-time avalanche detection system. Yet,

the relatively high number of false alarms still needs further implementation of the current automated seismic classification

algorithms to be used as unique methods to detect avalanches effectively.25
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1 Introduction

Every winter, snow-covered mountainous regions worldwide are exposed to the destructive potential of snow avalanches, caus-

ing fatalities and damage to infrastructure. On average in Switzerland, 25 avalanche fatalities occur every winter (Techel et al.,

2016). The catastrophic winter of 1999 resulted in infrastructural damage costing several hundred million Swiss francs (Bründl

et al., 2004). Such periods underscored the need for ongoing investments in avalanche prevention measures and providing30

accurate avalanche forecasts. Avalanche forecasting is mainly driven by analysing weather measurements and forecasts in

combination with snowpack and avalanche observations (Schweizer et al., 2020). Detailed information on the location and

timing of avalanche occurrences is indispensable for validating avalanche forecasts (e.g. van Herwijnen et al., 2016; Bühler

et al., 2022), effectively implementing mitigation measures (e.g. McClung and Schaerer, 2006; Alec van Herwijnen and Techel,

2018), hazard mapping (e.g. Bühler et al., 2022) and the development of statistical approaches to predict natural avalanche re-35

lease (Sielenou et al., 2021; Hendrick et al., 2023; Mayer et al., 2023). However, avalanche activity data are still mainly

obtained through human field observations, which are especially incomplete and uncertain in poor visibility conditions during

storms when avalanche activity is usually high (Schweizer et al., 2020). Hence, the demand for automated avalanche detection

systems that provide reliable and continuous avalanche activity data is rapidly growing.

Since avalanches are extended moving sources of seismic energy, seismic monitoring systems can be used to detect natural40

avalanches in large areas within a radius of several kilometres (Hammer et al., 2017; Pérez-Guillén et al., 2019; Heck et al.,

2019b), regardless of the weather and visibility conditions. Seismic avalanche detection systems have been employed for sev-

eral decades to monitor and characterise avalanches (Suriñach et al., 2001; Biescas et al., 2003; van Herwijnen and Schweizer,

2011), assess the source location (Lacroix et al., 2012; Pérez-Guillén et al., 2019; Heck et al., 2019a) and infer flow properties

(Vilajosana et al., 2007; Lacroix et al., 2012; Pérez-Guillén et al., 2016). Avalanches generate spindle-shaped, high-frequency45

signals similar to other types of mass movements (Suriñach et al., 2005). These patterns have frequently been used to discrimi-

nate avalanche signals from other seismic sources. Nevertheless, seismic detection systems have not yet reached the same level

of reliability compared to other systems, such as radars, when it comes to the automatic detection of avalanches (Schimmel

et al., 2017). This limitation is partly due to the complex signal transmission from the source (i.e., the avalanche) to the receiver

and multiple sources of environmental noise (e.g., earthquakes, aeroplanes, etc.).50

The first attempt to automatically distinguish avalanches from other sources based on seismic features extracted in the

time-frequency domain and combined with fuzzy logic was conducted by Leprettre et al. (1996). Afterwards, Bessason et al.

(2007) developed a nearest-neighbour approach that successfully detected 65% of previously confirmed avalanche events.

Later, Rubin et al. (2012) divided a seismic data stream into 5 s time windows and extracted 10 spectral features by applying

a fast Fourier transform. Several machine-learning classifiers were tested using these input features, such as random forest55

algorithms, support vector machines, and artificial neural networks. Among them, the decision stump classifier reached the

highest precision of 0.13 on manually identified avalanches, while they reported a recall of 0.90 and an accuracy of 0.93. More

recently, Hammer et al. (2017) and Heck et al. (2018) applied hidden Markov models (HMMs) to learn class characteristic
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patterns based on extracted spectral features for automatic avalanche classification. Extending on this approach, Heck et al.

(2019a) trained an HMM-based method to detect avalanches in continuous seismic data.60

In recent years, the extensive growth of collected data and the emergence of machine learning algorithms have opened

up new perspectives for efficient and automated data processing. Machine learning models can handle complex datasets in

a reasonable time and rapidly synthesise data processes, providing valuable and complementary insights into data (Mousavi

and Beroza, 2022). Over the past decade, statistical and machine learning methods have been developed for automatically

classifying seismic signals generated by different types of slope failures based on Hidden Markov Models (Hammer et al.,65

2013; Dammeier et al., 2016), fuzzy logic (Hibert et al., 2014) and random forest algorithms (Provost et al., 2017). So far,

these approaches relied on carefully engineered features derived from processing signals in the time and frequency domains.

In contrast, we explored a novel approach to automatic feature extraction by developing two unsupervised autoencoders based

on temporal and spectral signals. Autoencoders, introduced by Rumelhart et al. (1986), are neural networks specialised in

extracting features from data, relying on unsupervised learning. They can be directly trained on raw input signals without70

considering class labels (i.e. unsupervised). The vanilla architecture consists of an encoder and a decoder. The former embeds

an input signal to a lower-dimensional space, i.e. the latent space, which is designed and optimized to retrieve the relevant

information of the given signal. For example, Mousavi et al. (2019) used an autoencoder to cluster seismic signals of an

earthquake catalogue and showed comparable precision to supervised methods, while Kong et al. (2021) evaluated different

autoencoder architectures for seismic event discrimination and phase picking.75

In this study, we explored the autoencoder model for automatic feature extraction from seismic signals generated by

avalanches and other sources. First, we compiled a catalogue of seismic events recorded at our study site above Davos (Sect.

2), Switzerland, throughout the winter seasons of 2020-2021 and 2021-2022. In Sect. 3, we described the foundation of this

dataset, which is one of the most critical parts of any machine learning model development. Similar to previous studies, we

extracted features from 10 s seismic time windows and trained classifiers based on these features. In the feature extraction80

process (Sect. 4.1), we developed two new methods based on autoencoders, which learned to automatically extract 32 and 16

input features from the time and frequency domain respectively, and compared them against a set of 57 standard expert-based

seismic attributes. The routines to optimize and train the autoencoder models are shown in Sect. 4.2. Using the different sets of

input features, we trained three random forest classifiers to automatically distinguish the avalanche signals from other seismic

events (Sect. 4.3). We analyzed and compared the performance of the models in Sect. 5. Finally, a discussion of the main results85

and conclusions are presented in Sect. 6 and 7.

2 Study Site

The study site is located at the end of the Dischma Valley, a tributary valley above Davos, Switzerland (Fig. 1). The seismic sys-

tem was deployed on a flat meadow at about 2000 m a.s.l. (Eastern Swiss Alps; 46.72°N, 9.92°E). The surrounding mountains

form a basin of steep slopes reaching up to 3000 m a.s.l. Since the winter season of 2020-2021, approximately from November90

to May, we installed a seismo-acoustic array of five co-located seismic and infrasound sensors arranged in a star-like pattern.
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Figure 1. Left: Map and location of the study site. The instrumentation consisted of a seismo-acoustic array (blue dots), three cameras and

a Doppler radar (red triangle). The approximate area where avalanches can be detected is shown for the seismo-acoustic array (blue ellipse)

and the radar (red cone). Moreover, an avalanche path is highlighted with the red shaded area. Right: Photo taken by an automatic camera at

the Dischma study site, showing the georeferenced path of a dry-snow avalanche released on 2 February 2022 at 02:31.

The seismic sensors were buried into the ground at a depth of approximately 50 cm and subsequently covered by snow during

winter. A single measuring unit consists of a one-component seismometer Lennartz LE-1D/V (eigenfrequency of 1 Hz and sen-

sitivity of 800Vm−1 s) and an infrasound sensor Item-prs (frequency response of 0.2-100 Hz and sensitivity of 400mVPa−1).

The only exception is the central measuring unit applying a three-component seismometer LE-3Dlite (eigenfrequency of 1 Hz95

and sensitivity of 800Vm−1 s), of which we only used the vertical component in this study. The sensors were connected to

the same digitizer (Centaur digitizer from Nanometrics), recording continuously with a sampling frequency of 200 Hz. The

seismo-acoustic array monitors avalanches released from all slopes within a radius of approximately 3 km (blue ellipse in Fig.

1).

Additionally, the site is equipped with a Doppler radar and three automatic cameras to obtain independent validation data100

when weather conditions allow it, including accurate release times and information on the type and size of the avalanches. The

radar emits electromagnetic waves that are reflected by the avalanche flow, providing the location and velocity of the moving

avalanche (Meier et al., 2016). Figure 1 shows the location of the radar, which monitors several avalanche paths exposed to the

west-southwest, covering an approximate area of 4 km2 (red delineated area in Fig. 1). In this case, avalanches can be detected

up to a maximum distance of approximately 2 km. The cameras automatically photograph every 30 minutes all the surrounding105

slopes (Fig. 1).
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3 Data

We compiled a catalogue of seismic events from the continuous recordings of the winter season 2020-2021 and 2021-2022.

Concretely, we manually picked events within periods of known avalanche activity and preprocessed the seismic signals. Then,

three experts labelled the events, with which we finally compiled a two-class classification dataset.110

3.1 Event picking and signal processing

Supervised machine-learning models require a definition of events and a subsequent annotation for training. For the for-

mer requirement, we picked events from the continuous recordings. Typically, the amplitude of seismic signals generated

by avalanches gradually increases since the avalanche approaches the location of the seismic sensors (Fig. 1) and larger seis-

mic energy dissipation due to snow entertainment and erosion processes within the flowing avalanche (Pérez-Guillén et al.,115

2016). As avalanche signals gradually emerge from background noise and initially have a low signal-to-noise ratio (Fig. 2a),

automated picking methods often miss the starting phase of avalanches and sometimes entire events. To prevent this, we vi-

sually inspected the continuous seismic recordings and identified signals that exhibited a high signal-to-noise ratio, i.e. were

not in the order of magnitude of the background noise. We limited our search to periods with known avalanche activity for

efficiency. This included avalanche cycles during snow storms, days when avalanches were detected by the radar and periods120

with observed avalanche deposits in the cameras.

Before picking the signals in those periods, we transformed the raw seismic signals to ground velocity (meters per second).

Additionally, the signals were linearly detrended, tapered with a Hanning window and filtered with a 4th-order Butterworth

band-pass filter between 1 and 10 Hz. We found this to be the most energetic frequency band of the avalanche signals recorded

at our study site, considering the typical relative distance between the avalanche and our receivers. To finally compile a clean125

event catalogue we manually defined the start and end times of the identified signals by visually inspecting the seismic signal,

the envelope signal and the spectrogram. In summary, we picked 912 non-background noise signals lasting between 5 and

515 s, which we labelled in the next step.

3.2 Event labelling

For annotating the events, three experts assigned signals into two classes, avalanche and non-avalanche events:130

Avalanches: Avalanche events were first identified using the radar and camera data (Fig. 1) by matching seismic signals to

avalanches detected by the radar or on images. A second step to collect avalanches missed by these systems was to

visually classify signals based on the characteristic seismic signature of avalanches (e.g. non-impulsive onsets, spindle-

shaped signals and triangular-shaped spectrograms; Fig. 2a) as proposed by van Herwijnen and Schweizer (2011). Addi-

tionally, the output of wave parameters derived from array processing of the seismic and infrasound data was considered,135

i.e. backazimuth angles and apparent velocity (Marchetti et al., 2015; Heck et al., 2019a).

5

X
X


X
X
Specifically,

X
X


X
X


X
X
language

X
X


X
X
binary

X
X
manually picking the avalanche signals seems to be a weak point of this dataset to me:

What if you are missing avalanche events?  How much label uncertainty is in the dataset?

X
X


X
X
That works only if the sensor is the only minimum in the 4km landscape?

What if an avalanche is moving parallel to the sensor or into a minimum that is further away from the sensor?

X
X


X
X
why doing this visually? Can we not automatically assess the signal-to-noise ratio and set an explicit value that can be considered a trigger treshold (to be considered as avalanche signal)?

X
X


X
X
but that might introduce error in your dataset? How sure are you that the rest of the data has NO avalanche signals? It will be harder to learn to detect avalanche signals if there are some that are classified as "no avalanche"

X
X
Well described. You could add a sentence how other researchers trying to replicate your work for their own study sites should approach this part (e.g. how can they identify the most energetic frequency band for their site?)



Figure 2. Recordings of the avalanche in Fig. 1, an earthquake and an airplane. The dashed orange vertical lines indicate the manual cuts of

the event catalogue.

Noise (non-avalanche events): Earthquakes were the most frequent source of environmental noise at our study site. They

were identified by visual inspection of the signals (typical emergent onsets and usually identifiable arrival of the dif-

ferent phases; Fig. 2b) and comparison of our seismo-acoustic recordings with two nearby seismic stations from the

Swiss national network (e.g. Clinton et al., 2011). In addition, online earthquake catalogues were consulted to match our140

recordings with catalogued events (SED, 2023; EMS, 2023). The remaining portion of seismic events was generated by

different sources, including aeroplanes (Fig. 2c), helicopters, explosions in nearby skiing resorts, weather events (e.g.

wind), people or animals walking close to the sensors, and many more unknown event sources. We summarized this

collection of unrelated events as a “noise” class. In particular, weak signals generated by non-verified small avalanches

might also fall into this heterogeneous class. Notably, this definition of the noise class barely included low SNR back-145

ground noise.

The three experts independently assigned subjective probabilities using either 0 (non-avalanche), 0.5 (potential avalanche)

or 1 (certain avalanche). A signal was labelled positive if the sum of the three expert scores exceeded 1.5. Note that the average

rate of agreement in avalanche score on the avalanche signals between the three experts was 58%. In this manner, we compiled

an event catalogue with 84 avalanches (31 verified with the radar or camera images) and 828 unrelated noise events from the150

2020-2021 and 2021-2022 winter seasons. For completeness, the same labelling process was used for earthquakes, with which

we found 183 earthquakes in the noise class. The seismic sensors recorded maximum absolute amplitudes ranging from 3.3×
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10−8 to 4.7×10−5 ms−1 for avalanches, 1.3×10−8 to 9.7×10−6 ms−1 for earthquakes and 1.4×10−9 to 5.1×10−5 ms−1

for noise signals. Signal duration ranged from 13 to 113 s, 7 to 263 s and 5 to 515 s in each class, respectively. Noteworthy,

the amplitude range of the noise class includes the amplitude ranges of both avalanches and earthquakes, highlighting its155

heterogeneity.

3.3 Signal windowing and dataset splitting

Before training the models, we further processed the event data in the catalogue. First, we treated the records of each seismic

sensor independently yielding a five-fold enlargement. Second, we applied a 10 s windowing with 50% overlap to all signals.

This windowing resulted in more data samples to train and ensured fixed-sized inputs for the models. Beyond, this strategy160

is also beneficial in a potential (near) real-time detection system, where 10 s windows are continuously parsed. With this, the

labelled data set comprised 3’580 avalanche and 37’110 noise (non-avalanche) windows, which included 11’575 earthquake

windows. This dataset is the foundation of this study and allows for systematic comparison of the methods in different settings.

Lastly, to develop the models and select the best architectures and hyper-parameters, we defined four independent data

folds, i.e. three train folds for cross-validation and a test fold for assessing the performance on an independent inference set.165

We separated the folds by specific dates to prevent any correlation between the folds and reduce temporal data leakage. We

chose the dates such that the class distributions across the folds are even (Fig. 3). The first train fold included dry avalanches

exclusively, whereas the second contained a mixture of dry avalanches in the early part of the period, and wet avalanches in the

latter. The third train fold and the fourth test fold spanned the winter season of 2021-2022. Again, the earlier counted towards

dry conditions and the last both wet and dry.170

4 Model development

In order to classify the signal windows (Fig. 4), we extracted features from them (Sect. 4.1), and trained a classification model

to discriminate classes of interest (Sect. 4.3). In the former, we used a conventional human-supervised feature-engineering

approach (Sect. 4.1.1 and Appendix B) as a benchmark and two fully unsupervised autoencoders (Sect. 4.1.2), which required

definitions of the training strategies (Sect. 4.2). In the latter classification, we chose and developed binary classifiers for the175

preceding feature extraction methods (Sect. 4.3).

4.1 Feature extraction

Feature extraction generally describes the compression of a signal to a lower dimensional embedding while retrieving/pre-

serving the signal’s most distinctive information. The embedded information (the features) is usually input into an upstream

classification or regression task. Following this general approach, we explore three methods to extract information from seismic180

signals either as learned feature vectors or domain-specific features, which are then classified as avalanche or noise.

In a first attempt, following a similar approach to Provost et al. (2017), which classified seismic events generated by land-

slides, we extracted a set of 57 predefined standard seismic attributes (Sect. 4.1.1). The feature engineering strategy is widely
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Figure 3. Class distributions in the folds. The annotations on top of the bars depict the total number of 10 s seismic windows in each fold.

Figure 4. Overview of the three different approaches for avalanche classification. The blue elements depict the feature extraction, while

the orange parts show the classification. Top (blue): The temporal autoencoder features; middle: The human-engineered seismic attributes;

bottom: The spectral autoencoder features.

used in seismic detection of mass movements (Rubin et al., 2012; Provost et al., 2017; Lin et al., 2020; Wenner et al., 2021;

Chmiel et al., 2021) and time series classification in general (Barandas et al., 2020). Additionally, it served as a benchmark for185
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comparing our second approach (Sect. 4.1.2), which is to learn the feature extraction completely unsupervised without making

any preliminary assumptions about the signals. Using an unsupervised learning algorithm is beneficial when not provided with

ground-truth labels, as in our case. Therefore, we used two autoencoder models to extract features from temporal and spectral

input data, respectively (Sect. 4.1.2). The autoencoder concept was first introduced by Rumelhart et al. (1986) and has since

been adapted for various applications (Lu et al., 2013; Mousavi et al., 2019; Gu et al., 2021). The architecture consists of an190

encoder and a decoder: The encoder compresses the input signal to a lower-dimensional embedding, i.e. the latent (feature)

vectors. The decoder decompresses these feature vectors to the original input dimension. Overall, the autoencoder is trained by

learning to reconstruct the input signals. Thus by design, the encoder feature vectors are optimized to preserve the most dis-

tinctive information characterising a given input signal, such that the decoder can reconstruct it. During inference, the decoder

is discarded, and only latent vectors are used as inputs to the classifier, which is trained separately.195

4.1.1 Seismic attributes

In the first approach, we used a set of 22 waveform, 17 spectral and 18 spectrogram attributes (see Table B1, B2 and B3 for

more details). These features were extracted from the frequency-filtered (1 to 10 Hz) and normalized 10 s seismic signals for

all sensors separately. Note that we did not include any network or polarity-related attributes.

4.1.2 Autoenconders200

Developing neural networks involves optimizing network hyper-parameters and defining a training strategy. Therefore, we used

the first three folds in Fig. 3 to run 3-fold cross-validation. We defined a grid of hyper-parameter combinations and iteratively

trained the resulting model configurations on two and evaluated them on the left-out fold. We selected the model showing

the best average performance on all three folds according to predefined metrics. By definition, the autoencoder performance

can be measured with its reconstruction loss. However, given a decent reconstruction, we aimed to find the best input features205

for classification. Hence, we evaluated the autoencoders based on the avalanche and noise class separation within the latent

(feature) space. We calculated the silhouette score (Rousseeuw, 1987) and the Calinski-Harabasz index (Caliński and Harabasz,

1974) based on the feature embedding location and their given expert labels (see Appendix C2). The best autoencoder was

selected by searching for the highest-ranking combination of silhouette score, Calinski-Harabasz index and the reconstruction

mean squared error loss (see Appendix F). Following the model selection, the autoencoders were retrained on the train folds210

(fold 1, 2 and 3 in Fig. 3), and after, we extracted the autoencoder features from all folds.

In the first autoencoder, i.e. the temporal autoencoder (TAE), we considered the seismic time series data, hence the name.

It was developed for seismic waveform signals of 10 s normalized by their absolute maximum amplitude. When dealing with

time series data, common choices of computational units are one-dimensional convolutions and recurrent units such as the

long short-term memory (LSTM) cells. Thus, we implemented the encoder as a sequence of 3 convolution layers and one215

LSTM cell layer learning temporal dynamics. The best model from the cross-validation procedure (Table F2) was composed of

convolutions with kernel size 20 (or 0.1 s) and stride 10. This implementation of stride reduces the initial input length of 2000

samples (200 Hz × 10 s) to 200, 20, and 2 within each encoder layer. Similarly, we selected 32 filters in the first convolutional
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Figure 5. Illustration of the temporal autoencoder architecture.

layer and doubled the number in each consecutive layer. In the last encoder layer, the LSTM cell summarizes the output of the

convolutions, i.e. two 128-dimensional vectors, to a feature vector of 32 dimensions (32 features). The decoder sequentially220

repeats this latent vector twice and applies 3 transposed convolutions with kernel size 20 and stride 10 to decompress the

sequence back to its original length. Starting at 128 filters, we halved them in each decoder layer to reach 32 channels. To

reduce this number back to the number of input channels, i.e. 1, a convolutional layer with kernel size 3, stride 1 is applied in

the decoder output layer.

In addition, we used batch normalization (BN) (Ioffe and Szegedy, 2015) in all encoder and decoder layers except for the225

decoder output layer to stabilize and accelerate training. As an activation function, we use the leaky rectified linear unit (leaky

ReLU; (Xu et al., 2015)), which outperformed the tangent hyperbolic function (Tanh) during model optimization. The only

exception is again the output layer, where we replace the leaky ReLU with the Tanh function to output values in the same

range as the normalized input signals in [−1,1]. In summary, Fig. 5 gives a simplified overview of this architecture comprising

514’337 learnable parameters (226’848 in the encoder). Note that this architecture is relatively small in the number of trainable230

parameters, hence well adapted to the size of our dataset.

The second autoencoder implementation operates in the spectral domain, henceforth referred to as the spectral autoencoder

(SAE). We used the fast Fourier transform (FFT) to convert the filtered 10 s seismic signals into the frequency domain. Thus,

the input data to this model contains the amplitude spectrum normalised using the min-max normalization. In contrast to

the temporal autoencoder, we replaced the aforementioned computational units, i.e. convolutions and LSTM cells, with fully235

connected layers. Through hyper-parameter optimization, we designed the encoder and decoder to comprise 3 fully connected

linear layers each. The hidden dimensions in the encoder evolve from 200 to 139, 78 and 16 (feature dimension). The decoder

is a mirrored version of the encoder. Based on parameter tuning we used the Tanh function as non-linearity in all layers (Table

F3). Moreover, we apply layer normalization (LN) in each layer with the same exception of the output layer. Figure 6 illustrates

a simplified version of this architecture summing up to 81’330 learnable weights (40’589 in the encoder). As for the TAE, this240

architecture is small and well adapted to the size of the dataset.
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Figure 6. Illustration of the spectral autoencoder architecture.

4.2 Autoencoder training

The training strategy is another main part of model development, which we optimized for the selected autoencoder architec-

tures. A training step in neural network optimization starts with sampling a batch of predefined size from the dataset. For

sampling, given that our dataset is severely imbalanced (Fig. 3), we implemented the weighted random sampler (see Appendix245

D), which samples data points according to user-specified class weights. This allowed us to control the proportion of avalanche

samples within each batch. The batch is then passed through the entire network (forward pass) to produce the output (predic-

tion). The output is compared to the target and the reconstruction loss is computed. The network weights are then optimized

by computing the gradients of the loss function and applying a specified back-propagation algorithm. Within this training

procedure, we searched for the optimal number of expected avalanche samples in each batch, the batch size and the learning250

rate to use with the mean squared error (MSE) loss function and the Adam optimizer (Kingma and Ba, 2014). After following

our hyper-parameter optimization strategy, we found the temporal autoencoder training optimal with an expected portion of

avalanches per batch of 0.6, a learning rate of 1e−4 and a batch size of 128. The model was trained for 120 epochs, i.e. it-

erations through the entire dataset, with early stopping when the class-separation metrics started decreasing. Additionally, we

applied data augmentation by randomly shifting the 10 s window signals by 0 to 1 seconds to either the right or left, to reduce255

overfitting in the avalanche class and for better generalization (Zhu et al., 2020). Similarly, in the spectral autoencoder training,

we used an expected portion of 0.5 avalanches per batch, a learning rate of 1e−4 and a batch size of 128 and found 5 training

epochs to be optimal.

4.3 Feature classification

The motivation for separating the feature extraction and classification processes was manifold. First, the partial uncertainty in260

the labels led to the conclusion that an unsupervised feature extraction approach is more robust to label noise and therefore
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preferable, as it could additionally leverage more unlabelled data. In contrast, a fully supervised neural network might suffer

from the relatively low number of labels and bias, tending to overfit these expert labels rather than learn avalanche character-

istic patterns in seismic signals. In an early stage, we tested this approach and did not observe better results. Thus for better

comparability of the features themselves with the benchmark model, i.e. feature engineering, we proceeded with the unsuper-265

vised feature extraction strategy. Ideally, several classifiers can then be used, combined or ensembled over different feature

extraction steps.

Apart from expert label uncertainty, we considered the subjectivity of the manual cuts. Due to the attenuation of avalanche

signals with the distance to the sensors and the low initial energy of avalanches, we inevitably included 10 s windows from

avalanche signals, which rather account towards background noise. This particularly applies to the starting and ending sections270

of a signal (see the upper plot in Fig. 2). Labelling these parts as avalanches (false positives) bears the danger of distracting

a fully supervised neural network. Therefore, we decoupled the classification from the feature extraction and implemented

random forest classifiers for each feature set.

The random forest model is a widely used algorithm for classification in general and for seismic event detection (e.g. Li

et al., 2018; Provost et al., 2017; Chmiel et al., 2021), as it is favourable when dealing with high-dimensional features and275

heterogeneous (seismic attributes) input data. The algorithm was introduced by Breiman (2001) and belongs to the class of

ensemble methods. During training, several decision trees (estimators) are grown. Each tree is grown on a different bootstrap

sample of the original dataset, i.e. a random draw with replacement. Instead of using the entire set of features (columns) in

the original dataset, a random subset is assigned to each node in the tree individually. The split (branch) is based on a single

feature from this random subset, which is optimal under a specified splitting criterion, such as the Gini information criterion280

when dealing with categorical (classification) splitting problems. During inference, each tree prediction is aggregated to form

a final majority vote, from which it is possible to retrieve class proportions, often interpreted as probabilities.

In search of the best hyper-parameters of this tree-growing algorithm, e.g. the maximal number of estimators (trees), we used

a randomized grid search with 3-fold cross-validation. This method evaluates hyper-parameter combinations by iteratively

fitting the random forest model to two of the three train folds and testing it on the left-out fold. As a scoring function, we285

chose the avalanche class f1-score to weigh the precision and recall uniformly and averaged the score across the three folds.

This optimization process was applied with the three feature sets individually, i.e. the seismic attributes and the autoencoder

features, to find the random forests presented in Table E1.

5 Results

After completion of the model development, we evaluated the three approaches on the test fold (fold 4 in Fig. 3). First, we290

summarized the results of the seismic attribute, TAE and SAE feature classification on the windowed 10 s seismic signals (Sect.

5.1). Further, we aggregated the predictions by averaging the per-sensor 10 s window probabilities over the seismic array (Sect.

5.2). Thus, we gained insights into the predictions of unique 10 s signals at our study site.
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Figure 7. Confusion matrices of the binary classification results for the three feature sets on the held-out test fold data. The rows indicate the

true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.

5.1 Single sensor predictions

The true positive rates (or avalanche recall) were similar across the models (Fig. 7), i.e. between 67.3% and 71.2%. Neverthe-295

less, the avalanche recall was slightly higher for the autoencoder features classification. Regarding the true negative rates (or

specificities), i.e. the probability that an actual noise event will be predicted as noise, we noted that the TAE features classi-

fication showed the lowest rate of 82.6% and also showed the lowest avalanche precision of 0.33, compared to 0.51 for the

seismic attributes and 0.45 for the spectral autoencoder features (Table 1). Thus, we expect this model to produce comparably

more false alarms (false positives). Overall, the macro-average f1-score reached values of 0.76, 0.67 and 0.74 for the seismic300

attributes, the TAE features and the SAE features classification respectively (Table 1). Additionally, since the feature extraction

and its information content are core concepts of this study, we visualized part of the latent spaces in Fig. 8. As earthquakes

account for a significant proportion of the noise class and labels were available, we show them separately. This visualization

provided some insights into the organization of the autoencoder latent space.

5.2 Array-based predictions305

In addition to the predictions on the individual 10 s windows, we aggregated the window predictions over the 5 sensors in

the seismic array by averaging the per-sensor output probabilities, resulting in improved model performance (Fig. 9). The

macro-average f1-scores increased by 2.6% (seismic attributes), 4.5% (TAE) and 5.4% (SAE). After ensembling, the seismic

attribute and the SAE feature classification yielded similar performance in the classification metrics (see Table 2). Despite this

improvement, the TAE feature classification still showed approximately double the number of false alarms, i.e. 323 (14.7%),310

compared to the other models. The array-based aggregation further enabled us to investigate how predictions over an entire

seismic signal evolve (Fig. 10). For the avalanche shown in Fig. 1 and 2, the models are comparably unsure in the starting
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Table 1. Classification metrics on the (unseen) test fold data for the three feature sets. Due to the strong class imbalance, the weighted

averages of the metrics are not shown.

Model Class Precision Recall F1 Support

Seismic

Attribute

Avalanche 0.51 0.67 0.58 1335

Noise 0.96 0.92 0.94 11135

Macro Avg 0.74 0.80 0.76 12470

Accuracy 0.90

TAE

Features

Avalanche 0.33 0.71 0.45 1335

Noise 0.96 0.83 0.89 11135

Macro Avg 0.64 0.77 0.67 12470

Accuracy 0.81

SAE

Features

Avalanche 0.45 0.70 0.54 1335

Noise 0.96 0.90 0.93 11135

Macro Avg 0.70 0.80 0.74 12470

Accuracy 0.87

Figure 8. Latent space visualization of the most important features according to the impurity-based feature importance of random forest

models for the seismic attributes (left), the temporal autoencoder features (middle) and the spectral autoencoder features (right). In parenthe-

sis, the impurity-based importance of each feature is shown.

14

X
X
Please consider using the LateX package "booktabs" to create clean tables. 

https://tug.ctan.org/macros/latex/contrib/booktabs/booktabs.pdf

X
X
What do you mean with support?

X
X
The "Class" column makes no sense to me. Avalanche / noise - yes, that makes sense. Why don't you add accuracy as a column next to F1? And I would either decide to take the raw metrics or the macro-avg in one table, or consider doing a second table for that.

Or:  'score' ('avg-score') 

In any case, you want to be able to see quickly which model is doing best. You can do that by emboldening the best value. Or you consider plotting this as a bar plot - this way the reader can see immediately which model is best in the weighted vs non-weighted case

X
X
You have to explain the x and y-axis here for the readers who are unfamiliar with latent spaces. Explain why the diagonal looks different, etc.



Figure 9. Results on the held-out test fold data after applying a probabilistic aggregation of the 10 s predictions over the 5 sensors of the

array. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours

code the percentage numbers.

phase, i.e. when it emerges from background noise. However, as the signal becomes more energetic, the avalanche probability

increases for all models.

Table 2. Classification metrics on the (unseen) test fold data after probabilistic aggregation over the 5 sensors. Due to the strong class

imbalance and bias towards the noise class, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1 Support

Seismic

Attributes

Avalanche 0.56 0.68 0.61 267

Noise 0.96 0.93 0.95 2202

Macro Avg 0.76 0.81 0.78 2469

Accuracy 0.91

TAE

Features

Avalanche 0.37 0.71 0.49 267

Noise 0.96 0.85 0.90 2202

Macro Avg 0.67 0.78 0.70 2469

Accuracy 0.84

SAE

Features

Avalanche 0.53 0.71 0.60 267

Noise 0.96 0.92 0.94 2202

Macro Avg 0.75 0.82 0.77 2469

Accuracy 0.90
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Figure 10. Example of the seismic signal generated by an avalanche (up) and the mean output probabilities for each developed model over

the entire avalanche signal (down). The probability is computed as the average of the individual probabilities predicted by each sensor every

5 seconds (10 s windows with 50% of overlap). The manual cuts are highlighted in dashed grey lines (upper plot), and the classification

threshold 0.5 is in orange (lower plot).

5.3 Event-based predictions315

Besides the single sensor and array-based predictions (Sect. 5.1 and 5.2), we investigated the predictions on the event level to

close the gap to avalanche activity monitoring and provide a broader outlook. For this, we aggregated the array-level predictions

in Fig. 9 over the entire duration of an event. We defined that at least two consecutive windows (or 15 s of an event) had to

be positively predicted for the entire event to be considered an avalanche. This threshold of two windows was not optimized.

However, considering that the shortest avalanche in the dataset is 13 s, this boundary was feasible. This post-processing led to320

the results in Appendix 5.3. Figure F1 shows a significant increase in avalanche recall with values of 0.82 (seismic attributes),

0.88 (TAE) and 0.91 (SAE). Nevertheless, the overall performance of the three models decreases by about 5% (see Table F4).

6 Discussion

So far, we compared the performance of a human-engineered seismic attribute classification and the autoencoder feature clas-

sification results based on a dataset containing 10 s seismic signals on a single sensor-level and multiple sensor-level (aggre-325

gation). With the latter aggregation, we observed a significant reduction in false alarms and a slight improvement in avalanche

recall. Furthermore, we noticed that the automatically learned features, specifically the ones from the spectral autoencoder,

performed better than the seismic attributes. Hence, the results showed that spectral input information seemed favourable. In

the following, we contextualise the results by investigating the detection errors and their possible origins. Therefore, we sum-

marize the model development (Sect. 6.1) and focus on the false predictions of the models to find potential limitations and330
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Figure 11. Array-based output probabilities of the random forest models for their respective input features with expert avalanche scores. The

blue dashed line indicates the threshold applied to the expert scores to assign avalanche class labels.

reasons (Sect. 6.2 and 6.4). Finally, we argue about the applicability of these models (Sect. 6.3) and compare the results to

previous work (Sect. 6.5).

6.1 Model performance and limitations

Machine-learning models are strongly influenced by the quality and size of the dataset. The relatively small size constrained

us to design autoencoder architectures with rather few trainable weights. In addition, we used each sensor independently to335

compensate for dataset size, as each sensor can be considered a different view of the same event. However, this came at the cost

of introducing correlation among dataset samples as the sensors were installed nearby (Fig. 1) and thus recorded very similar

signals, yet not necessarily adding much new and enriching information to the dataset. Given that the dataset will increase in

the next years, we will consider incorporating the 5 sensors as distinct channels in a convolutional model in future studies. With

this, the sensor aggregation and fusion would be implicitly implemented into the model. Another aspect to bear in mind was the340

signal normalization. Normalizing input data has proven crucial when training neural networks (Sola and Sevilla, 1997). The

temporal autoencoder, in particular, therefore loses information on absolute and relative amplitudes. Yet, both autoencoders

could still capture signal characteristics and remarkably show similar patterns when looking at continuous predictions (see Fig.

10). Alternatively, a normalization over the entire signal before windowing could be envisioned to preserve information on

relative amplitudes. However, this is not practical for (near) real-time signal detection.345

Further, the dataset drove the decision to separate the feature extraction and classification. The unsupervised feature ex-

traction is not constrained to a labelled dataset (only the model selection and hyper-parameter tuning of the classifiers are),

an advantage when dealing with non-ground-truth labels (two-thirds of the avalanches were not verified). This allowed us

to analyze a lower-dimensional embedding of the dataset by inspecting the feature space distributions (Fig. 8). As labels for

earthquakes were available, we visualised the earthquake class separately. Moreover, earthquake and avalanche signals can be350
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similar in the time domain (Heck et al., 2019a), thus we wanted to investigate them in the feature domain. In an early stage,

we trained models with three classes (earthquake separately), without seeing an increase in overall model performance. In

addition, note that training a model to also classify earthquakes was out of scope as these can be detected with other methods.

Overall, the three event types, i.e. avalanches, earthquakes and rest, varied in the encoding locations, yet also showed consid-

erable overlap. Interestingly though, the avalanche and earthquake signals were well separated (blue and orange in Fig. 8). The355

rest (grey) resembled a connecting cloud between avalanche and earthquake signals. The reason for this might be two-fold;

first, the heterogeneity of these noise events by potentially comprising minor avalanches and low magnitude earthquakes (false

negatives), and second, the strong attenuation in some sections of avalanche signals resulting in low amplitude avalanche win-

dows. The heterogeneity within the noise class originated from including different sources in comparable amplitude ranges, e.g.

earthquakes, aeroplanes or strong wind. However, these various sources are definitive to be expected and need to be considered360

in a real-time detection system.

In future implementations, further investigations could also be conducted considering the avalanche class by differentiating

between type and sizes. Since the primary goal of this study was to develop and compare models to detect avalanches regard-

less of their type or size, we trained the models considering all the recorded avalanches. Therefore, we ensured that various

avalanche types were included in both the train and test set by separating them based on appropriate dates (Sect. 3.3). Accord-365

ing to radar and image data, most avalanches detected by our seismic array ranged between size classes 2 and 3, based on the

European avalanche size classification (EAWS, 2021). Future models could be expanded to also classify avalanches by size and

type. Given that seismic patterns of avalanches are influenced by the avalanche type (Pérez-Guillén et al., 2016), an alternative

approach could be to develop two independent models to detect dry-snow and wet-snow avalanches separately. However, the

current dataset was too small to further categorize the avalanche events by size and type, and accurate ground-truth data was370

often also missing.

Finally, the applied expert labelling was subject to an unknown degree of subjectivity and belief for the non-verified events.

In addition, having decided upon a hard threshold to convert expert scores to class labels further blurred the boundaries between

the avalanche and noise class, i.e. the noise class might include minor avalanches (false negatives). We, therefore, investigated

the relationship between the random forest’s output probabilities and the expert scores of potential avalanche signals (Fig.375

11). Also, we found the average expert agreement rate on the avalanche samples to be 58%, i.e. on average, two experts

agree on 58% of the avalanche signals. Overall, the output probabilities of the random forest models positively increased

with the expert scores. As expected, we also noted the highest uncertainty at the selected threshold (dotted blue line). When

comparing the feature sets, the classification with the seismic attributes yielded clearer steps over expert scores and more

distinctive probabilities for the highest and lowest expert scores. A measure to mitigate having to deal with noisy labels in380

future works might be to solely include verified avalanches and discard the non-verified ones for training the models. However,

the unsupervised autoencoders are entirely independent of any class labels or information. Thus, by considering only verified

avalanches, we would not reduce class ambiguity from the autoencoder’s perspective but the dataset size and with it, valuable

information might be lost.
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Another noticeable observation, which bridges to the upcoming Sect. 6.2 and 6.4, was the number of outliers for the expert385

scores of 0.5 (false positives) and 3.0 (false negatives), most prominently in the seismic attributes classification.

6.2 Missed avalanche windows

Two types of errors are inherent in a binary classification problem, namely false negatives (FNs) and false positives (FPs),

which are the focus of this and the following Sect. 6.4, respectively.

Looking again at Fig. 11, we accredited the outliers in the expert score of 3.0, i.e. FNs, to the nature of mass movement390

signals. Concretely, avalanche signals slowly emerge from the background noise due to source-receiver distance and the low

generation of energy in the initial and very end stages of avalanche motion, resulting in the typical spindle-shape signal with a

relatively low signal-to-noise ratio at the beginning and end of the signal (Suriñach et al., 2001; van Herwijnen and Schweizer,

2011; Pérez-Guillén et al., 2016). We suspect that the models had difficulties correctly classifying these parts of an avalanche

signal, producing FN predictions. Further, the manual cutting was rather generous in including the entire avalanche signal with395

parts characterised by very low amplitudes. The selection of the onsets and ends of the signals was subjective, and we cannot

exclude that some background noise was included. For instance, Fig. 12 a) shows a comparison of the time series of array-based

averaged predictions for each model with the misclassified onset of an avalanche event, while in Fig. 12 b), the end portion

was characterised by a very low signal-to-noise ratio. In Fig. 12 a), the first few time windows from 10 s to 35 s are arguably

rather noise, as suggested by the model probabilities. Tough as the signal strength increases, model probabilities also increase.400

Concretely, if we considered the first five predictions or time windows as noise, this sample accounts for 5 (non) FNs in the

results in Fig. 9 and approximately 25 in Fig. 7 per model. The array-based prediction aggregation did not reduce these missed

‘avalanche’ windows (Fig. 9) since all the sensors predicted low probabilities of being an avalanche. Thus, we were left with

approximately one-third of FNs in all three models.

6.3 Applicability to early warning and monitoring systems405

For monitoring avalanche activity, false negatives at the start or end of each event are not very problematic. As long as the

most energetic part of the signal is well detected, the overall avalanche activity can still be accurately recorded. However, in a

potential early-warning operation, an effective model must detect all key parts of the signal, particularly the onset, to identify

avalanche movement in its early stages and trigger an appropriate alert. The current classifiers, which often fail to capture

the avalanche onset, may not be suitable for this purpose. To improve early-warning models, future studies should focus410

on examining avalanche onsets in more detail and developing specialized models that target these specific signal windows.

Additionally, when assessing overall avalanche activity, missed detections can be problematic. Installing additional sensors

near the release area and along the avalanche path could help address this issue. However, given the terrain characteristics at

our test site (Fig. 1), where avalanches can occur along multiple paths, a single sensor may not be sufficient to detect all events.

To give a general outlook on avalanche activity monitoring, we further post-processed the array-based predictions (Fig. 9) to415

formulate event-based predictions. We considered an entire signal an avalanche if at least two consecutive windows (i.e. 15 s

that is approximately the minimum duration of an avalanche signal) were positively predicted. In theory, this should eliminate

19

X
X
Very insightful paragraph

X
X


X
X
That sentence without further context / discussion, does not tell the reader a lot. I would not put it in the discussion at the current spot

X
X


X
X
I would not introduce that (again) here - Introduce the section in a different way please.



Figure 12. Signals generated by avalanches triggered on 2 February 2022 at 18:14 (top left) and 7 February 2022 at 04:07 (top right) and

comparison of the array-based averaged probabilities by each model over the entire length of the avalanche signals (bottom). The dashed

vertical lines in grey indicate the manual cuts.

the FNs in the tails of the actual signal and provide us with event-based detectors. For instance, in Fig. 12, we then would

detect avalanches with this post-processing. Indeed, in Fig. F1, we observe a drastic reduction in missed avalanches for the

three models, which achieved a high avalanche recall of 0.82 (seismic attributes), 0.88 (TAE) and 0.91 (SAE).420

In closing, we reduced the missed avalanches by applying the presented post-processing steps. Furthermore, we observed

that the models struggle to detect the starting and ending of an event (Fig. 12). We argued that this behaviour is reasonable and

in part desirable as these parts of an event often resemble background noise. However, in most cases, the entire (unique) event

is detected (Fig. F1). Thus, the models could, in turn, be considered to annotate large datasets, which in turn can be used to

detect fine precursor signals.425

6.4 False alarms

The second type of error, i.e. false positives (FPs) or false avalanche alarms, showed greater variation in numbers across the

three models. With 7.8% the seismic attributes produced the smallest portion of false positives. Predicting with the TAE features

resulted in roughly three times as many false positives, with the SAE feature prediction in between. However, we observed

a significant improvement in these errors when aggregating over the array (Fig. 9). This suggested that the 5 recordings of a430

specific event, particularly noise events, can show strong variations across the array, which we filtered by this averaging. As

the noise class is extremely dominant and, for instance, 10% FPs result in approximately 1000 FP samples (compared to 1335

avalanche samples), the avalanche precision of all three models is relatively low with 0.51 (Seismic Attributes), 0.33 (TAE)

and 0.45 (SAE).
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Figure 13. Analysis of origins for false positives as a percentage of the total amount of false positives per model.

We therefore analyzed the origins of FPs to find potential tendencies or failure cases (Fig. 13). Most FPs, i.e. 76% (seismic435

attributes), 65% (TAE) and 71% (SAE), were generated by windows either carrying a non-zero avalanche score or belonging

to an earthquake. Interestingly, the highest portion of false positives falls to windows with an avalanche score of 0.5, i.e. ’one’

expert thinks it might be an avalanche. This might indicate that minor-size avalanches, or larger avalanches that flowed at the

detection limits of the system, are not well recognized by the experts yet by the models. Considering the earthquakes, the test

fold comprises a total of 3880 earthquake windows, of which only 135 (Seismic), 200 (TAE) and 158 (SAE) are misclassified440

as avalanches, i.e. 3.5%, 5.2%, 4.1%. The remaining approx. 30% FPs in all models originated from unknown sources.

Overall, our results thus showed that using an array of sensors helped to reduce the number of false avalanche detections

by averaging the predictions of the sensors. This can be viewed as model ensembling and is generally known to improve

results (Mohammed and Kora, 2023). Second, including features from the frequency domain tended to show fewer FPs. Third,

an interesting and positive finding was that the models rarely confused earthquakes for avalanches (on average 4.3% of all445

earthquake windows). Moreover, the models generate false alerts to a similar extent to previous studies in avalanche detection

(e.g. Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018). Thus, they might not yet be suited for an

early-warning application. However, the models could be implemented in an avalanche activity assessment process or to label

unverified events in the future by being aware of the limitations and that they tend to produce too many avalanche detections.

In pursuit of reducing the number of false alerts, one might consider including other types of recordings, e.g. infrasound data450

(Mayer et al., 2020). Also, implementing specialized data augmentation techniques to increase the variety and number of the

avalanche recordings, e.g. seismic data augmentation techniques (Zhu et al., 2020) or generative models (Wang et al., 2021),

might help to make the classifiers more robust to changing environments and setups. Classifier robustness is another compelling

prerequisite when considering the transferability of such models to other test sites and should be considered in future studies.

We would expect variations in the detection performance to arise from different configurations in the study site setup, sensor455

location and configuration as well as in the characteristics of the terrain and the avalanches.
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6.5 Comparison to previous studies

To conclude, we put our results in a broader context by comparing them with previous studies. Provost et al. (2017) used a

random forest model based on the 71 engineered seismic attributes. They reported stunning true positive rates of 94%, 93%

and 94% for the rockfall, quake and earthquake class and a true negative rate of 92% for the noise class. The setting, however,460

is difficult to compare, as they used non-windowed signals from an evenly distributed dataset comprising 418 rockfalls, 239

quakes, 407 earthquakes, and 395 noise events. Also, these event types typically generate signals with a higher signal-to-noise

ratio than avalanches. Moreover, they included polarity and network attributes in the features, which for the classification turned

out to be most important. Nevertheless, with 92% true negatives, their model is comparably prone to producing false alerts as

the models in this study are. Also, for avalanche detection, several studies presented the approach of feature engineering and465

subsequent classification (e.g. Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018). Rubin et al.

(2012) used 10 engineered features in the frequency domain and tested 12 classification models, of which the decision stump

classifier showed the highest overall accuracy of 0.93. However, the model showed a poor precision of 0.13, hence, producing

many more false alerts. In contrast to our approach, they only considered avalanches verified on camera images or manually

picked events. Heck et al. (2018) used the same avalanche catalogue of 283 avalanches, of which 25 were confirmed and the rest470

were labelled by three experts. They implemented engineered temporal and spectral features and used an HMM as a classifier.

Similar to most previous studies, they also noted high values of FPs. Moreover, they observed improvements when aggregating

single sensor to array-based predictions as we did in this study. In conclusion, based on the results of this and previous studies,

we expect that an avalanche predictor based on solely seismic data will always produce false alarms, as it remains a difficult

task to identify low-energy avalanche signals. Therefore, installing a secondary seismic detection system in the proximity of475

the avalanche path would be advantageous in mitigating false alarms. Alternatively, integrating a complementary detection

system, such as an infrasound system, could also be beneficial but less cost-effective.

In summary, the classification results met the performance of previous studies on avalanche detection. However, the core

contribution of this study is two alternatives to extract features from seismic signals. We showed that the proposed encoder

features are applicable for avalanche detection and compare well to engineered features. In particular, the learned feature480

extraction does not depend on prior expertise or knowledge and thus can be adapted easily to new settings, e.g. changing

environments, without having to set some parametrisations of expert features. Moreover, with growing dataset size or larger

datasets, it can improve over time. Finally, a future interesting comparison would be to evaluate the models on how they

generalize to other test sites and settings.

7 Conclusions485

We proposed two unsupervised seismic feature extraction methods based on deep learning algorithms and a set of standard

seismic attributes to train three random forest classifiers for avalanche detection. The dataset was compiled from seismic

avalanche data recorded during two winter seasons in Davos, Switzerland. While in earlier studies, seismic data classification
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mostly followed the approach of extracting well-defined signal attributes to train classifiers, the proposed deep learning models

bridge the gap to a purely learned (automatic) pipeline.490

Overall, the classifiers achieved macro-average f1-scores ranging from 0.70 to 0.78 with avalanche recall values ranging

from 0.68 to 0.71. Moreover, the results clearly show that including features from the frequency domain improves model

performance. Further, as we observed that the onset and end of avalanche signals were often misclassified as noise but the

most energetic signal parts were not, we proposed a simple post-processing step. By imposing that at least two consecutive

prediction windows, i.e. 15 s, must be positive for an entire event to be positive, we drastically reduced the missed avalanches495

(false negatives). This criterion significantly improves the avalanche recall, ranging from 0.82 to 0.91. Lastly, contrary to

previous expectations, earthquakes are rarely mistaken for avalanches at our study site.

Revisiting our primary goal of comparing human-engineered with automatic feature extraction, there is no denying that

the standard expert-based seismic attributes classification is a robust approach. These predefined attributes have been studied

and applied for a decade and optimized and tuned throughout various studies. The unsupervised representation learning, in500

contrast, is a completely new approach to seismic avalanche data analysis. We have shown that it bears strong potential for

future implementations and applications. Compared to the engineered features, the learned features require no prior expertise

and, therefore, can easily be adapted to changing environments without having to set some parametrisations of expert features.

Also, they can improve with growing dataset size and quality in future.

Code and data availability. The code and data are available on Zenodo (doi: 10.5281/zenodo.12162570). It is predominately written in505

Python using the PyTorch library (Paszke et al., 2019) for the autoencoder design, the random forest implementation of the Scikit-learn

library (Pedregosa et al., 2011), the Pandas library (Wes McKinney, 2010) for handling the data and more standard Python libraries such as

NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020).
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Table A1. Detailed view on the applied splits of the dataset. For each fold, the table shows the number of respective events.

Fold Date Avalanches Earthquakes Noise

1
13.01.2021

- 28.01.2021
17 39 196

2
29.01.2021

- 24.05.2021
16 39 100

3

10.01.2022

- 04.02.2022

(excl. 02.02.2022)

18 39 138

4

06.02.2022

- 17.05.2022

(incl. 02.02.2022)

33 66 211

Appendix A: Dataset

Table A1 depicts the date ranges in each fold and the respective number of events. We used folds 1, 2 and 3 for the cross-510

validation, i.e. the model development, and the test fold (number 4) to obtain the final results on unseen data. In general, we

picked the folds consecutive in time, with a minor exception in the test fold, where we moved the 2nd of February from fold 3

to the test fold. This balanced the number of events in the folds more evenly.

Appendix B: Seismic attributes

The implemented engineered feature extraction follows the work of Provost et al. (2017) and Turner et al. (2021). In contrast515

to these, by defining our frequency band to 1-10 Hz we modified the attributes correspondingly. Also, we discarded network or

polarity-related attributes as we developed individual models per sensor, and most of our sensors only contained one vertical

component. In summary, we extracted 22 waveform attributes (Table B1), 17 spectral (Table B2) and 18 spectrogram attributes

(Table B3).

Appendix C: Metrics520

We used the classification and clustering metrics defined here to evaluate both the classifiers and the unsupervised clustering

of the autoencoders.
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Table B1. Waveform attributes extracted from the 10 s seismic signals.

Number Description

1− 2
Ratio of the mean and median

over the maximum of the normalised envelop signal

3 Ratio between ascending and descending time

4 Kurtosis of the raw signal

5 Kurtosis of the envelope

6 Skewness of the raw signal

7 Skewness of the envelope

8 Number of peaks in the autocorrelation function

9
Energy in the first third part

of the autocorrelation function

10
Energy in the remaining part

of the autocorrelation function

11 Ratio of 10 and 9

12− 16
Energy of the signal filtered in

[1,3], [3,6], [5,7], [6,9] and [8,10]Hz

17− 21
Kurtosis of the signal in

[1,3], [3,6], [5,7], [6,9] and [8,10]Hz

22
RMS between the decreasing part of the signal

and I(t) = Ymax − Ymax
tf−tmax

t

C1 Classification metrics

Various metrics exist to evaluate binary classification problems. All are tailored to specific objectives. For instance, the precision

is chosen when false alerts, i.e. false positives, are critical, the recall is sensitive to missed events, i.e. false negatives and the525

f1-score combines both to form the harmonic mean as follows:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(C1)

The macro average summarizes the per-class results within a single value. This value is an unweighted mean over the given

classes and ensures that the values are not biased towards the most frequent class, i.e. noise.
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Table B2. Spectral attributes extracted from the 10 s seismic signals. The Nyquist frequency (NyF) is 100 Hz, i.e. half of the sampling rate.

Number Description

23− 24 Mean and Max of the FFT

25 Frequency at the maximum

26− 27 Central frequency of the 1st quartile and 2nd quartile

28− 29 Median and Variance of the normalized FFT

30 Number of peaks

31 Number of peaks in the autocorrelation function

32 Mean value for the peaks

33− 36
Energy in [ 1

100
, 1
4
]NyF , [ 1

4
, 1
2
]NyF , [ 1

2
, 3
4
]NyF

and [ 3
4
,1]NyF

37 Spectral centroid

38 Gyration radius

39 Spectral centroid width

Macro−F1 =
1

K
∗

K∑
k=0

F1k , whereK = 2 (C2)530

C2 Clustering metrics

A natural metric choice when evaluating autoencoders is a reconstruction loss, e.g. the mean squared error, on which the

autoencoders in this work were trained. In pursuit of good autoencoder features for later classification, however, we aimed to

optimize the latent space representation. Since a good reconstruction does not necessarily imply a sufficient separation in latent

space, we explored clustering metrics to compare the latent space distribution of different models with the given (expert) labels.535

We, therefore, implemented the silhouette score (Rousseeuw, 1987) and the Calinski–Harabasz index (Caliński and Harabasz,

1974). These scores are usually used to evaluate clustering algorithms that predict classes, e.g. k-means. The silhouette score

computes the mean intra-cluster and inter-cluster distances per sample. For instance, given a sample, it calculates the distance

to the cluster it is part of (a) and the distance to the nearest cluster it is not part of (b) and forms the sample score:

Si =
b− a

max(a,b)
(C3)540

After taking the mean over all samples, the silhouette score ranges from -1 (worst) to 1 (best). The Calinski–Harabasz index, or

variance ratio criterion, on the other hand, is the ratio of between- and within-cluster dispersion. The between-cluster dispersion
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is defined as the weighted sum of squared Euclidean distances of the cluster centroids and the overall centroid (higher better).

The within-cluster dispersion is given as the sum of squared Euclidean distance of the samples and their respective cluster

centre (lower better). Thus, a good clustering algorithm is supposed to yield a high Calinski–Harabasz score.545

Appendix D: Weighted random sampler

Training a deep learning model on a dataset characterised by a severe class imbalance can bias the model predictions towards

focusing solely on the most frequent class. The model can thus achieve high accuracy by accurately predicting this class.

Therefore, it can fail to predict events in the minority class, which in our study is the main objective, i.e., avalanches. To

mitigate this problem, we applied a weighted bootstrapping technique during the training of the autoencoders, a so-called550

weighted random sampler, as implemented in PyTorch (Paszke et al., 2019). Therefore, we assign the following relative weights

to each sample of the avalanche (wav) and noise class (wno).

wav =
Nno

Nav

Pav

1−Pav
; wno = 1 (D1)

Pav is the user-defined portion of expected avalanches within each batch. Internally, these weights are rescaled and inter-

preted as probabilities.555

Appendix E: Random forest optimization

The random forest models and their optimizations were implemented using the scikit-learn library (Pedregosa et al., 2011).

Table E1 presents the three selected random forest models that were optimized on the same hyper-parameters grid and ranked

based on the avalanche class f1-score.

Appendix F: Autoencoder optimization560

To select the autoencoder hyper-parameters, we opted to first optimize model intrinsic parameters, such as hidden dimensions

or the number of layers, instead of training strategy parameters. This separation reduced the computation time.

The temporal autoencoder architecture optimization proved to be more sensitive and critical. First, we optimized the kernel

size, stride, number of filters, feature dimension and activation function. We observed that the kernel size and stride combi-

nations of (20, 10) and (8, 4) showed the best clustering metrics. Moreover, concerning the non-linear activation, the leaky565

ReLU outperformed the Tanh function in most tests. Since the overall performance was not entirely satisfying, we tested the

weighted random sampler (Sect. D with 50% expected avalanches in each batch. This addition to the training strategy showed

a considerable improvement for most models with kernel size 20 and stride 10. Although using a kernel size of 8 and stride of

4 tended to show better clustering metrics, the reconstruction of the signals was comparably poor. Based on these observations,

we implemented a kernel size of 20 and stride of 10. Also, we found the feature dimension 32 better suited than 64 or 16.570

27



Figure F1. Confusion matrices of the results for the three feature sets aggregated on event level. The rows indicate the true (expert) labels,

while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.

Lastly, we selected the number of filters as 32, 64 and 128 within each encoder layer. See Table F2 for a summary of the

best 10 models of this process and Table F1 for the selected autoencoders. Having defined the intrinsic parameters, we tested

different training strategies. In particular, we optimized the learning rate, the batch size and the expected portion of avalanches

per batch. This test led to values of 1e−4, 128 and 0.6 for the temporal autoencoder. Finally, we found that augmenting the data

by randomly shifting input samples by 0 to 1 s to the left or right improved robustness.575

While optimizing the spectral autoencoder, we found faster convergence. We started by testing combinations of the number

of layers with hidden dimensions, feature dimensions and activation functions. The results for the best 8 models are shown

in Table F3. We foremost noted that 16 features were optimal for this task. Moreover, we observed that the Tanh activation

function was favourable in comparable architectures. Finally, we selected the model highlighted in bold since it showed a

good compromise between the number of weights in the network and performance. Following the same training strategy as for580

the temporal autoencoder, we optimized the learning rate, the batch size and the expected portion of avalanches per batch. In

contrast to the temporal autoencoder, we used an expected portion of 0.5 avalanches within a batch, a learning rate of 1e−4 and

a batch size of 128.

F1 Event-based prediction results
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Table B3. Spectrogram attributes extracted from the 10 s seismic signals.

40
Kurtosis of the maximum of

all fast Fourier transforms (FFTs) over time

41
Kurtosis of the maximum of

all FFTs as a function of time

42
Mean ratio between the maximum

and the mean of all FFTs

43
Mean ratio between the maximum

and the median of all FFTs

44− 46

Number of peaks in the curve showing

the temporal evolution of the FFTs maximum (44),

mean (45) and median (46)

47 Ratio between 44 and 45

48 Ratio between 44 and 46

49
Number of peaks in the curve of the temporal evolution

of the FFTs central frequency

50
Number of peaks in the curve of the temporal evolution

of the FFTs maximum frequency

51 Ratio between 50 and 51

52

Mean distance between the curves of the

temporal evolution of the FFTs maximum frequency

and mean frequency

53

Mean distance between the curves of the

temporal evolution of the FFTs maximum frequency

and median frequency

54
Mean distance between the 1st quartile and the median

of all FFTs as a function of time

55
Mean distance between the 3rd quartile and

the median of all FFTs as a function of time

56
Mean distance between the 3rd quartile and

the 1st quartile of all FFTs as a function of time

57 Number of gaps in the signal
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Table E1. Selected random forest models

Parameter
Seismic

Attributes
TAE SAE

Number of Estimators 512 512 512

Maximum Depth 8 8 8

Maximum Number

of Features
log2 sqrt sqrt

Maximum Number

of Samples
0.1 0.2 0.2

Class Weight Balanced

Criterion Gini

Bootstrap True

Table F1. Selected autoencoders

Parameter
Temporal

Autoencoder

Spectral

Autoencoder

Number of Weights 514’337 81’330

Feature Dimension 32 16

Hidden Dimension [200, 20, 2] [139, 78, 16]

Filters [32, 64, 128] -

Number of Layers 3 3

Kernel Size 20 -

Stride 10 -

Expected Avalanche

Portion in Batch
0.6 0.5

Learning Rate 1e−4 1e−4

Batch Size 128 128
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Table F2. Summary of the TAE hyper-parameter optimization. Shown are only the models for which all three metrics are ranked in the top

20. The best metrics and the selected model are highlighted in bold.

Weights
Filters in

first Layer

Feature

Dimension

Kernel

Size
Stride

Expected

Avalanche

Portion

Augmentation
Silhouette

Score

Calinski–Harabasz

Index
MSE

109865 8 64 8 4 default False 0.191 849.959 0.078

109865 8 64 8 4 0.5 False 0.024 357.494 0.073

109865 8 64 8 4 0.5 True 0.018 345.684 0.076

156945 16 32 20 10 0.5 False 0.033 374.174 0.06

156945 16 32 20 10 0.5 True 0.011 567.276 0.055

514337 32 32 20 10 default True -0.072 368.876 0.054

514337 32 32 20 10 0.5 False 0.061 333.174 0.061

514337 32 32 20 10 0.5 True 0.041 613.917 0.054

625185 32 64 20 10 0.5 False -0.095 292.78 0.063

625185 32 64 20 10 0.5 True -0.105 307.477 0.064

Table F3. Summary of the SAE hyper-parameter optimization. Shown are only the models for which all three metrics are ranked in the top

10. A “default” hidden dimension indicates that the dimensions in the layers of the encoder linearly decrease from the input dimension (200)

to the feature dimension. The best clustering metrics and the selected model are highlighted in bold.

Weights Layers
Feature

Dimension

Activation

Function

Hidden

Dimensions

Silhouette

Score

Calinski–Harabasz

Index
MSE

47552 2 16 Tanh default 0.227 1205.952 0.014

47552 2 16 leaky ReLU default 0.218 1088.234 0.012

70880 2 64 Tanh default 0.198 999.475 0.014

81330 3 16 Tanh default 0.224 1237.579 0.013

81330 3 16 leaky ReLU default 0.217 1015.357 0.012

112432 4 16 Tanh default 0.238 1111.027 0.013

112432 4 16 leaky ReLU default 0.223 1013.013 0.012

146120 5 16 leaky ReLU default 0.223 968.953 0.012
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Table F4. Classification metrics on the (unseen) test fold data after the aggregation over entire events of the array-based predictions. Due to

the strong class imbalance and bias towards the noise class, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1 Support

Seismic

Attributes

Avalanche 0.42 0.82 0.55 33

Noise 0.98 0.86 0.92 275

Macro Avg 0.70 0.84 0.73 308

Accuracy 0.86

TAE

Features

Avalanche 0.27 0.88 0.41 33

Noise 0.98 0.72 0.83 275

Macro Avg 0.63 0.8 0.62 308

Accuracy 0.73

SAE

Features

Avalanche 0.41 0.91 0.56 33

Noise 0.99 0.84 0.91 275

Macro Avg 0.7 0.87 0.73 308

Accuracy 0.85
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